枯草芽孢杆菌防治番茄灰霉病及其作用机制与发酵水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用平板对峙法测定了供试的枯草芽孢杆菌(Bacillus subtilis)BS-208、BS-209和BS-21及蜡质芽孢杆菌(Bacillus cereus)BC-01对番茄灰霉病菌(Botrytis cinerea)的抑制作用。在温室条件下测定了它们对番茄灰霉病的保护作用和治疗作用,并于2002年和2003年在田间条件下测定了BS-208和BS-209菌株制剂对番茄灰霉病的防治效果。结果表明,枯草芽孢杆菌BS-208、BS-209和BS-21及蜡质芽孢杆菌BC-01对番茄灰霉病菌的抑菌率分别为78.06%、82.49%、75.74%和73.84%;温室盆栽试验表明只有BS-208和BS-209菌株对番茄灰霉病有较好的保护作用,两菌株发酵液和菌体处理后24、48h接种病菌,防效均达75%以上,好于0h接种的防效,但无菌滤液防治效果较差;BS-208和BS-209菌株的发酵液和无菌滤液对番茄灰霉病表现出较高的治疗活性,BS-21和BC-01菌株发酵液的治疗活性很低。两年的田间试验表明枯草芽孢杆菌BS-208和BS-209制剂对番茄灰霉病均具有良好的防治效果,并且防效随浓度加大而提高,以800倍的防效最好,两菌株制剂800倍液连续三次施药后防效均达到74%以上,并且BS-208菌株的防效略高于BS-209菌株。
     通过对BS-208菌株与BS-209菌株生理生化特征的测定,结果表明两菌株的生理生化特征基本上是一致的。对BS-208和BS-209菌株生长曲线测定,结果表明在PDB液体培养基中BS-208和BS-209分别在培养24h和28h达到最高的生长量,都在48h形成芽孢。通过测定化学药剂对两菌株生长影响,结果表明在烯唑醇、甲基托布津、多菌灵、粉锈宁、多抗霉素、吡虫啉、辛硫磷、阿维菌素、高效氯氰菊酯和锐劲特田间使用的最高浓度下,基本上不影响两菌株的生长和芽孢形成,而代森锰锌可以完全抑制两菌株的生长。
     采用生长速率法测定BS-208和BS-209菌株对番茄灰霉病菌菌丝生长的抑制作用,结果表明,BS-208菌株的无菌滤液对番茄灰霉病菌菌丝生长的抑制率为49.58%,而BS-209菌株抑菌效果不好。用载玻片悬滴法测定两菌株的发酵液对番茄灰霉病菌分生孢子萌发的抑制作用,结果表明,在稀释10倍的菌株发酵液处理后,BS-208和BS-209的抑制率达到93.45%和92.35%,且未见有附着胞形成,经两菌株发酵液原液处理可以完全抑制孢子萌发。
     在温室和田间条件下研究了BS-208和BS-209在番茄叶面和体内的定殖与传导。通过针刺接种利福平标记的BS-208和BS-209菌株,24h后就可在全株各个部位分离到目的菌。在温室和田间条件下,BS-208菌株的定殖菌量分别为11×10~8~5.6×10~8cfu/g鲜叶和15×10~8~0.02×10~8cfu/g鲜叶,BS-209菌株的定殖菌量分别为222×10~6~55×10~6cfu/g鲜叶和205×10~6~0.48×10~6cfu/g鲜叶;印象法观察发现BS-208和BS-209菌株在叶片上都能定殖,但BS-208的定殖能力强于BS-209菌株;扫描电镜观察表明,BS-208菌株在番茄叶面分布不均匀,大多定殖于伤口周围、叶面的凹陷处和绒毛的根部。
     通过测定与抗病性有关的酶活性结果表明,接种BS-208菌株发酵液48h后PAL、POD活性达到最大值,随后PPO在96h达到最大值。
     对BS-208菌株的无菌滤液的酸碱稳定性、热稳定性进行了测试。结果表明,
    
    BS一208菌株的无菌滤液热稳定性较强,耐酸,在强碱性条件下不稳定。
     在摇瓶中对BS一208和BS一209的发酵培养基及发酵条件进行了筛选。‘结果表明,
    所筛选到BS一208的理论最优培养基组合为氮源A4%,淀粉1.6%,酵母粉0.5%,理
    论最优发酵条件组合为转速230 rpm,初始pHS,接种量0.5%,装量70 mL(500 mL
    三角瓶中),发酵周期为60h;BS-209的理论最优培养基组合为氮源A3%,淀粉1.6%,
    酵母粉0.5%,理论最优发酵条件组合为转速230 rpm,初始pHS,接种量1%或3%,
    装量50 mL(500 mL三角瓶中),发酵周期为58 ho
     利用平板对峙法测定了BS一208和BS一209对19种植物病原真菌的抑菌作用。结
    果表明,两菌株除对苹果轮纹病菌抑菌率较低为18.34%和10.18%以外,对所测定的
    其余18种植物病原真菌都有较高的抑制作用。
Inhibition rates of Bacillus subtilis, strains BS-208, BS-209 and BS-21, Bacillus cereus, strain BC-01 against Botrytis cinerea were tested by dual culture on potato dextrose agar. Results showed that inhibition effects of 4 strains were 78.06%, 82.49%, 75.74% and 73.84%, respectively. The protective and curative effects of Bacillus subtilis BS-208, BS-209, BS-21 and Bacillus cerus BC-01 against B. cinerea were assayed in vivo under greenhouse conditions. Control efficacies of preparations of strains BS-208 and BS-209 were also assayed against B. cinerea in the field in 2002 and 2003. The greenhouse experiment result showed that the fermentation liquid and spore of strains BS-208 and BS-209 had control efficacy above 75% with inoculating after 24 and 48 hours, but the filtrate had poor control efficacy. Result of two years field experiment in the field indicated that preparations of strains BS-208 and BS-209 could effectively control tomato gray mould. The control efficacy became better with the increasing o
