两种梨病毒CP基因原核表达及苹果褪绿叶斑病毒分子变异与其血清学多样性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果茎沟病毒(Apple stem grooving virus, ASGV)和苹果褪绿叶斑病毒(Apple chlorotic leaf spot virus, ACLSV)是苹果和梨树上发生普遍的两种潜隐性病毒(Latent viruses),常与苹果茎痘病毒(Apple stem pitting virus, ASPV)复合侵染引起树势衰弱、减产和品质变劣。砂梨(Pyrus pyrifolia)在我国广泛种植,80%的梨树被ASGV和ACLSV侵染。为了建立砂梨上ASGV和ACLSV血清学检测技术体系以及研究ACLSV的血清学多样性,本研究构建了来源于砂梨的ASGV和ACLSV分离物外壳蛋白基因(Coat protein genes, cp genes)的原核表达载体,用诱导表达的重组外壳蛋白(Recombinant coat proteins, rCPs)免疫大耳白兔,制备了多克隆抗体;比较了来源于砂梨的ACLSV不同分离物的生物学特性、cp基因的分子变异和血清学多样性,分析了cp基因分子变异与血清学多样性的关系,为进一步了解ACLSV的群体结构提供实验依据,以及为梨ACLSV血清学检测提供技术支撑。取得的研究结果如下:
     1.将分别来源于砂梨和白梨(P. bretschneideri)的ASGV分离物P-4-1-69和P-L2cp基因(大小714 bp,编码237 aa,GenBank登录号分别为FJ608985和FJ608986)插入原核表达载体pET-28a(+),得到重组载体pET-P-4-1-69和pET-P-L2,转化大肠杆菌BL21(DE3),在1 mmol/L IPTG下诱导表达。SDS-PAGE和Western blot分析结果表明,两个ASGV分离物P-4-1-69和P-L2的cp基因在大肠杆菌中成功地进行了高效表达,重组外壳蛋白的大小均为约31 kDa,并具有抗原性。分别用含分离物P-4-1-69和P-L2的重组外壳蛋白的胶条经乳化处理后免疫大耳白兔,制备了抗ASGV重组外壳蛋白的抗血清,间接ELISA效价分别为1:512000倍和1:32000或1:64000。为了降低抗血清的非特异性反应,抗体被纯化。Western blot分析和组织免疫印迹检测(Tissue blotting immunoassay, TBIA)结果表明,纯化的抗体具有较强的特异性,可有效检测梨样品中的ASGV。
     2.克隆了来源于巴东桐子梨离体植株的ACLSV分离物ACLSV-BD的cp基因,其大小为582 bp,编码193aa (GenBank登录号分别为EJ608984)。将其cp基因插入原核表达载体pET-28a(+)得到重组载体pET-ACLSV-BD,在大肠杆菌BL21(DE3)中经1 mmol/L IPTG诱导表达。表达产物用SDS-PAGE和Western blot分析表明,分离物ACLSV-BD的cp基因在大肠杆菌中成功地进行了高效表达,重组外壳蛋白的大小为约26 kDa,并具有抗原性。用含分离物ACLSV-BD重组外壳蛋白的胶条经乳化处理后免疫大耳白兔,制备了抗ACLSV重组外壳蛋白的抗血清,间接ELISA效价为1:32 000或1:128 000。为了降低抗血清的非特异性反应,抗体被纯化。Western blot分析和TBIA结果表明,纯化的抗体具有较强的特异性,可有效检测梨样品中的ACLSV。
     3.从湖北省农科院果树茶叶研究所国家果树种质武昌砂梨圃、湖北省恩施市和云南省昆明市共采集了65份砂梨样品。采用TC-RT-PCR(试管捕捉RT-PCR, Tube capture RT-PCR)检测ACLSV结果表明,52份砂梨样品带有ACLSV,检出率为80%。将阳性样品接种昆诺藜(Chenopodium quinoa)和西方烟(Nicotiana occidentalis),在昆诺藜上表现为系统的褪绿斑、斑驳和叶片反卷,在西方烟上表现为系统的褪绿斑、坏死斑和叶脉黄化,这些症状是ACLSV和ASGV复合侵染引起的。
     4.从20个砂梨样品(不包括巴东桐子梨离体植株)、两个李样品(湖北省武汉市)和一个桃样品(陕西省西安市)中扩增了ACLSV分离物的cp基因,克隆后提取质粒。对这些分离物的克隆载体用EcoRⅠ和SacⅠ进行限制性片段长度多态性分析(Restricted fragment length polymorphisms, RFLP),结果表明cp基因的酶切产物可产生4种带型:Ⅰ、Ⅱ、Ⅲ和Ⅳ,其中Ⅰ和Ⅱ是主要类型,且同一个样品的ACLSVcp基因可产生多个类型,即ACLSV存在分子变种。同源性比较表明砂梨分离物PPl5的两个分子变种cp基因的核苷酸同源性较低(96.6%),被认为是两个分离物(即PP15-2和PP15-4),其它分离物分子变种间的同源性均高于99%。
     5.将获得的22个来源于砂梨的ACLSV分离物(包括分离物ACLSV-BD)和3个来源于核果类分离物(PL1、PL2和PE)的cp基因(GenBank登录号EJ608984、GU327981-GU328004)进行序列比对,结果表明ACLSV砂梨分离物的cp基因具有序列多样性,核苷酸序列和推导编码的氨基酸序列的同源性分别为87.3~100%和92.7~100%。将得到的25个分离物和45个已报道分离物的cp基因进行核苷酸和氨基酸系统进化分析,结果表明,这些分离物可以分成多个簇,所有的砂梨分离物都聚集在Ⅰ簇,并分成了两个亚簇(A和B)。19个砂梨分离物与5个核果类分离物(PE、PL1、PL2、HBP和SX/2)聚集于A亚簇,3个砂梨分离物(PP39、PP54和PP56)与我国的苹果分离物ACLSV-C、印度的西洋梨分离物Pear以及日本和印度的其它分离物聚集在B亚簇,而来源于我国新疆库尔勒香梨(P. sinkiangensis Yu)的分离物Kuerle与砂梨分离物的同源性较低,与来源于日本和印度的一些苹果和核果类分离物聚集在Ⅱ簇。外壳蛋白(Coat protein, CP)氨基酸序列的多重比对表明,本研究所获得的25个分离物在位点40、59、75、130和184均为S40-L59-Y75-T130-L184,为B6型分离物。B亚簇中的4个中国分离物(PP39、PP54、PP56和ACLSV-C)的CP在氨基酸位点70具有一个特异的氨基酸——谷氨酸(Glutamic acid, E)。
     6.根据系统进化分析,挑选A亚簇5个分离物(PP13、PP15-2、PP24、PP43和PE)和B亚簇3个分离物(PP54、PP56和ACLSV-C),构建其cp基因的原核表达载体,对表达的重组外壳蛋白进行电泳迁移率和血清学反应分析。重组外壳蛋白的SDS-PAGE、Western blot和PAS-ELISA分析表明,这8个分离物的重组外壳蛋白具有两种不同的电泳迁移率和血清学反应性。A亚簇的5个分离物的重组外壳蛋白与抗分离物ACLSV-BD(A亚簇)重组外壳蛋白的抗体和抗日本苹果分离物P-205(Ⅱ簇)病毒粒子的抗体的反应信号比与抗中国苹果分离物ACLSV-C (B亚簇)病毒粒子的抗体的反应信号强,而B亚簇的3个分离物的重组外壳蛋白与ACLSV-C的抗血清的反应较强。对CP的抗原决定簇进行预测表明,预测的9个抗原决定簇中有6个在A亚簇和B亚簇的分离物之间发生了特异变化。
Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are two important latent viruses in commercially cultivated apple and pear trees. Two viruses are usually mixed infection with Apple stem pitting virus (ASPV) and cause greatly decreasing the growth and productivity of infected trees. Sand pear (Pyrus pyrifolia) is widely grown in China. Over 80% of pear trees in China were infected by ASGV and ACLSV. In this paper, in order to establish the foundation for high-through and fast detection techniques of ASGV and ACLSV in China and study the serological diversity of ACLSV, the prokaryotic expression vectors of coat protein genes (cp genes) of ASGV and ACLSV from sand pear were constructed. The antisera against recombinant coat proteins (rCPs) expressed in Escherichia coli (E. coli) were prepared. Furthermore, the biological, molecular and serological characteristics of ACLSV isolates from sand pear were compared with other isolates from different fruit trees and the molecular and serological diversity in ACLSV was analyzed. The obtained results contributed to increased understanding of the molecular population structure of ACLSV in different hosts and its implication in serological detection. The obtained results are as followings:
