茂金属催化线型低密度聚乙烯的奇异流变性质—现象、机理及对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题为国家自然科学基金资助项目,研究焦点主要集中在探求聚合物熔体(主要为聚烯烃熔体)高速挤出时发生的极其复杂的不稳定流动现象的规律、机理和对策。实验采用恒速型双筒毛细管流变仪等仪器,研究对象为DOW化学公司生产的INSITETM工艺开发的牌号为ELITE5100G和ELITE5500G两种茂金属催化的线型低密度聚乙烯(m-LLDPE)。
     研究结果表明,两种m-LLDPE熔体均为典型非牛顿流体,ELITE5500G黏流活化能较高,而ELITE5100G的入口压力降和挤出胀大比略大。随挤出速率提高,两种m-LLDPE的挤出物外观都经历了从有规畸变(鲨鱼皮畸变、黏-滑畸变)到无规畸变(挤出物整体扭曲、熔体破裂)的变化。在黏-滑畸变区,挤出压力出现振荡,流动曲线断裂。相同挤出温度下,ELITE 5500G的稳定挤出速率范围大,出现鲨鱼皮畸变的临界剪切速率(720s-1)高于ELITE5100G(174s-1)。压力振荡幅度大,流动曲线断裂后的斜率更小。尤为显著的是ELITE5500G在经历黏-滑转变后出现了第二光滑挤出区。第二光滑区对于高速、节能、安全生产具有重要的潜在意义。流动行为的差别与两种样品结构差异有关。
     不同的畸变现象源自不同的扰动源和扰动机理。较低剪切速率下的有规鲨鱼皮畸变的空间起源在口模出口处,与出口处流动状态的突变有关。黏-滑畸变主要是由于熔体在口模壁处界面状态突变,造成熔体发生整体“时黏时滑”引起的。高剪切速率下的整体无规破裂起源于口模入口区的扰动。ELITE5500G出现第二光滑区与其黏-滑畸变特征及分子链含长链结构较多有关。
     加入少量加工助剂(PPA)可明显改善m-LLDPE的流变行为。加入后,熔体剪切黏度明显下降,入口压力降和挤出胀大比减小,挤出压力降低。出现鲨鱼皮畸变的临界挤出速率明显推迟,压力振荡和黏-滑畸变现象减轻,第二光滑区变长。PPA含量足够大时,压力振荡消失,挤出物外观好转。表明PPA加入能显著改善熔体/口模壁的界面状态。但PPA对无规破裂没有明显的改善作用。加入少量碳纳米管(CNTs)可减小熔体的流变学弹性。减弱入口应力集中效应,使无规破裂区的挤出物整体畸变得到改善。同时还能减小熔体在毛细管内的应力集中效应,使鲨鱼皮畸变的肋脊高度减小,宽度增大。这与CNTs能诱导分子链取向以及具有内润滑作用有关。LDPE与ELITE5500G共混可明显改善挤出压力振荡现象,黏-滑畸变消失,但鲨鱼皮畸变更加严重。随LDPE含量增加,复合材料黏度降低,挤出胀大比和入口压力降增大,熔体弹性增大,应力集中效应向入口区迁移。m-LLDPE与LDPE共混相容性好,共混后不分相,产生共结晶现象。
This work was supported by the National Natural Science Funds. It emphasized on exploring the orderliness, mechanism and improving measures of the complicated insTab.ility phenomena occurred when the polymer melts, especially polyolefin melts, were extruded at high speed. In this work, rheological behaviors and distortion characteristics of metallocnen linear low density polyethylene (m-LLDPE) extruded at high speed were systematically studied by a double-capillary rheometer. ELITE5100G and ELITE5500G, which were produced by CGSC and INSITETM technology were studied as a object.