    f concentration and 800-fold treatment showed the best control efficacy. After three times treatment with the 800-fold preparation continuously, the control efficacy reached above 74% and effect of strain BS-208 was better than that of BS-209.
    The result of biochemical characters of strains BS-208 and BS-209 showed that the characters of two strains were basically consistent. The growth curve of the two strains was assayed, results showed that the time of strain BS-208 and BS-209 reached the highest amount in PDB liquid media were 24 hours and 28 hours after cultivation respectively and both of the two strains could form spore 48 hours after cultivation. Two strains could be cultured together with diniconazole, thiophanate-mthyl,carbendazim, triadimefon, polyoxin, imidacloprid, phoxim, abamectin, beta-cypermethrin and fipronil with the maximal concentrations used in field. Mancozeb could inhibit entirely the growth of strains BS-208 and BS-209.
    Inhibition effects of strains BS-208 and BS-209 to B. cinerea were tested by means of mycelium growth inhibition method. The filtrate of strain BS-208 could inhibit mycelium growth of B. cinerea with inhibition rate of 49.58%. The inhibition efficacy of strain BS-209 was poor. Two strains were tested for their effects on conidia germination of B. cinerea. After diluting 10-fold fermentation liquid of strains BS-208 and BS-209 the suppressive rate of spore germination were 93.45% and 92.35%. No formation of appressorium was found.
    
    
    Colonization and conduction of antagonist B. subtilis strains BS-208 and BS-209 on phylloplane and inside of tomato body were studied by using mutant strains of BS-208 and BS-209 resistant to rifampicin under greenhouse and field conditions. Within 24 hours after injection on the stem, target bacteria were isolated from all parts of tomato body. Results showed that population of strain BS-208 in greenhouse and field were 11 x 108~5.6 x 108cfu/g and 15 x 108~0.02 x 108cfu/g fresh weight respectively, whereas that of strain BS-209 in greenhouse and field were 222 x 106~55 x 106cfu/g and 205 x 106~0.48 x 106 cfu/g fresh weight, respectively. Impression observation method result showed that strain BS-208 and BS-209 could colonize on the leaf surface and the colonization ability of BS-208 was better than that of BS-209. Scanning electron microscopy observation exposed that strain BS-208 distributed asymmetrically on phylloplane of tomato and most of them colonized near the wound, in the sunken place and the base
    of floss.
    Induction of systemic resistance and related enzymes activities of superoxide dismutase (SOD), peroxidase (POD), polyphenoase (PPO) and phenylalanine ammonia lynse (PAL) by inoculation of BS-208 fermentation and B. cinerea were studied. Results indicated that activities of PAL and POD reached the maximum 48 hours after inoculation, while that of PPO reached the maximum 96 hours after inoculation.