     1. The cp genes of two ASGV isolates (714 bp,237 aa, GenBank accession numbers FJ608985 and FJ608986), P-4-1-69 and P-L2 from sand pear and white pear (P. bretschneideri), respectively, were inserted into prokaryotic expression vector pET-28a(+). The recombinant plasmids were denoted as pET-P-4-1-69 and pET-P-L2. E. coli strain BL21 (DE3) was transformed with two expression constructs. Protein productions were induced by 1 mM isopropyl-β-D-thiogalactoside (IPTG). SDS-PAGE and Western blot analyses indicated that cp genes of two ASGV isolates were expressed effectively under the induction of 1 mmol/L IPTG and molecular weights of their rCPs were approximately 31 kDa. These rCPs were used to raise antisera in rabbits. The titers of antisera were 1:512 000 for isolate P-4-1-69 and 1:32 000 or 1:64 000 for isolate P-4-1-69 in indirect-ELISA, respectively. In order to reduce the nonspecific reaction, the raised antisera were purified. These purified antibodies showed to possess high specificity to their rCPs in Western blot and native virus coat proteins in infected pear shoot in-vitro by tissue blotting immunoassay (TBIA).
     2. The cp gene of an isolate ACLSV (ACLSV-BD) from "Badongtongzili" pear shoot in-vitro was cloned and sequenced (GenBank accession number EJ608984). The cloned fragment consisted of 582 bp and encoded 193 aa. The cp gene was inserted into prokaryotic expression vector pET-28a(+). The recombinant plasmid pET-ACLSV-BD containing cp gene was obtained and transformed into BL21 (DE3). Protein productions were induced by 1 mM IPTG. SDS-PAGE and Western blot analyses indicated that cp gene of isolate ACLSV-BD was expressed effectively under the induction of 1 mmol/L IPTG and molecular weight of the rCP was approximately 26 kDa. The rCP was used to raise antiserum in rabbits. The titer was 1:32 000 or 1:128 000 in indirect-ELISA. The purified antibody showed to possess high specificity to the rCP in Western blot and native virus coat protein in infected pear shoot in-vitro by TBIA.
     3. Sixty-five sand pear samples were collected from the National Germplasm Conservation Center of P. pyrifolia (Wuhan, Hubei), western Hubei province (Enshi) and Yunnan province (Kunming). TC-RT-PCR (Tube capture RT-PCR) test indicated that 80% (52/65) sand pear samples were infected by ACLSV. Chenopodium quinoa and Nicotiana occidentalis were inoculated with extracts from sand pear leaves infected by ACLSV. The symptoms of systemic chloroctic, mottle and leaf roll on C. quinoa and systemic chloroctic, necrotic and yellow vein on N. occidentalis, were observed and caused by the complex infection of ACLSV and ASGV.
     4. The cp genes of ACLSV from 20 sand pear samples, two plum samples (Wuhan, Hubei) and a peach sample (Xian, Shanxi) were cloned. The plasmids containing cp genes were digested with the restriction enzymes EcoR I and Sac I. The result showed that digested-products of cp genes contained four patterns, I, II, III and IV, and I and II were predominant patterns. The digested-products of ACLSV cp genes from the same sample showed different patterns, indicating that ACLSV isolate was composed of a population of variants. The cp genes sequence comparison revealed that two variants (PP15-2 and PP15-4) from isolate PP15 showed lower identity (96.6%) and were designed two isolates. The identities were more than 99% among variants from other isolates.