     The results suggest that the molecular chain of ELITE5500G structure formal capability is better than ELITE5500G.The extrusion properties were compared, and indicate that the influence of temperature to melt viscosity of ELITE5500G is obvious and the appearance of extrudate is better, however, the influence of shear rate to melt viscosity of is stronger at lower temperature, which is due to the different molecule structures of them. The LCB could minish the entrance harass of linetype polymer. The pressure oscillation phenomenon occurs when ELITE5100G and ELITE5500G is extruded at high speed, which is due to the higher entanglement degree and narrow molecular weight distribution of it. And the grade of ELITE5500G is stronger than ELITE5100G..
     The results show that, the sharkskin fracture of linear molecule is caused by the local interface insTab.ility at die exit, which is also a relative relationship with the extensional stress between the melt and die exit; While the extrusion pressure oscillation phenomenon is induced by the global interface insTab.ility of the melt/wall interphase, that is to say, the cause of extrusion pressure oscillation can be retrospected to a stick-slip transition on the interface between melts and die wall under high stress. The gross melt fracture occurred at high shear rate is due to the stress concentration of die entrance and the lasting slip between melt and die wall.
     Because different phenomena has different disturbance headspring, we reformed them by vary ways. In the various efforts for the improvement of the melt fracture basis on the trouble properties, the sTab.le extrusion rate can be heightened by controlling the temperature; sharkskin melts fracture and pressure oscillation can be improved by increasing temperature. With a few LDPE interfused in ELITE5500G,stress convergence affect transfer to enterance . Sharkskin aberrance became more severity, and slip-stick transition on the interface and pressure surge phenomena disappeared. This way has no good for the gross melt fracture. Additionally, the application of fluoroelastomer(PPA) postpones or completely removes the occurrence of sharkskin fracture, decreasing the extrusion pressure and extrusion swelling ratio, and increasing the critical extrusion speed.As a result, broadening the available processing area and saving the energy source. The application of carbide nanotube (CNTs) can reduce shear viscosity and extrude inflation ratio when the content of CNTs reach to(0.8%~1.0%). Increasing the percent of CNTs, sharkskin can be improved, the height of sharkskin reduce while the width extended. Under higher shear rate, the extrude melt fill into break melt fracture, CNTs could improve both surface break fracture and whole break fracture.
引文
1. Scheim J, Kaminsky W .Metalloeene—based polyolefins [M].Chichester:Wiley,2000
    2. Benedikt G M ,Goodall B L.M etallocene catalysed polymers-materials,properties,processing and markets[M]New York:Plastics Design Library,1998
    3.吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.173-207
    4.刘安华,龚克成.高分子材料黏弹过程的混沌运动.高分子材料科学与工程,2001,17(2):11
    5. Wang S Q, Drda P A. Stick-Slip Transition in Capillary Flow of Polyethylene, 2, Molecular Weight Dependence and Low-Temperature Anomaly. MacromoIecudes, 1996, 29 (11): 4115-4119