    The stability of filtrate of BS-208 was measured after being treated at different pH values and temperatures. Results showed that it
引文
[1] 童蕴慧,徐敬友,陈夕军.灰葡萄孢拮抗细菌的筛选[J].中国生物防治,2000,16(8):123~126.
    [2] 李保聚,朱国仁.番茄灰霉病发展症状诊断及综合防治[J].植物保护,1998,24(6):18~20.
    [3] 李保聚,朱国仁,赵奎华,等.番茄灰霉病在果实上的侵染部位及防治新技术[J].植物病理学报,1999,29(1):63~67.
    [4] 李明远,李兴红,严红,等.蔬菜灰霉病的发生与防治[J].植保技术与推广,2002,22(1):31~39.
    [5] 王文桥,马志强,张小风,等.植物病原菌对杀菌剂抗性风险评估[J].农药学学报,2001,3(1):6-11.
    [6] 丁中,刘峰,慕立义.不同抗性型灰葡萄孢Botryris cinerea对不同作用机制杀菌剂的敏感性研究[J].农药学学报,2001,3(4):59~63.
    [7] 徐作埏,李林,于建垒,等.蔬菜灰霉病对腐霉利抗药性变异及其治理[J].植物保护学报,2001,28(1):33~38.
    [8] 闫秀琴,刘慧平,韩巨才.我国植物病原菌抗药性的研究进展[J].农药,2001,40(12):4~6.
    [9] 林柏青,姚计强,朱国红.北京郊区大棚蔬菜灰霉病菌的抗药性检测[J].植物保护,1998,24(2):30~31.
    [10] 刘波,叶钟音,刘经芳,等.对多菌灵速克灵具多重抗性的灰霉菌菌株性质的研究[J].南京农业大学学报,1993,16(3):50~54.
    [11] 周明国,叶钟音,康建胜,等.对多菌灵具有抗性的草莓灰霉病菌菌株形成与分布的研究[J].南京农业大学学报,1993,16(3):57~60.
    [12] Johnson K B, Swayer T L, Powelsson M L. Freqency of benzimidazole and dicarboximide-resistence strains of Botrytis cinerea in western Oregon small fruits and bean plantings [J]. Plant Disease, 1994, 78(8): 372~377.
    [13] Katan T, Elad Y, Takahsshi J, et al. Resistence to dithofencarb in benomyl resistance field isolation of Botrytis cinerea [J]. Plant Pathology, 1988, 38(1): 66~92.
    [14] Elad Y, Yunis H, Katan T. Multiple resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel [J]. Plant Pathology, 1992, 41(1): 41~46.
    [15] 哀章虎,张小风,韩秀英.灰霉菌抗药性研究进展[J].河北农业大学学报,1996,19(3):106~111.
    [16] Elad Y, Malathraks E, Dik J. Biological control of Botrytis-incited diseases and powdery mildews in greenhouse crops [J]. Crop Protection, 1996, 16(3): 229~240.
    [17] 童蕴慧,许敬友,陈夕军,等.番茄灰霉病菌拮抗菌的筛选和应用[J].江苏农业研究,2001,22(4):25~28.
    [18] 张玉勋,李光,张光明.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果[J].植物病理学报,2000,30(1):91.
    [19] Kilian M, Steiner U, Krebs B. FZB24 Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality [J]. Pflanzenschutz-Nachtichten Bayer, 2000, 53(1): 72~93.
    
    
    [20] Elad Y. Biological control of grape grey mould by Trichoderma harzianum [J]. Crop Protection, 1994, 13(1): 35~38.
    [21] De Meyer G, B igirimana J, Elad Y, et al. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea [J]. European Journal of Plant Pathology, 1998, 104: 279~286.
    [22] Elad Y, Kohl J, Fokkema N J. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts [J]. Phytopathology, 1994, 84(11): 1193~1200.
    [23] Guetsky R, Shtienberg D, Elad Y, et al. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression [J]. Phytopathology, 2002, 92(9): 976~985.
    [24] Li H, Leiffert C. Development of resistance in Botryotinia fuckeliana (de Bary), Whetzel against the biological control agent Bacillus subtilis [J]. Journal of Plant Disease Protection., 1994, 101: 414~418.
    [25] 赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效试验初报[J].应用与环境生物学报,1999,5(1):85~88.