     5. The cp genes of 22 ACLSV isolates (including isolate ACLSV-BD) from sand pear, two isolates from plum and an isolate from peach were compared (GenBank accession numbers EJ608984, GU327981-GU328004). The sequences of cp genes from 22 sand pear isolates showed a high divergence, with 87.3~100% identities at the nucleotide (nt) level and 92.7~100% identities at the amino acid (aa) level. The phylogenetic trees generated from the nucleotide and deduced amino acid sequences of cp genes, including 25 isolates from this study and 45 isolates from GenBank, showed that the analyzed ACLSV isolates fell into different clusters and all isolates from sand pear were grouped into a larger cluster (Ⅰ) which was then divided into two subclusters (A and B). Nineteen out of 22 ACLSV sand pear isolates were grouped into the subcluster A with five isolates from stone fruit tree (PE, PL1, PL2, HBP and SX/2), whereas other three sand pear isolates (PP39, PP54 and PP56) together with a pear isolate (Pear) from India, an apple isolate (ACLSV-C) from China and other isolates from Japan and India were grouped into the subcluster B. The isolate (Kuerle) from kuerle pear (P. sinkiangensis Yu) specially grown in Xinjiang province showed low identities with 22 sand pear isolates and was grouped into a cluster (Ⅱ) together with some apple and stone fruit isolates from Japan and India. The multiple alignment of coat proteins (CPs) revealed that the five amino acids combination at positions 40,59,75,130 and 184 (S40-L59-Y75-T130-L184) was presented in 25 ACLSV isolates analyzed in this study, suggesting that these isolates were belonged to B6 type. An aa residue Glutamic acid (E) at position 70 was conserved in three sand pear isolates (PP39, PP54 and PP56) and isolate ACLSV-C grouped into the subcluster B.
     6. Based on the divergence deduced from phylogenetic analysis, the cp genes of five ACLSV isolates (PP13, PP15-2, PP24, PP43 and PE) grouped into the subcluster A and three (PP54, PP56 and ACLSV-C) grouped into the subcluster B were selected for producing recombinant proteins for further analyses of electrophoretic mobility and serological reactivity. SDS-PAGE, Western blot and PAS-ELISA analyses demonstrated that rCPs of eight ACLSV isolates had different mobility rates and serological reactivity. The rCPs of five isolates grouped into the subcluster A showed stronger reactivity with antibodies against rCPs of a sand pear isolate ACLSV-BD (subcluster A) and virions of a Japanese apple isolate P-205 (clusterⅡ) than that with the antibody against a Chinese apple isolate ACLSV-C (subcluster B). Three isolates grouped into the subgroup B showed stronger reactivity with the antibody against ACLSV-C. The antigenic determinants of CPs from eight isolates and isolates ACLSV-BD and P-205 predicted nine epitope regions in their CPs. Six predicted epitopes showed some variations among different isolates.
引文
1. 蔡瑜,向本春,席德慧,刘升学,都业娟.苹果褪绿叶斑病毒库尔勒分离物外壳蛋白基因的克隆、原核表达及特异抗血清的制备.农业生物技术学报,2005,13(4):533-537
    2. 邓晓云,洪霓,胡红菊,王国平.检测砂梨潜隐病毒的IC-RT-PCR和TC-RT-PCR的研究.果树学报,2004,21(6):569-572
    3. 董雅凤,张尊平,张少瑜.苹果和梨树茎尖培养结合热处理脱病毒研究.北方果树,2002,(2):9-11
    4. 郭立新,向本春,陈红运,段维军,朱水芳.苹果茎沟病毒KRL-1分离物外壳蛋白基因序列测定.果树学报,2005,22(5):576-578
    5. 洪霓.发状病毒属病毒研究进展.武汉大学学报(理学版),2003,49:271-276
    6. 洪霓,王国平.苹果褪绿叶斑病毒生物学及生化特性研究.植物病理学报,1999,29(1):77-81
    7. 洪霓,王国平,Boscia D, Martelli G P.苹果褪绿叶斑病毒提纯及抗血清制备技术研究.中国果树,1999,(1):15-18
    8. 洪霓,王国平,于济民,董雅凤,张尊平,魏梅生.苹果茎沟病毒的分离纯化及血清学检测.中国农业科学,1997,30(5):6-12
    9. 洪霓,王国平,张尊平,董雅凤,薛光荣.梨病毒脱除技术研究.中国果树,1995,(4):5-7,24.