    6. Dawn R. Arda, Malcolm R. Mackley. Sharkskin insTab.ilities and the effect of slip from gas- assisted extrusion. Rheol Acta, 2005, 44: 352-359
    7. M. Aguilar, J. F. Vega.Temperature and branching dependence of surface extrusion insTab.ilities in metallocene catalysed polyethylene. Journal of Materials Science, 2002, 37: 3415-3421
    8. Moynihan RH, Baird DG, Ramanathan R. Additional observations on the surface melt fracture -behavior of linear low-density polyethylene. J Non-New-tonian Fluid Mech, 1990, 36: 255-263
    9. Rutgers R, Mackley M. The correlation of experimental surface extrusion insTab.ilities with numerically predicted exit surface stress concentrations and melt strength for linear low density polyethylene. J Rheol, 2000, 44: 1319-1334
    10. Venet C, Vergnes B. Stress distribution around capillary die exit: an interpretation of the onset of sharkskin defect. J Non-Newtonian Fluid Mech, 2000, 93: 117-132
    11. Migler KB, Son Y, Qiao F. Extensional deformation, cohesive failure, and boundary conditions during sharkskin melt fracture. J Rheol, 2002, 46: 383-400
    12. Larson RG. Review: InsTab.ilities in viscoelastic flows. Rheologica Acta, 1992, 31: 213-263
    13. Den Doelder CFJ, Koopmans RJ, Molenaar J. Comparing the wall slip and the constitutive approach for modelling spurt insTab.ilities in polymer melt flows. J. Non-Newtonian Fluid Mech, 1998, 75: 25-41
    14. Lim FJ, Schowalter WR. Wall slip of narrow molecular weight distribution polybutadienes. J of Rheology, 1989, 33: 1359-1382
    15. A.C.T. Aarts, A.A.F. van de Ven. The occurrence of periodic distortions in the extrusion of polymeric melts. Continuum Mechanics and Thermodynamics, 1999, 11:113-139
    16. Cates ME, MacLeish TCB, Marrucci G. The rheology of entangled polymers at very high shear rates. Europhys Lett, 1993, 21 (4): 451-456
    17.王十庆.毛细管流动中的聚合物熔体分子不稳定性——界面黏-滑转变、壁滑及挤出物畸变.见:何天白,胡汉杰编.海外高分子科学的新进展[M].北京:化学工业出版社,1997:211-231
    18. Wang S Q, Drda P A. Superfluid-Like Stick-Slip Transition in Capillary Flow of Linear Polyethylene Melts, 1, General Features. MacromoIecudes, 1996, 29 (6): 2627-2632
    19. L. Robert, Y. Demay, B. Vergnes. stick-slip flow of high density polyethylene in a transparent slit die investigated by laser Doppler velocimetry. J Rheol, 2000, 44 (2): 413-427
    20. Yang Xiaoping, Wang Shiqing, Adel Halasa, et al. Fast flow behavior of highly entangled monodisperse polymers 2. Barrel correction, hysteresis and self-oscillation in capillary flow of PB. Rheologica Acta, 1998, 37: 424-429
    21. Den Doelder CFJ, Koopmans RJ, Molenaar J. Comparing the wall slip and the constitutive approach for modelling spurt insTab.ilities in polymer melt flows. J. Non-Newtonian Fluid Mech, 1998, 75: 25-41
    22. J. Pérez-González, Leonor Pérez-Trejo, Lourdes de Vargas, et al. Inlet insTab.ilities in the capillary flow of polyethylene melts. Rheologica Acta, 1997, 36: 677-685
    23.慕晶霞,王宁,赵贝等.PE-LLD和PE-LD熔体高速挤出特性的对比研究.中国塑料,2007,21(5):58-62
    24. Wu Jinrong, Pan Qiying, Huang Guangsu. Study on the morphology, rheology and surface of dynamically vulcanized chlorinated butyl rubber/polyethylacrylate extrudates: effect of extrusion temperature and times. J Mater Sci, 2007, 42:4494-4501