    [26] De Meyer G, H(?)fte M. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea in bean [J]. Phytopathology, 1997, 87(6): 588~593.
    [27] Swadling I R, Jeffries R Antagonistic properties of two bacterial biocontrol agents of grey mould disease [J]. Biocontrol Science and Technology, 1998, 8(3): 439~448.
    [28] 何礼远.细菌在植物病害生物防治上应用研究的进展[J].生物防治通报,1985,1(3):28~31.
    [29] Turner J T, Backman P A. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis [J]. Plant Disease, 1991, 75(4): 347~353.
    [30] David A D. The molecular biology of the Bacilli. Bol. 1: Bacillus subtilis [M]. Academic Press, 1982.
    [31] Asaka O, Shoda M. Biocontrol of Rhizotonia solani damping-off of tomato with Bacillus subtilis RB-14 [J]. Apply Environment Microbiology, 1996, 62(11): 4081~4085.
    [32] 辛玉成,秦淑莲,刘希光,等.枯草芽孢杆菌XM18菌株对植物防病增产效应的研究[J].山东农业大学学报,1999,30(增刊):176~178.
    [33] 顾真荣,马承铸,韩长安.枯草芽孢杆菌G_3防治植病盆栽试验[J].上海农业学报,2002,18(1):77~80.
    [34] 孔建,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株的研究Ⅰ.对植物病原菌的抑制作用和防治试验[J].中国生物防治,1999,15(4):157~161.
    [35] 何红,蔡学清,洪勇聪,等.辣椒内生枯草芽孢杆菌(Bacillus subtilis)BS-1和BS-2防治辣椒炭疽病研究[J].植物病理学报,2003,33(2):170~173.
    [36] 隋文志,丁丽俐,吴魁斌.枯草芽孢杆菌HB-48防病增产效果研究[J].现代化农业,1995,(3):4~5.
    [37] 王金生,张学君,钱显明,等.麦丰宁B3防治小麦纹枯病机理的研究Ⅰ.对病菌抑制作用[J].麦类纹枯病发生规律及其综合防治技术研究专辑,江苏农业科学,1993.
    
    
    [38] 陈志谊,高太东,严大富,等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J].生物防治通报,1997,13(2):75~78.
    [39] 彭化贤,刘波微,陈小娟,等.水稻稻瘟病拮抗细菌的筛选与防治初探[J].中国生物防治,2002,18(1):25~27.
    [40] Baker C J, Stavely J R. Biocontrol of bean rust by Bacillus subtilis under field conditions [J]. Plant Disease, 1985, 69(9): 770~772.
    [41] 王雅平,刘伊强,潘乃隧,等.枯草芽孢杆菌AO14菌株防治小麦赤霉病的初步研究[J].生物防治通报,1992,8(2):54~57.
    [42] 王雅平,刘伊强,潘乃遂,等.枯草芽孢杆菌TG26防病增产效应的研究[J].生物防治通报,193,9(2):63~68.
    [43] Schisler D A, Boehm M J, Slininger P J. Greenhouse and field evaluation of biological control of Fusarium head blight of durum wheat [J]. Plant Disease. 2002, 86 (11): 1350~1356.
    [44] 朱天辉,罗孟军,杨佐忠.枯草芽孢杆菌对金花梨果腐病控制的研究[J].四川林业科技,2000,21(3):14~17.
    [45] 范青,田世平,李永兴,等.枯草芽孢杆菌(Bacillus subtilis)B-912对采后柑桔果实青、绿霉病的抑制效果[J].植物病理学报,2000,30(4):343~348.
    [46] 范青,田世平,姜爱丽,等.采摘后果实病害生物防治拮抗菌的筛选和分离[J].中国环境科学,2001,21(4):313~316.
    [47] 范青,田世平,李永兴,等.枯草芽孢杆菌(B-912)对桃和油桃褐腐病的抑制效果[J].植物学报,2000,42(1):1137~1143.
    [48] Paulitz T C, Belanger R R. Biological control in greenhouse systems [J]. Annual Review of Phytophthology, 2001, 39:103~133.
    [49] Junge H, Krebs B, Kilian M. Strain selection, production and formulation of the biological plant vitality enhancing agent FZB24 Bacillus subtilis [J]. Pflanzenschutz-Nachtichten Bayer, 2000, 53(1): 941~04.