    10.姜中武,张振英,都韶英.苹果褪绿叶斑病毒的特性与为害.烟台果树,1995,52:23-24
    11.金青,蔡永萍.梨树病毒病及其脱病毒研究进展.安徽农业科学,2002,30(6):869-871,876
    12.宋震,刘科宏,杨方云,唐科志,李中安,周常勇.柑橘碎叶病毒外壳蛋白基因的克隆和序列分析.中国农业科学,2009,42(10):3741-3748
    13. 王国平,洪霓,张尊平,董雅凤.梨树病毒及其类似病害概述.果树科学,1993,10(增刊):48-53
    14. 王国平,洪霓,张尊平,户士昌,董雅凤.我国北方梨产区主栽品种病毒种类的 鉴定研究.中国果树,1994,(2):1-4
    15.王国平,王焕玉,张尊平,洪霓,刘福昌,姜修风.几种木本指示植物对苹果潜隐病毒敏感性的研究.北方果树,1992,(2):8-10
    16.王利平,王国平,谭荣荣,洪霓.生物素标记cDNA探针杂交检测梨树上3种潜隐病毒研究.植物病理学报,2006,36(6):488-493
    17.吴祥华,胡宗利,陈国平.植物抗病毒基因工程研究进展.中国农学通报,2007,23(1):46-49
    18.徐章逸.两种葡萄卷叶伴随病毒的基因克隆、原核表达及葡萄遗传转化体系的初步建立.[博士学位论文].武汉:华中农业大学图书馆,2006
    19.薛光荣,杨振英,洪霓.茎尖培养等处理脱除梨病毒的技术研究.中国果树,1996,(3):9-11
    20.张虹,洪霓,王国平.梨树茎尖培养及其在病毒脱除中的应用.华中农业大学学报,2004,23(3):370-374
    21. 郑银英.苹果茎沟病毒和苹果褪绿叶斑病毒分子变异研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    22.郑银英,洪霓,王国平,胡红菊.苹果茎沟病毒梨分离物外壳蛋白基因的克隆和序列分析.植物病理学报,2006,36(1):62-67
    23.郑银英,王国平,洪霓.苹果茎沟病毒部分分离物的生物学特性与分子鉴定.植物保护学报,2005,32(3):266-270
    24.郑银英,王国平,洪霓,宋艳苏,游红.来源于桃和苹果的苹果褪绿叶斑病毒的部分分子生物学特性和cp基因的原核表达.植物病理学报,2007,37(4):356-361
    25. Abel P P, Nelson R S, De B, Hoffmann N, Rogers S G, Fraley R T, Beachy R N. Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science,1986,232:738-743
    26. Abou-Jawdah Y, Sobh H, Cordahi N, Kawtharani H, Nemer G, Maxwell D P, Nakhla M K. Immunodiagnosis of Prune dwarf virus using antiserum produced to its recombinant coat protein. J Virol Methods,2004,121:31-38
    27. Agrawal N, Dasaradhi P V, Mohmmed A, Malhotra P, Bhatnagar R K, Mukherjee S K. RNA interference:biology, mechanism, and applications. Microbiol Mol Biol Rev, 2003,67:657-685
    28. Al Rwahnih M, Turturo C, Minafra A, Saldarelli P, Myrta A, Pallas V, Savino V. Molecular variability of Apple chlorotic leaf spot virus in different hosts and geographical regions. J Plant Pathol,2004,86:117-122
    29. Ares X, Calamante G, Cabral S, Lodge J, Hemenway P, Beachy R N, Mentaberry A. Transgenic plants expressing Potato virus X ORF2 protein (p24) are resistant to Tobacco mosaic virus and Ob tobamoviruses. J Virol,1998,72:731-738
    30. Asurmendi S, Berg R H, Smith T J, Bendahmane M, Beachy R N. Aggregation of TMV CP plays a role in CP functions and in coat-protein-mediated resistance. Virology,2007,366:98-106
    31. Babovic M V, Delibasic G P. Appearance and distribution of Chlorotic leaf spot virus on different apple cultivars. Acta Hort,1986,193:61-88
    32. Barba M, Clark M F. Detection of strains of Apple chlorotic leafspot virus by F(ab)2-based indirect ELISA. Acta Hort,1986,193:297-304
    33. Bazzini A A, Asurmendi S, Hopp H E, Beachy R N. Tobacco mosaic virus (TMV) and Potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J Gen Virol,2006,87:1005-1012
    34. Bazzini A A, Hopp H E, Beachy R N, Asurmendi S. Infection and coaccumulation of Tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci USA,2007,104:12157-12162
    35. Beachy R N. Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotech,1997,8:215-220
    36. Beck D L, Van Dolleweerd C J, Lough T J, Balmori E, Voot D M, Andersen M T, O'Brien I E, Forster R L. Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc Natl Acad Sci U S A,1994,91:10310-10314
    37. Bendahmane M, Chen I, Asurmendi S, Bazzini A A, Szecsi J, Beachy R N. Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein. Virology,2007,366:107-116
    38. Bendahmane M, Szecsi J, Chen I, Berg R H, Beachy R N. Characterization of mutant Tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement. Proc Natl Acad Sci U S A,2002,99:3645-3650
    39. Bonnet E, Van de Peer Y, Rouze P. The small RNA world of plants. New Phytol, 2006,171:451-468
    40. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
    41. Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet,2006,22:268-280
    42. Burke B, Griffiths G, Reggio H, Louvard D, Warren G. A monoclonal antibody against a 135-K Golgi membrane protein. EMBO J,1982,1:1621-1628
    43. Calavan E C, Christiansen D W, Roistacher C N. Symptoms associated with tatter-leaf virus infection of Troyer citrange rootstocks. Plant Dis Rep,1963,47: 971-975
    44. Candresse T, German S, Lanneau M, Dunez J. In vitro translation of Apple chlorotic leaf spot virus (ACLSV) RNA. Arch Virol,1996,141:2031-2043
    45. Candresse T, Lanneau M, Revers F, Macquaire G, German S, Dunez J, Grasseau N, Malinovsky T. An immunocapture PCR assay adapted to the detection and the analysis of the molecular variability of the Apple chlorotic leaf spot virus. Acta Hort, 1995,386:136-147
    46. Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res, 2003,31:3497-3500
    47. Cieslinska M. Elimination of Apple chlorotic leaf spot virus (ACLSV) from pear by in vitro thermotherapy and chemotherapy. Acta Hort,2002,596:481-484
    48. Cieslinska M, Malinowski T, Zawadzka B J. Studies on several strains of Apple chlorotic leaf spot virus (ACLSV) isolated from different fruit tree species. Acta Hort,1995,386:63-71
    49. Clover G R G, Pearson M N, Elliott D R, Tang Z, Smales T E, Alexander B J R. Characterization of a strain of Apple stem grooving virus in Actinidia chinensis from China. Plant Pathol,2003,52:371-378
    50. Cogoni C, Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature,1999,399:166-169
    51. Cogoni C. Homology-dependent gene silencing mechanisms in fungi. Annu Rev Microbiol,2001,55:381-406
