真空电磁搅拌精密铸造不锈钢叶轮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造不锈钢叶轮具有优良的机械性能和耐蚀性能,但其铸造性能比较差。一方面由于不锈钢材料熔点较高,易氧化、凝固温度范围较宽,钢水的流动性差、收缩大;另一方面叶轮的结构复杂,壁厚差异大。采用普通铸造工艺生产,凝固组织粗大,在恶劣工作条件下,很容易在高应力区域,如叶片根部,产生裂纹。
     为了研究提高叶轮质量的工艺方案,本论文以中小型叶轮为研究对象,将电磁搅拌细晶技术与真空精密铸造技术相结合,探索研究了一种奥氏体不锈钢叶轮的真空电磁搅拌精密铸造新工艺,即在熔模精密铸造的基础上,采用真空冶炼浇注,严格控制叶轮的合金成分,并在金属液凝固过程中施加电磁搅拌,改善其凝固组织。结果表明:影响叶轮成型性能的主要因素是浇注温度、模壳预热温度和电磁搅拌启动时间,获得完整叶轮的最佳条件为:模壳的预热处理为1000℃下保温30min,浇注温度选择1590℃,电磁搅拌在浇注完金属液,静置3s后启动。电磁搅拌增加了冒口的补缩压力,有效地改善了叶轮铸件缩孔的大小和位置,提高了金属液的利用率。双向搅拌进一步改善了金属液内的温度分布,实现了铸锭的顺序凝固,消除了叶轮铸件的疏松缺陷。采用新工艺制备的叶轮轮廓清晰完整,表面光洁,无裂纹、气孔、缩松等铸造缺陷,为整体叶轮的企业生产提供一定的技术参考。
     利用电化学工作站、金相显微镜、扫描电镜、电子探针等现代材料分析检测设备,分析讨论了新工艺参数对叶轮组织性能的影响,结果表明:在双向电磁搅拌作用下,单向搅拌时间越长,等轴晶比例越大,其平均尺寸也越小。在单向搅拌8s时,整个心部断面等轴晶率达到100%,等轴晶的平均尺寸达到25μm。施加电磁搅拌后,铁素体相在铸态下变得短小分散,端部圆钝,含量在5%左右。电磁搅拌通过细化叶轮组织和抑制元素偏析及碳化物的析出,改善了不锈钢的耐蚀性能。其中,在0.5mol/LH2SO4溶液中耐晶间腐蚀的ERP再活化率由45.8%降到13.0%,在3.5%NaCl溶液中的耐点蚀电位由0.18105V提高到0.31622V。
Cast stainless steel impeller has excellent mechanical properties and corrosion resistance, but has relatively poor casting properties. On the one hand, the stainless steel has high melting point, easily oxidized, a wide range of solidification temperature, poor fluidity, a large contraction, on the other hand, the impeller has complex structure and large differences in wall thickness. therefore, produced by common casting process, it has the coarse structure. If it work in poor working conditions, cracks easily occur in high-stress areas, such as blade roots.
     In order to study the process to improve the quality of the impeller, using the small impeller as study objects, the experiment combines the fine grain of electromagnetic stirring technology and vacuum casting technology, so as to explore and research a new process of stainless steel impeller by vacuum electromagnetic stirring precision casting technology., Based on the precision casting melting and casting are carried our in vacuum, to strictly control the alloy composition of impeller, and exert the electromagnetic stirring during the solidification process, to controlling the solidification structure. The result show that the main factors effecting the impeller forming are pouring temperature, mold shell preheat temperature and the time to start the electromagnetic stirring, for the complete impeller, the optimal conditions are preheating the shell molded at 1000℃incubated 30min, pouring temperature at 1590℃, opening the EMS 3s after pouring liquid metal. EMS can increase the feeding pressure on the impeller, so as to effectively modify the size and position of casting shrinkage and improve the utilization of liquid metal. Two-way EMS further homogenize the temperature distribution in liquid metal, so as to achieve the ingot solidification, eliminating the shrinkage porosity defects. The impeller by new process, with a new clear and complete outline and smooth surface, has no cracks, porosity, shrinkage and other casting defects, providing a technical reference for the impeller manufacturer.
     Modern material testing and analysis equipment, such as electrochemical workstation, optical microscope, scanning electron microscope, electron microprobe, are used to study and discussion the affection of the new process parameters on the microstructure and properties of the impeller, the results show that, appropriately increasing the stirring time, is benefit to improve the grain refinement. When the one-way stirring time was 8s, the equiaxed grains were evenly refined to the size of 25μm. Ferrite in the casting structure is about 5% and becomes short and scattered, with blunt end. EMS can improve the corrosion resistance of stainless steel, by refining the organizations and inhibiting the element segregation and carbide precipitation. Among them, the EPR reactivation rate of intergranular corrosion in 0.5mol/LH2SO4 solution decrease by 32.8%, from45.8% to 13.0%, the pitting potential in 3.5% NaCl solution increased by0.13517V, from 0.18105V to 0.31622V.