    25. Cogswell FN, Barone JR, Plucktaveesak N, Wang S-Q. The mystery of sharkskin. J Rheol, 1999, 43:245-252
    26.顾学军,陈晓媛,范五一.线型聚合物毛细管挤出中熔体破裂研究进展.塑料工业, 2002,30(6) :4-7
    27.陈晓媛,王港,黄锐.毛细管中聚合物熔体不稳定流动的研究进展.工程塑料应用[J] ,2003,31(3) :58-62
    28. Wang S Q. Molecular Transitions and Dynamics at Polymer/Wall Interfaces: Origins of Flow InsTab.ilities and Wall Slip. Advances in Polymer Science, 1999, 138: 227-275
    29. Zhu Zhiyong. Wall slip and extrudate insTab.ility of four-arm star polybutadienes in capillary flow. Rheologica Acta, 2004, 43:373-382
    30. Teresita de Jesús Guadarrama-Medina, JoséPérez-González, Lourdes de Vargas. Enhanced melt strength and stretching of linear low-density polyethylene extruded under strong slip conditions. Rheologica Acta. 2004, Springer-Verlag Online First
    31. Ghanta V G, Riise B L, Denn M M. Disappearance of extrusion insTab.ilities in brass capillary dies. J Rheol, 1999, 43(2):435-442
    32. Pérez-González J, Denn M M. Flow enhancement in the continuous extrusion of linear low-density polyethylene. Ind Eng Chem Res, 2001, 40(20): 4309-4316
    33. Pérez-González J. Exploration of the slip phenomenon in the capillary flow of linear low-density polyethylene via electrical measurements. J Rheol, 2001, 45(4): 845-853
    34.陈玉琴,张志德,武玉民.茂金属催化剂及其在聚乙烯中的应用.山东轻工业学院学报,1997,11(2):39-44
    35.杨英,贾刚治,王景政等.茂金属催化剂在弹性体合成中的应用.橡胶工业,2005,5(29):563-572
    36. Erik Miller, Sung Jin Lee, Jonathan P. Rothstein.The effect of temperature gradients on the sharkskin surface insTab.ility in polymer extrusion through a slit die.Rheol Acta, 2006, 45: 943-950
    37.何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版,1991.270
    38. Santamaria A, Fernandez M, Sanz E, et al. Postponing sharkskin of metallocene polyethylenes at low temperatures: the effect of molecular parameters. Polymer, 2003, 44 (8): 2473-2480
    39.邹盛欧.茂金属催化剂及其应用.现代化工,1995,(4):48
    40. Scheim J, Kaminsky W. Metalloeene—based polyolefins [M]. Chichester: Wiley,2000
    41. Benedikt G M ,Goodall B L. M etallocene catalysed poly—mers-materials, properties, processing and markets[M]. New York: Plastics Design Library, 1998
    42.李育英,刘琛阳,孙逊,等.茂金属聚乙烯共混体系液一液相分离行为[J].高分子学报,2000(6):707-710
    43.刘琛阳,李育英,王进,等.茂金属聚乙烯和低密度聚乙烯共混物的流变行为[J].高等学校化学学报,2001,22(2):298-302
    44. WuTong, Li Ying, ZhangDalun, et a1.Study on the morphology and properties of metallocene polyethylene / EVA blends[J]. Journal of Applied Polym er Science,2004,91(2):905-910
    45.徐旭荣,徐君庭,封麟先.茂金属LLDPE结构与性能[J] .石油化工,1999,28(11):784-788
    46.秦江雷,郭绍强,高俊刚,等.mLLDPE/EPPE共混体系的流变行为、结晶形态与力学性能研究.塑料,2008,37(6):64-68
    47.李育英,曾继军,何嘉松,等.国产茂金属聚乙烯的加工改性及其应用研究.塑料包装,1999,9(1):21-25
    48. Liu Chenyang,Wang Jin,He Jiasong.Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE[J].Polymer,2002,43:3811-3818
    49.吴彤,宋亮,赵磊,等.mLLDPE/LDPE共混物相结构的研究.北京化工大学学报,2005,32(1):51-55
    50. Chang D H.Rheology in Polymer Processing[M].New York:New York Academic Press,1976:106-109.
    51.于茂赏,闰明涛,高俊刚,等.线形双峰聚乙烯/高压聚乙烯共混物的流变行为和力学性能[J].中国塑料,2002,16(2):28-31
    52.傅强,杜荣昵,邱方道,等.茂金属聚乙烯的支化非均匀性与结晶形态.高分子学报,2000(2):142~146
    53.廖家志,陈伟,邓毅,等.mPE流变性能和挤出加工性能研究.合成树脂及塑料,1998,15(2):59-62
    54.彭响方,瞿金平.茂金属聚烯烃材料加工技术研究进展.化工新型材料,27(7):11-14
    55.李焉.茂金属聚烯烃的特性和应用.1999(28)3:1-7
    56. KaminskyW,etal.Angew.Chem.,Int.Ed.Engl.,1985,24:507
    57.王良诗.茂金属线性低密度聚乙烯结构-流变性能-加工行为关系的研究[J].石油化工,1999,28(1):23.