    52. Cooper B, Lapidot M, Heick J A, Dodds J A, Beachy R N. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology,1995,206:307-313
    53. Corvo L M, Barros M T F. The use of a simplified DAS-ELISA procedure for large-scale detection of Apple chlorotic leaf spot and Apple stem grooving viruses in apple trees over extended sampling periods. Acta Hort,2001,550:269-274
    54. Desvignes J C, Boye R. Different diseases caused by the Chlorotic leaf spot virus on the fruit trees. Acta Hort,1989,235:31-38
    55. Dunez J, Marenaud G, Delbos R P, Lansac M. Variability of symptoms induced by the Apple chlorotic leaf spot (CLSV). A type of CLSV probably responsible for bark split disease of prune trees. Plant Dis Rep,1972,56:293-295
    56. Elbashir S M, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev,2001,15:188-200
    57. Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    58. Fulci V, Macino G. Quelling:post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Curr Opin Microbiol,2007,10:199-203
    59. Gargouri-Bouzid R, Jaoua L, Mansour R B, Hathat Y, Ayadi M, Ellouz R. PVY resistant transgenic potato plants (cv. Claustar) expressing the viral coat protein. J Plant Biotechnol,2005,7:143-148
    60. Gella R. Effect of some virus diseases on the performance of two clones of Agua de Arannuez pear. Acta Hort,1990,256:137-142
    61. German-Retana S, Bergey B, Delbos R P, Candresse T, Dunez J. Complete nucleotide sequence of the genome of a severe cherry isolate of Apple chlorotic leaf spot trichovirus (ACLSV). Arch Virol,1997,142:833-841
    62. German S, Candresse T, Lanneau M, Huet J C, Pernollet J C, Dunez J. Nucleotide sequence and genomic organization of Apple chlorotic leaf spot closterovirus. Virology,1990,179:104-112
    63. German S, Candresse T, Le Gall O, Lanneau M, Dunez J. Analysis of the dsRNAs of Apple chlorotic leaf spot virus. J Gen Virol,1992,73:767-773
    64. Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science,1999,286:950-952
    65. Hammond S M, Bernstein E, Beach D, Hannon G J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature,2000,404: 293-296
    66. Hannon G J. RNA interference. Nature,2002,418:244-251
    67. Hassan M, Myrta A, Polak J. Simultaneous detection and identification of four pome fruit viruses by one-tube pentaplex RT-PCR. J Virol Methods,2006,133: 124-129
    68. Helliwell C, Waterhouse P. Constructs and methods for high-throughput gene silencing in plants. Methods,2003,30:289-925
    69. Herranz M C, Sanchez-Navarro J A, Aparicio F, Pallas V. Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or 'polyprobe'. J Virol Methods,2005,124:49-55
    70. Hirata H, Lu X, Yamaji Y, Kagiwada S, Ugaki M, Namba S. A single silent substitution in the genome of Apple stem grooving virus causes symptom attenuation. J Gen Virol,2003,84:2579-2583
    71. Hirata H, Yamaji Y, Komatsu K, Kagiwada S, Oshima K, Okano Y, Takahashi S, Ugaki M, Namba S. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Res,2010,152:1-9
    72. Iracheta-Cardenas M, Sandoval-Alejos B D, Roman-Calderon M E, Manjunath K L, Lee R F, Rocha-Pena M A. Production of polyclonal antibodies to the recombinant coat protein of Citrus tristeza virus and their effectiveness for virus detection. J Phytopathology,2008,156:243-250
    73. Isogai M, Saitou Y, Takahashi N, Itabashi T, Terada M, Satoh H, Yoshikawa N. The 50-kDa protein of Apple chlorotic leaf spot virus interferes with intracellular and intercellular targeting and tubule-inducing activity of the 39-kDa protein of Grapevine berry inner necrosis virus. Mol Plant Microbe Interact,2003,16: 188-195
    74. Isogai M, Yoshikawa N. Mapping the RNA-binding domain on the Apple chlorotic leaf spot virus movement protein. J Gen Virol,2005,86:225-229
    75. Ito T, Ieki H, Ozaki K. Simultaneous detection of six citrus viroids and Apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. J Virol Methods,2002,106:235-239
    76. James D. A simple and reliable protocol for the detection of Apple stem grooving virus by RT-PCR and in a multiplex PCR assay. J Virol Methods,1999,83:1-9
    77. James D. Long term assessment of the effects of in vitro chemotherapy as a tool for Apple stem grooving virus elimination. Acta Hort,2002,550:459-461
    78. Jeklmann W. Detection of virus and virus-like diseases of fruit trees-laboratory assays, bioassays and indicators. Acta Hort,2004,657:575-596
    79. Jelkmann W. The nucleotide sequence of a strain of Apple chlorotic leafspot virus (ACLSV) responsible for plum pseudopox and its relation to an apple and plum bark split strain. Phytopathology,1996,86:101-101
    80. Jelkmann W, Kunze L. Plum pseudopox in German prune after infection with an isolate of Apple chlorotic leafspot virus causing plum line pattern. Acta Hort,1995, 386:122-125
    81. Karesova R, Paprstein F. Apple chlorotic leaf spot virus in germplasm collection of fruit species. Acta Hort,2001,550:259-264
    82. Kinard G R, Scott S W, Barnett O W. Detection of Apple chlorotic leaf spot and Apple stem grooving viruses using RT-PCR. Plant Dis,1996,80:616-621
    83. Kirby M J, Guise C M, Adams A N. Comparison of bioassays and laboratory assays for Apple stem grooving virus. J Virol Methods,2001,93:167-73
    84. Knapp E, da Camara Machado A, Puhringer H, Wang Q, Hanzer V, Weiss H, Weiss B, Katinger H, Laimer da Camara Machado M. Localization of fruit tree viruses by immuno-tissue printing in infected shoots of Malus sp. and Prunus sp. J Virol Methods,1995,55:157-173