    [50] Emmert E A B, Handelsman J. Biocontrol of plant disease: a (Gram-) positive perspective [J]. FEMS Microbiology Letters, 1999, 171(1): 1~9.
    [51] Brian B, McSpadden G, Deborah R. Fravel biological control of plant pathogens: research, commercialization and application in the USA [R]. Plant Health Progress, http://www.apsnet.org/online/feature/biocontrol/top.html, 2002, 5~6.
    [52] 喻子牛.苏云金杆菌[M].北京:科学出版社,1990.
    [53] 方中达.植病研究方法(第三版)[M].北京:中国农业出版社,1998.
    [54] Gupta C P, Dubey R C, Kang S C. Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens [J]. Current Science, 2001, 81(1): 91~94.
    [55] 农业部农药检定所生测室.农药田间药效试验准则(一)[M].北京:中国标准出版社,1993,45~51.
    [56] 东秀珠,蔡秒英编著.常见细菌鉴定手册[M].北京:科学出版社,2001,364~398.
    [57] R.E.戈登,W.C.海恩斯,C.HN.帕格著.芽孢杆菌属[M].北京:农业出版社,1983.
    
    
    [58] 陈志谊,陆凡,刘春祥,等.水稻纹枯病拮抗细菌B-916培养条件与发酵配方的研究[J].西南农业学报,1998,12(1):76~81.
    [59] Ordentlich A, Elad Y, Chet I. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfii [J]. Phytopathology, 1988, 78(1): 84~88.
    [60] 顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定[J].上海农业学报,2001,17(3):92~96.
    [61] 何红,邱思鑫,蔡学清,等.辣椒内生细菌BS-1和BS-2在植物体内的定殖及鉴定[J].微生物学报,2004,44(1):13~18.
    [62] 王金生,张学君,钱显明,等.小麦纹枯病生防菌株的筛选及小区试验[J].生物防治通报,1993,9(3):102~105.
    [63] 余国运,唐文华,陈延熙.增产菌在小麦叶面定殖的研究[J].生物防治通报,1992,8(2):83~86.
    [64] 林福呈,李德葆.枯草芽孢杆(Bacillus subtilis)S9对植物病原真菌的溶菌作用[J].植物病理学报,2003,33(2):174~177.
    [65] CHERIF M, ASSELIN A, BELANGER R R. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp [J]. Phytopathology, 1994, 84: 236~242.
    [66] 张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990.
    [67] 王锋,高仁君,李健强,等.恶醚唑种衣剂对小麦幼苗生长及抗病性相关酶活性的影响[J].植物病理学报,2000,30(3):213~216.
    [68] 华东师范大学生物系.植物生理学实验指导[M].人民教育出版社,1980:143~144.
    [69] Haga M, Haruyama T, Kano H, et al. Dependence on ethylene of the induction phenylalanine ammonia-lyase activation in rice infected with blast fungus [J]. Agricultural Biology Chemistry, 1988, 52: 943~950.
    [70] 薛应龙.植物生理学实验[M].北京:高等教育出版社,1982.
    [71] Ouyang G C, Xue Y R. Physiological role and regulation of phenlpropanoid metabolism in plant [J]. Plant Physiology Communication, 1988, (3): 4~16.
    [72] 张龙翔,张庭芳,李令媛.生化实验方法和技术(第二版)[M].北京:高等教育出版社,1997.
    [73] 南京农学院主编.田间试验和统计方法[M].北京:农业出版社,1979,163~193.
    [74] 余桂容,张敏,叶华智.小麦赤霉病的生物防治的研究Ⅰ.拮抗芽孢杆菌的分离、筛选、鉴定和防治效果[J].四川农业大学学报,1998,16(3):314~318.
    [75] 王继栋,朱西儒,张云开,等.荔枝霜疫病拮抗菌的分离与筛选研究初报[J].中国生物防治,2002,18(增刊):59~62.
    [76] 彭化贤,刘波微,陈小娟,等.水稻稻瘟病拮抗细菌的筛选与防治初探[J].中国生物防治,2002,18(1):25~27.
    [77] 纪明山,王英姿,程根武,等.西瓜枯萎病拮抗菌株筛选及田间防效试验[J].中国生物防治,2002,18(2):71~74.