    58. H.J. Larrazabal, A.N. Hrymak, J. Vlachopoulos.On the relationship between the work of adhesion and the critical shear stress for the onset of flow insTab.ilities. Rheol Acta, 2006, 45: 705-715
    59.高超.茂金属研究进展.化工新型材料,1997,26(9):9-13
    60.王德禧,李蕴能,李兰,等.世界塑料新材料发展概况——茂金属聚合物.塑料,2000,29(1):38-43
    61.王德平,朱博超等.茂金属聚乙烯流变特性的研究.中国塑料,2003,17(4):32-34
    62.彭响方.茂金属聚烯烃材料加工技术研究进展[J].化工新型材料,1999,27(7):3
    63. MarigoA,ZannettiR,MilanfF.Asmall2andwide2an2gleX2rayscatteringstudyof12buteneLLDPEobtainedbymetalloceneandZiegler2Nattacatalysis.EurPolymJ,1997,33(5):595~598
    64. Martin Sentmanat,Savvas G. Hatzikiriakos. Mechanism of gross melt fracture elimination in the extrusion of polyethylenes in the presence of boron nitride. Rheol Acta,2004, 43: 624-633
    65.曾继军,李育英,何嘉松.茂金属聚乙烯的非等温结晶行为.化学通报,1998(9):37~39
    66.黄汉雄.含氟弹性体对聚烯烃挤出性能的改善[J].现代塑料加工应用,1990,(1):15-22
    67.毛立新,李淼,武德珍,等.茂金属聚乙烯结构与流变性能的研究.北京化工大学学报,2000,27(2):93~94
    68.何天白.海外高分子科学的新进展[M].北京:石化工业出版社,1999,217~233
    69.廖家志.茂金属PE LH-211133的纺丝流变性能[J].合成树脂及塑料,1999,16(1):39
    70. Roy Joseph, M T Martyn A, K E Tanner, et al. Interfacial stick–slip transition in hydroxyapatite filled high density polyethylene composite. Bull. Mater. Sci., 2006, 29 (1): 85-89
    71.闰明涛,高俊刚,李志庭,等.MPE/LLDPE/LDPE共混熔体的流变学.高分子材料科学与工程,2003,19(1):175-180
    72.曾继军,李育英,何嘉松.茂金属聚乙烯的流变性与加工性.高分子学报,2000,(1)68-73
    73.刘小龙,李惠林.复合加工助剂对茂金属聚乙烯流变性能的影响.高分子材料科学与工程,2004,20(3):155-159
    74.黄葆同,陈伟.茂金属催化剂及其烯烃聚合物.化学工业出版社,,2000
    75.樊孝玉,孟大维,吴秀玲.无机纳米填料对填充聚合物性能的影响及其应用.2004,31(6):21-25
    76.徐冬梅,徐晓,杜唯唯,等.高强度茂金属聚乙烯大棚膜.中国包装工业,2007,4:35-38
    77.周持兴.聚合物流变实验与应用[M].上海:交通大学出版社,2003,65-78
    78.杨晓明,戴文利,姜娜.茂金属聚乙烯分子链流变学模型研究进展.高分子学报,(12)2006,46-51
    79.籍军,刘伟,周涵,等.碳纳米管在聚烯烃改性中的应用.合成树脂及塑料,2005,22(3):67-72
    80.李贺,刘白玲.高利珍等.高聚物/碳纳米管复合材料研究进展[J].合成化学,2002,(10):197-199
    81.李学峰,官文超,闫晗.聚合物,碳纳米管的研究进展[J].合成材料老化与应用,2003.32(3):l9~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700