    85. Kolaskar A S, Tongaonkar P C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett,1990,276:172-174
    86. Krizbai L, Ember I, Nemeth M, Kolber M, Pasquini G, Faggioli F. Characterization of Hungarian isolates of Apple chlorotic leaf spot virus. Acta Hort,2001,550: 291-295
    87. Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform,2004,5: 150-163
    88. Lapidot M, Gafny R, Ding B, Wolf S, Lucas W J, Beachy R N. A dysfunctional movement protein of Tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J,1993,4: 959-970
    89. Lee S C, Chang Y C. Performances and application of antisera produced by recombinant capsid proteins of Cymbidium mosaic virus and Odontoglossum ringspot virus. Eur J Plant Pathol,2008,122:297-306
    90. Lemmetty A. Isolation and purification of Apple chlorotic leaf spot virus and its occurrence in finnish orchards. Acta Hort,1988,235:177-180
    91. Li R, Mock R, Huang Q, Abad J, Hartung J, Kinard G. A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. J Virol Methods,2008,154:48-55
    92. Lin S-S, Henriques R, Wu H-W, Niu Q-W, Yeh S-D, Chua N-H. Strategies and mechanisms of plant virus resistance. Plant Biotechnol Rep,2007,1:125-134
    93. Lister R M. Apple chlorotic leaf spot virus. In:Commonwealth Mycological Institute/Association of Applied Biologists Descriptions of Plant Viruses.1970, no. 30
    94. Lu X, Hirata H, Yamaji Y, Ugaki M, Namba S. Random mutagenesis in a plant viral genome using a DNA repair-deficient mutator Escherichia coli strain. J Virol Methods,2001,94:37-43
    95. Lucioli A, Noris E, Brunetti A, Tavazza R, Ruzza V, Castillo A G, Bejarano E R, Accotto G P, Tavazza M. Tomato yellow leaf curl sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J Virol,2003,77:6785-6798
    96. Magome H, Yoshikawa N, Takahashi T. Single-strand conformation polymorphism analysis of Apple stem grooving capillovirus sequence variants. Phytopathology, 1999,89:136-140
    97. Magome H, Yoshikawa N, Takahashi T, Ito T, Miyakawa T. Molecular variability of the genomes of capilloviruses from apple, Japanese pear, European pear, and citrus trees. Phytopathology,1997,87:389-396
    98. Malinowski T, Komorowska B, Cieslinska M, Zawadzka B, Candresse T. Characterization of SX/2, an Apple chlorotic leaf spot virus isolate showing unusual coat protein properties. Acta Hort,1998,472:43-50
    99. Marini D B, Gibson P G, Scott S W. The complete nucleotide sequence of an isolate of Apple chlorotic leaf spot virus from peach (Prunus persica (L.) Batch). Arch Virol, 2008,153:1003-1005
    100. Martelli G P, Adams M J, Kreuze J F, Dolja V V. Family Flexiviridae:a case study in virion and genome plasticity. Annu Rev Phytopathol,2007,45:73-100
    101. Martelli G P, Candresse T, Namba S. Trichovirus, a new genus of plant viruses. Arch Virol,1994,134:451-455
    102. Matranga C, Zamore P D. Small silencing RNAs. Curr Biol,2007,17:R789-793
    103. Menzel W, Jelkmann W, Maiss E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J Virol Methods,2002,99:81-92
    104. Menzel W, Zahn V, Maiss E. Multiplex RT-PCR-ELISA compared with bioassay for the detection of four apple viruses. J Virol Methods,2003,110:153-157
    105. Nemeth M. Virus, mycoplasma and rickettsia diseases of fruit trees. Budapest: Akademiai Kiado,1986
    106. Nam K W, Kim C H. Studies on the pear abnormal leaf spot disease.1. Occurrence and damage. Korean J Plant Pathol,1994,10:169-174
    107. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell,1990,2:279-289
    108. Newmark P A, Reddien P W, Cebria F, Sanchez Alvarado A. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci U S A,2003, 100 Suppl 1:11861-11865
    109. Nickel O, Targon M L P N, Fajardo T V M, Machado M A, Trivilin A P. Polyclonal antibodies to the coat protein of Apple stem grooving virus expressed in Escherichia coli:production and use in immunodiagnosis. Fitopatol bras,2004,29:558-562
    110. Nishio T, Kawai A, Takahashi T, Namba S, Yamashita S. Purification and properties of Citrus tatter leaf virus. Ann Phytopathol Soc Jpn,1989,58:416-425
    111. Nykanen A, Haley B, Zamore P D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell,2001,107:309-321
    112. Ohira K, Ito T, Kawai A, Namba S, Kusumi T, Tsuchizaki T. Nucleotide sequence of the 3'-terminal region of Citrus tatter leaf virus RNA. Virus Genes,1994,8: 169-172
    113. Ohira K, Namba S, Rozanov M, Kusumi T, Tsuchizaki T. Complete sequence of an infectious full-length cDNA clone of Citrus tatter leaf capillovirus:comparative sequence analysis of capillovirus genomes. J Gen Virol,1995,76 (Pt 9):2305-2309
    114. Ohki S T, Yoshikawa N, Inouye N, Inouye T. Comparative electron microscopyof Chenopodium quinoa leaves infected with Apple chlorotic leaf spot, Apple stem grooving and Citrus tatter leaf virus. Ann Phytopath Soc Japan,1989,55:245-249
    115. Park H, Yoon J, Kim H, Baek K. Multiplex RT-PCR assay for the detection of Apple stem grooving virus and Apple chlorotic leaf spot virus in infected Korean apple cultivars. Plant Pathol J,2006,22:168-173
    116. Pasquini G, Faggioli F, Pilotti M, Lumia V, Barba M. Characterization of Apple chlorotic leaf spot virus isolates from Italy. Acta Hort,1998,472:195-202
