铁水脱硫喷枪用莫来石质浇注料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作用XRD、SEM、EPMA、DSC-TG及热力学计算等方法对铁水脱硫喷枪用莫来石质浇注料进行了如下三部分的研究:第一部分探讨了莫来石质浇注料的性能以及红柱石引入的影响。第二部分探讨了SiC对莫来石质浇注料性能的影响。第三部分探讨了金属Si对莫来石质浇注料性能的影响。得到的结果如下:
     1.红柱石骨料引入到莫来石质浇注料后,试样的热膨胀系数和热膨胀率提高;热处理后试样强度下降,但热震稳定性提高。这是由于红柱石骨料比其周围基质的热膨胀系数大,热处理后基质将承受残余应力进而引发开裂,形成的环状裂纹使强度下降,但可以吸收热震过程中产生的裂纹扩展能而使热震裂纹截止,提高试样的热震稳定性。
     2.SiC细粉与SiC微粉的引入对浇注料性能影响相似,即烘后以及800℃烧后强度下降,1400℃烧后强度升高。800℃烧后以及1400℃烧后热震稳定性随着SiC粉料引入量的增加先提高,后下降。对于已经添加了红柱石的试样,随着SiC细粉引入量的增加,烘后以及1100℃烧后强度下降,1400℃烧后强度上升,1100℃烧后热震稳定性提高。
     3.金属Si的引入对烘后以及800℃烧后试样强度影响不大,随着金属Si引入量的增加,1400℃烧后强度升高,800℃烧后试样热震稳定性下降,引入金属Si的试样1400℃烧后热震稳定性极差。
By means of XRD analysis, SEM, EPMA, DSC-TG and thermodynamic calculation, three parts were studied as follows. In the first part the properties of mullite castable and the effects of andalusite aggregate were investigated. The effects of SiC powder on properties of mullite castable were investigated in the second part. In the third part the effects of Si powder on properties of mullite castable were investigated. The results show that:
    1. After andalusite aggregates were introduced to mullite castable, coefficient of thermal expansion and ratio of thermal expansion of samples were increasing. At the same time, MOR of samples decrease and thermal shock resistance was improved. The reason is that the cracks formed by differences of thermal expansion coefficient between andalusite aggregates and matrix in castable stop the propagating of cracks formed during thermal shock.
    2. The effects of SiC powder and SiC micro on properties of mullite castable were similar. MOR of samples dried and soaked at 800 C decrease and that of samples sintered at 1400 C were improved with increasing SiC content. Thermal shock resistance of samples sintered at 800 C and 1400 C were improved at first then decrease with increasing SiC content. For the castable with andalusite, MOR of samples dried and soaked at 800 C decreases and that of samples sintered at 1400 C was improved with increasing SiC content, and thermal shock resistance was improved with increasing SiC content.
    3 MOR of samples dried and soaked at 800 C change little and that of samples sintered at 1400 C was improved with increasing Si content. Thermal shock resistance of samples soaked at 800 C decreases with increasing Si content and that of samples sintered at 1400 C was very bad.
引文
[1] 杨世山,等.铁水预处理工艺、设备及操作.炼钢,2000,16(5):13-14.
    [2] 侯向东.铁水脱硫技术.科技情报开发与经济,2002,12(1):153-154.
    [3] Toshiko Kaneshige. Operational conditions and wear mechanism of lance pipes for iron and steel treament. Journal of the technical association of refractories, Japan, 2001, 21(4):264-269.
    [4] Takashi Matsunaga, Ichiro Takita. Effect of core pipe and castable on spalling resistance of lance pipe. Taikabatsu Overseas, 14(3): 35-41.
    [5] Fukuichi Kitani, Shintaro Sudo. Life improvement of lance pipe for hot metal pretreatment. Refractories(Tokyo), 1990, 42(8): 437-438.
    [6] 杨世山.全面铁水预处理工艺和深度脱磷的研究(硕士学位论文).北京,北京科技大学,1987.5.
    [7] 张信昭编译.铁水炉外脱硫.国外钢铁,1982(3):12-23.
    [8] 铁水预处理用喷枪.国外耐火材料,1985(8):46-49.
    [9] Isamu Wakasugi, Akira Othe. Life improvement of injection lance for hot metal pretreatment. Refractories(Tokyo), 1989(1): 33-35.
    [10] Takashi Yamamura, Yoshihisa Hamazaki. Elongation of durability of Injection Lance Pipe for hot Metal Pretreatment. Refractories(Tokyo), 1991, 43(8):392-399.
    [11] Takashi Yamamura, Yoshihisa Hamazaki. Elongation of durability of Injection Lance Pipe for hot Metal Pretreatment. Refractories(Tokyo), 1990, 42(8):439-440.
    [12] Keisuke assano, Masakazu ikeda. Improvement of monolithic refractories for hot metal pretreatment lance. Refractories(Tokyo), 1989, 41(9): 17-22.
    [13] Masaaki Nishi, Haruyoshi Tanabe. Improvement of castable refractories for hot metal pretreament and steel refining process. Refractories(Tokyo), 1993, 45(2):67-76.
    [14] 唐秋夏,孙爱珍.KIP喷枪浇注料的生产与使用.耐火材料,1994,28(3):178~179.
    [15] 刘大波.KIP喷枪浇注料的研制生产及在炼钢中的应用.河南冶金,1995,17(4): 10~12.
    [16] 甘菲芳,陈荣荣,阎文龙.铁水预处理用喷枪浇注料的研制与使用.耐火材料,2001,35(4):216—218.
    [17] 韩行禄.不定型耐火材料.冶金工业出版社,2003.