    [78] 陈志谊,殷尚智.筛选和利用拮抗细菌防治水稻纹枯病和恶苗病的研究[J].生物防治通报,1992,8(2):79~82.
    [79] 张学君,缪卫国,朱桂宁,等.农作物重要病原菌颉颃菌的筛选[J].生物防治通报,1993,9(4):126~129.
    [80] Johson A B. Bacetracin: A new antibiotic produced by amember of the B. subtilis group [J]. Science, 1945, 102: 453~471.
    
    
    [81] Schreiber L R, Green R J. Effect of root exduates on germination of conidia and microsclerotia of Verticillium alboatrum inhibited by the soil fungistatic principle [J]. Phytopathology, 1963, 53: 260~264.
    [82] Wilson C L, Wisniewski M F. Biological control of postharvest diseases of fruits and vegetable: an emerging technology [J]. Annual Review of Phytopathology, 1989, 27: 525~541.
    [83] Nakayama S, Takahashi S, Hirai M. Isolation of new variants of surfaction by a recombinant Bacillus subtilis [J]. Apply Microbiology Biotechnology, 1997,48(1): 80~82.
    [84] 林东,徐庆,刘亿舟,等.枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报,2001,9(1):77~80.
    [85] 陈三凤,李季伦,作物根际和叶围中产几丁质酶微生物的分布及其抑制真菌作用[J].生物防治通报,1994,10(2):58~61.
    [86] 孔建,赵白鸽,王文夕,等.枯草芽孢杆菌抗菌物质对镰刀菌抑制机理的镜下研究[J].植物病理学报,1998,28(4):337~340.
    [87] Bacon C W, Yates I E, Hinton D M, et al. Biological control of Fusarium moniliforme in maize [J]. Environment Health Perspect, 2001, 109(suppl 2): 325~332.
    [88] Parke J L. Biological control of plant pathogens[J]. Midwest biological control news online, http://www.entomology.wisc.edu/mbcn/fea303.html, 1996, 3(3).
    [89] 余桂容,叶华智,张敏,等.小麦赤霉病的生物防治的研究Ⅱ.拮抗芽孢杆菌在麦穗上的消长动态及生物学特性[J].四川农业大学学报,2002,20(4):324~327.
    [90] Geoffrey W Z, John F M, Edward J S, et al. Application of rhizobacteria for induced resistance [J]. European Journal of Plant Pathology, 2001, 107(1): 39~50.
    [91] Podile R, Laxmi V D V. Seed bacterization with Bacillus subtilis AF1 increases phenylalanineammonia-lyase and reduces the incidence of Fusarium wilt in pigeonpea [J]. Journal of Phytopathology, 1998, 14(6): 255~259.
    [92] 陈志谊,许志刚,陆凡,等.拮抗细菌B-916对水稻植株的抗性诱导作用[J].中国生物防治,2002,18(增刊):20~24.
    [93] Broadbent P, Baker K F, Franks N, et al. Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil [J]. Phytopathology, 1977, 67(8): 1027~1034.
    [94] Utkhede R S, Koch C A, Menzies J G. Rhizobacterial growth and yield promotion of Cucumber plants inoculated with Pythium aphanidermatum [J]. Canadian Journal of Plant Pathology, 1999, 21(3): 265~271.
    [95] Utkhede R S, Sholberg P L, Smirle M J. Effects of chemical and biological treatments on growth and yield of apple trees planted in Phytophthora cactorum infested soil [J]. Canadian Journal of Plant Pathology, 2001,23(2): 163~167.
    [96] 张纪中.微生物分类学[M].上海:复旦大学出版社,1985,44~46.
    [97] 王岳.抗生素[M].北京科学出版社,1996,453~471.
    [98] Kerr A. Biological control of crown gall through production of Agrocin 84 [J]. Plant Disease, 1980, 64(1): 25~33.
    [99] Petit-Glatron M F, Benyahia F, Chambert R. Secretion of Bacillus subtilis levansucrase: a possible two step mechanism [J]. European Journal of Biochemistry, 1987, 163: 379~387.
    [100] Edberg S C. US EPA human health assessment: Bacillus subtilis [M]. U.S. Environmental Protection Agency, Washington, D.C. 1991.
    
    
    [101] Biotecbnology program under Toxic Substances Control Act(TSCA): Bacillus subtilis final risk assessment [R], http://www.epa.gov/opptintr/biotech/fra/fra009.htm, 1997-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700