    117. Paunovic S. Properties of two Apple chlorotic leaf spot virus isolates. Acta Hort, 1988,235:39-47
    118. Plese N, Hoxha E, Milicic D. Pathological anatomy of trees affected with Apple stem grooving virus. Phytopathology,1975,82:315-325
    119. Poul F, Dunez J. Use of monoclonal antibodies for the identification of different antigenic domains in Apple chlorotic leaf spot virus. Arch Virol,1990,114:191-202
    120. Powell P A, Sanders P R, Turner N, Fraley R T, Beachy R N. Protection against Tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology,1990,175:124-130
    121. Prowidenti R, Tricoli D M. Inheritance of resistance to Squash mosaic virus in a squash transformed with the coat protein gene of pathotype 1. HortScience,2002, 37:575-577
    122. Sanchez-Navarro J A, Aparicio F, Herranz M C, Minafra A, Myrta A, Pallas V. Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. Eur J Plant Pathol,2005,111:77-84
    123. Salmon M A, Vendrame M, Kummert J, Lepoivre P. Detection of Apple chlorotic leaf spot virus using a 5' nuclease assay with a fluorescent 3'minor groove binder-DNA probe. J Virol Methods,2002,104:99-106
    124. Sato K, Yoshikawa N, Takahashi T. Complete nucleotide sequence of the genome of an apple isolate of Apple chlorotic leaf spot virus. J Gen Virol,1993,74:1927-1931
    125. Sato K, Yoshikawa N, Takahashi T, Taira H. Expression, subcellular location and modification of the 50 kDa protein encoded by ORF2 of the Apple chlorotic leaf spot trichovir-us genome. J Gen Virol,1995,76:1503-1507
    126. Satoh H, Matsuda H, Kawamura T, Isogai M, Yoshikawa N, Takahashi T. Intracellular distribution, cell-to-cell trafficking and tubule-inducing activity of the 50 kDa movement protein of Apple chlorotic leaf spot virus fused to green fluorescent protein. J Gen Virol,2000,81:2085-2093
    127. Savenkov E I, Valkonen J P. Coat protein gene-mediated resistance to Potato virus A in transgenic plants is suppressed following infection with another potyvirus. J Gen Virol,2001,82:2275-2278
    128. Sen G L, Blau H M. A brief history of RNAi:the silence of the genes. Faseb J,2006, 20:1293-1299
    129. Seppanen P, Puska R, Honkanen J, Tyulkina L G, Fedorkin O, Morozov S, Atabekov J G. Movement protein-derived resistance to triple gene block-containing plant viruses. J Gen Virol,1997,78:1241-1246
    130. Shabalina S A, Koonin E V. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol,2008,23:578-587
    131. Shim H, Hwang K, Shim C, Son S, Kim D, Choi Y, Chung Y, Kim D, Jee H, Lee S. Molecular characterization of Apple stem grooving virus Isolated from Talaromyces flavus. Plant Pathol J,2006,22:260-264
    132. Shim H, Min Y, Hong S, Kwon M, Kim D, Kim H, Choi Y, Lee S, Yang J. Nucleotide sequences of a Korean isolate of Apple stem grooving virus associated with black necrotic leaf spot disease on pear (Pyrus pyrifolia). Mol Cells,2004,18: 192-199
    133. Sijen T, Fleenor J, Simmer F, Thijssen K L, Parrish S, Timmons L, Plasterk R H, Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001,107:465-476
    134. Sijen T, Wellink J, Hiriart J B, Van Kammen A. RNA-Mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell,1996,8: 2277-2294
    135. Spiegel S, Thompson D, Varga A, Rosner A, James D. Evaluation of reverse transcription-polymerase chain reaction assays for detecting Apple chlorotic leaf spot virus in certification and quarantine programs. Can J Plant Pathol,2006,28: 280-288
    136. Studier F W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol,1991,219:37-44
    137. Takahashi T, Saito N, Goto M, Kawai M. Apple stem grooving virus isolated from Japanese apricot (Prunus mume) imported from China. Res Bull Plant Prot Ser Jpn, 1990,26:15-21
    138. Tan R, Wang L, Hong N, Wang G. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tiss Organ Cult, 2010,101:229-235
    139. Tatineni S, Afunian M R, Gowda S, Hilf M E, Bar-Joseph M, Dawson W O. Characterization of the 5'- and 3'-terminal subgenomic RNAs produced by a capillovirus:Evidence for a CP subgenomic RNA. Virology,2009a,385:521-528
    140. Tatineni S, Afunian M R, Hilf M E, Gowda S, Dawson W O, Garnsey S M. Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees:complete genome sequence and development of biologically active in vitro transcripts. Phytopathology,2009b,99:423-431
    141. Tenllado F, Diaz-Ruiz J R. Double-stranded RNA-mediated interference with plant virus infection. J Virol,2001,75:12288-12297
    142. Tenllado F, Martinez-Garcia B, Vargas M, Diaz-Ruiz J R. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol,2003,3:3
    143. Terauchi H, Magome H, Yoshikawa N, Takahashi T, Inouye N. Construction of an infectious cDNA clone of the Apple stem grooving capillovirus (isolate Li-23) genome containing a Cauliflower mosaic virus 35S RNA promoter. Ann Phytopathol Soc Jap,1997,63:432-436
    144. Tijsterman M, Ketting R F, Plasterk R H. The genetics of RNA silencing. Annu Rev Genet,2002,36:489-519
    145. Timmons L, Court D L, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 2001,263:103-112
    146. Tuschl T, Zamore P D, Lehmann R, Bartel D P, Sharp P A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev,1999,13:3191-3197
    147. Vaira A M, Vecchiati M, Masenga V, Accotto G P. A polyclonal antiserum against a recombinant viral protein combines specificity with versatility. J Virol Methods, 1996,56:209-219