    [18] 王维邦,等.耐火材料工艺学.冶金工业出版社,1984.
    [19] 李晓明著.微粉与新型耐火材料.冶金工业出版社,1997.
    [20] M. A. J. Rigaud. Proceedings of the international symposium on advance in refractories for the metallurgies industries. Pergamon Press, 1987.
    
    
    [21] 顾立德.特种耐火材料.冶金工业出版社,1982.
    [22] 任国斌.铝硅系实用耐火材料.冶金工业出版社,1989.
    [23] 李晓明.特种不定型耐火材料及不烧耐火砖.冶金工业出版社,1992.
    [24] 鹿野弘,等.耐火物,1989,41(8):437.
    [25] 李再耕,等.耐火材料,1991,25(2):67-71.
    [26] H. Schneider, et al. Mullite and Mullite Ceramics. Wiley, UK, 1994.
    [27] Yingwei Fei. Thermal expansion. Mineral physics and crystallography, American geophysical Union, 1995.
    [28] 刘平,叶先贤.莫来石研究及应用进展.地质科技情报,1998,17(2):18-22.
    [29] Varley E R, Silimanite. London Her Majesty's Stationery Office, 1965: 3.
    [30] 魏坤,贺伦燕.莫来石材料的研究现状及其应用.功能材料,1993,24(1):85-91.
    [31] 倪文,张春艳.莫来石隔热耐火浇注料的研制.矿物岩石,2000,20(1):91-94.
    [32] 贺中央,刘百宽.莫来石质自流浇注料的研制与应用.工业炉,1999,21(2):37-39.
    [33] 铁维玉.莫来石钢纤维增强浇注料的研制.首钢科技,1995(6):27-29.
    [34] 张战营,李再耕,孙承绪.莫来石结合刚玉-碳化硅质浇注料的组成与性能.耐火材料,2000,34(6):328-330.
    [35] 王杰曾,金宗哲.耐火材料抗热震疲劳行为评价的研究.硅酸盐学报,2000,28(1): 91-94.
    [36] W. D. Kingery. J. Am. Ceram. Soc, 1995, 38(1): 3.
    [37] D. P. H Hasselman. Ceramics in Sever Environment, Plenum Press. New york, 1971: 89.
    [38] D. P. HHasselman. J. Am. Ceram. Soc, 1969, 52(11): 600.
    [39] D. P. H Hasselman. Am. Ceram. Soc. Bull, 1970, 49(12): 1033.
    [40] 王文平.改善耐火制品热震稳定性的方法.耐火材料,1998,32(2):103-104.
    [41] 沈继耀.复相改性提高耐火材料的抗热震性.耐火材料技术与发展,北京,冶金工业出版社,1995:249-250.
    [42] 隋万美,黄勇.微裂纹复相陶瓷材料的抗热震机制.材料导报,2000,14(2):34-35.
    [43] 祝洪喜.不定型耐火材料.武汉,武汉钢铁学院,1994.
    [44] 叶大伦,胡建华.实用无机物热力学数据手册[M],北京,冶金工业出版社,2002.
    [45] 靳亲国,李静.我国红柱石的资源状况、生产和应用.耐火材料,2002,36(5):284-286.
    [46] Lionel Rebouillat. Andalusite-based high-alumina castable. J Am Ceram Soc, 2002, 85(2), 373-378.
    [47] T Ebadzadeh. Mullite formation from the andalusite. World ceramic and refractory, 2001, 4: 12-14.
    [48] 丁子上.硅酸盐物理化学.北京,中国建筑工业出版社,1980.
    [49] NIST WebSCD Database, online at hhtp://www. ceramics. nist. gov/.
    [50] 张长瑞,郝元恺著.陶瓷基复合材料—原理、工艺、性能与设计,长沙,国防科技大
    
    学出版社,2001.
    [51] Taya M, Hayashi S. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc, 1990, 73, (5): 1382-1391.
    [52] 熊星云,崔昆.碱性耐火材料热稳定性与应力设计的关系.钢铁研究,1998(6):6-10.
    [53] Faber. K. T, Iwagoshi T. Toughening by stress-induced microcracking in two-phase ceramics. JAm Ceram Soc, 1988, 71(9): C-399.
    [54] 梁训裕译.SiC耐火材料,北京,冶金工业出版社,1980.
    [55] 山口明良著,张文杰译.实用热力学及其在高温陶瓷中的应用,武汉,武汉工业大学出版社,1993.
    [56] 范会超,李乃动.SiC粒度对高铝制品性能的影响.耐火材料,1997,31(4):194-196.
    [57] 张丽鹏,吴永霞.SiC质耐火材料的氧化机理.现代技术陶瓷,2002,3:24-30.
    [58] Park Sung Chul. Oxidation of hot-pressed silicon carbide in the cyclic and static conditions. Journal of Material Science Letters, 1998, 17(1):23.
    [59] 钟香崇,赵海雷.氧化物—非氧化物复合材料的显微结构特征.耐火材料,2000,34 (3):125-129.
    [60] 曾令可,任雪谭.掺入SiC对堇青石质窑具性能的影响.材料科学与工程,2001,19 (2):47-50.
    [61] Barsoum M. W. Transient plastic phase processing of titanium boron carbon composite. J Am Ceram Soc, 1993, 76(6):1445-1451.
    [62] 洪彦若,孙加林.非氧化物复合耐火材料.北京,冶金工业出版社,2003.
    [63] 张文杰,李楠.碳复合耐火材料.北京,科学出版社,1990.
    [64] E. A. Gulbransen, S. A. Jansson. Oxidation of metals. 1972, 4(3):181.
    [65] 周秋生.中南大学博士学位论文.长沙,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700