    148. Valerie H, Emmanuel J, Maryse G, Yves L H, Daniele G D. Production of recombinant Potato mop-top virus coat protein in Escherichia coli and generation of antisera recognizing native virus protein. J Virol Methods,2003,110:91-97
    149. Vaucheret H, Fagard M. Transcriptional gene silencing in plants:targets, inducers and regulators. Trends Genet,2001,17:29-35
    150. Wang L, Wang G, Hong N, Tang R, Deng X. Effect of thermotherapy on elimination of Apple stem grooving virus and Apple chlorotic leaf spot virus for in citro-cultured pear shoot tips. HortScience,2006,41:729-732
    151. Wang M B, Waterhouse P M. Application of gene silencing in plants. Curr Opin Plant Biol,2002,5:146-150
    152. Wang Q, Shi Y, Yang J, Sun Q. Detection of Apple chlorotic leaf spot virus and Apple stem grooving virus by dot-immunobinding assay. Acta Hort,1998,472: 51-54
    153. Wesley S V, Helliwell C A, Smith N A, Wang M B, Rouse D T, Liu Q, Gooding P S, Singh S P, Abbott D, Stoutjesdijk P A, Robinson S P, Gleave A P, Green A G, Waterhouse P M. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J,2001,27:581-590
    154. Wisniewski L A, Powell P A, Nelson R S, Beachy R N. Local and systemic spread of Tobacco mosaic virus in transgenic tobacco. Plant Cell,1990,2:559-567
    155. Wu X J, Beachy R N, Wilson T M, Shaw J G. Inhibition of uncoating of Tobacco mosaic virus particles in protoplasts from transgenic tobacco plants that express the viral coat protein gene. Virology,1990,179:893-895
    156. Wu Y Q, Zhang D M, Chen S Y, Wang X F, Wang W H. Comparison of three ELISA methods for the detection of Apple chlorotic leaf spot virus and Apple stem grooving virus. Acta Hort,1998,472:55-59
    157. Xu Z Y, Hong N, Xiang B, Wang G P. Partial molecular characterization of a Chinese isolate of Grapevine leafroll-associated virus 2 and production of antisera to recombinant viral proteins. J Plant Pathol,2006,88:87-92
    158. Yaegashi H, Isogai M, Tajima H, Sano T, Yoshikawa N. Combinations of two amino acids (Ala40 and Phe75 or Ser40 and Tyr75) in the coat protein of Apple chlorotic leaf spot virus are crucial for infectivity. J Gen Virol,2007a,88:2611-2618
    159. Yaegashi H, Takahashi T, Isogai M, Kobori T, Ohki S, Yoshikawa N. Apple chlorotic leaf spot virus 50 kDa movement protein acts as a suppressor of systemic silencing without interfering with local silencing in Nicotiana benthamiana. J Gen Virol, 2007b,88:316-324
    160. Yaegashi H, Tamura A, Isogai M, Yoshikawa N. Inhibition of long-distance movement of RNA silencing signals in Nicotiana benthamiana by Apple chlorotic leaf spot virus 50 kDa movement protein. Virology,2008,382:199-206
    161. Yanase H. Back transmission of Apple stem grooving virus to apple seedlings and induction of symptoms of apple topworking disease in Mitsuba Kaido (Malus sieboldii) and Kobano Zumi (Malus sieboldii var. arborescens) rootstocks. Acta Hort,1983,130:117-122
    162. Yanase H, Yamaguchi A, Mink G I, Sawamura K. Back transmission of Apple chlorotic leafspot virus (type strain) to apple and production of apple topworking disease symptoms in Maruba Kaido (Malus prunifolia Borkh. var. ringo Asami). Ann Phytopath Soc Japan,1979,45:369-374
    163. Yoshikawa N, Gotoh S, Umezawa M, Satoh N, Satoh H, Takahashi T, Ito T, Yoshida K. Transgenic Nicotiana occidentalis plants expressing the 50-kDa protein of Apple chlorotic leaf spot virus display increased susceptibility to homologous Virus, but strong resistance to Grapevine berry inner necrosis virus. Phytopathology,2000,90: 311-316
    164. Yoshikawa N, Iida H, Goto S, Magome H, Takahashi T, Terai Y. Grapevine berry inner necrosis, a new trichovirus:comparative studies with several known trichoviruses. Arch Virol,1997,142:1351-1363
    165. Yoshikawa N, Imaizumi M, Takahashi T, Inouye N. Striking similarities between the nucleotide sequence and genome organization of Citrus tatter leaf and Apple stem grooving capilloviruses. J Gen Virol,1993,74:2743-2747
    166. Yoshikawa N, Oogake S, Terada M, Miyabayashi S, Ikeda Y, Takahashi T, Ogawa K. Apple chlorotic leaf spot virus 50 kDa protein is targeted to plasmodesmata and accumulates in sieve elements in transgenic plant leaves. Arch Virol,1999,144: 2475-2483
    167. Yoshikawa N, Sasaki E, Kato M, Takahash T. The nucleotide sequence of Apple stem grooving capillovirus genome. Virology,1992,191:98-105
    168. Yoshikawa N, Sasamoto K, Sakurada M, Takahashi T, Yanase H. Apple stem grooving and Citrus tatter leaf capilloviruses obtained from a single shoot of Japanese Pear (Pyrus serotina). Ann Phytopathol Soc Jpn,1996,62:119-124
    169. Yoshikawa N, Takahashi T. Properties of RNAs and proteins of Apple stem grooving and Apple chlorotic leaf spot viruses. J Gen Virol,1988,69:241-245
    170. Yoshikawa N, Takahashi T. In vitro translation of Apple chlorotic leaf spot virus RNA.J Gen Virol,1989,70:3051-3054
    171. Yoshikawa N, Takahashi T. Evidence for translation of Apple stem grooving capillovirus genomic RNA. J Gen Virol,1992,73:1313-1315
    172. Zamore P D, Tuschl T, Sharp P A, Bartel D P. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000, 101:25-33
    173. Zamore P D. Ancient pathways programmed by small RNAs. Science,2002,296: 1265-1269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700