引文
[1]刘薇,胡林,解茂昭.连铸工艺中的电磁搅拌技术[J].炼钢,1999,15(1):54-56.
    [2]Siebo Kunstreich. ASIA STEEL,1996,145-150.
    [3]徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的改善[J].上海金属,1997,19(3):28-33.
    [4]K. H.Spitzer. Metallurgical Transactions.1986:119-131.
    [5]K. H.Spitzer. Iron & Steel Maker,1990:57-71.
    [6]周汉香,于学斌.电磁搅拌技术发展及其在武钢的应用[J].武钢技术,2004,42(4):45-47.
    [7]Li T J, XintaoLi, ZhifengZhang, etal. Effect of multielectromagnetic field on meniscus shape and quality of continuous cast metals [J]. Iron making & Steelmaking,2006,33(1):57-60
    [8]韩志成.电磁冶金学[M].北京:冶金工业出版社,2001.
    [9]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:219-223.
    [10]王宁.马氏体不锈钢硬面药芯焊丝堆焊层金属碳氮微合金化研究[D].武汉:华中科技大学材料加工工程,2006.
    [11]P. Scott, A review of environment-sensitive fracture in water reactor materials[J]. Corrosion Science,1985,25:583-606.
    [12]Padilha A F, Prrios P R. Decomposition of austenite in austenitic stainless steels [J], ISIJ International,2002,42(4):325-337.
    [13]Li L, Messler R W. Segregation of phosphorus and sulfur in heat—affected zone hot cracking of type 308 stainless steel. Welding Journal,2002,81(5):78-84
    [14]Li Leijun, Messler, Robert W. Effects of phosphorus and sulfur on susceptibility to weld hot cracking in austenitic stainless steels [J]. Welding Research Council Bulletin,2003,488:1-26.
    [15]伍千思.不锈钢标准中的铬锰系(美国200系)奥氏体不锈钢[M].冶金标准化与质量,2004,42(6):34—37
    [16]皮克纳,顾守仁.不锈钢手册[M].北京:机械工业出版社,1987.3:57-65.
    [17]Sehaeffler A L. Constitution Diagram for Stainless Steel [J]. Weld Metal. Metal Progress1949,56(11):680-680B.
    [18]Delong W T, Ostrom G A, Szumachowski E R. Measurement and calculation of ferrite in stainless steel weld metal [J], Welding Journal,1956,35(11):521-528.
    [19]Lippold J C. Solidification behavior and cracking susceptibility of pulsed-laser weld in austenitic stainless steels[J], Welding Journal,1994,73(6):129-139.
    [20]中国机械工程学会铸造专业学会编.铸造手册-铸钢[M].北京:机械工业出版社,1993:483.
    [21]罗宏,龚敏.奥氏体不锈钢的晶间腐蚀[J].腐蚀科学与防护技术,2006,18(5):357-358.
    [22]屈兴胜.林成.刘志林.奥氏体不锈钢晶间腐蚀[J].辽宁工学院学报,2007,27(1):45-46.
    [23]潘莹,宋维.敏化奥氏体不锈钢的晶间腐蚀研究[J].青岛化工学报,1998,19(4):369-373.
    [24]王荣滨.18—8型奥氏体不锈钢的晶间腐蚀[J].上海钢研,2003(2):19-21.
    [25]吴剑.不锈钢的腐蚀破坏与防蚀技术[J].腐蚀与防护,1997,18(3):41-44.
    [26]许崇臣,冈毅民,李民保.氮对高纯奥氏体不锈钢耐晶间腐蚀性能的影响[J].腐蚀科学与防护技术,1997,9(3):192-196.
    [27]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004:295-297.
    [28]吴剑,黄国柱,毛照樵,等.不锈钢腐蚀形貌图谱[J]大型铸锻件,1985,2.
    [29]肖纪美.不锈钢的金属学问题[M],北京,冶金工业出版社,2006,155-238.
    [30]T P Hoar, D C Mear, G P Rothwell. The relationship between anodize passivity, brightening and pitting [J]. Corrosion Science.1965, (5):279-284
    [31]L LShreir, R AJannan, G T Burstein. Corrosion [M].U.S:Butterworth-Heinemann, 1998.
    [32]E Mecafferty. A Competitive adsorption model for inhibition of crevice corrosion and pitting [J].J Electrochem Soc.1990, (137):3731-3738.
    [33]Z A Foroulis, M J Thubrikar. On the kinetics of breakdown of passivity of preanodized aluminum by chloridelons [J]. J Electrochem Soc.1975, (122):1296-1302.
    [34]JB/T 6880.2-2008《泵用铸钢件》[S].北京:中国国家标准化管理委员会,2008-08-19.
    [35]宋诗哲.腐蚀电化学研究方法[M].化学工业出版社,1988:187.
    [36]方智,张玉林,吴荫顺.电化学动电位再活化法评价308L不锈钢的晶间腐蚀敏感性[J].腐蚀科学与防护技术.1996,8:87-93.
    [37]Fang Z, Wu Y S, Zhang L,et al. Application of the modified electrochemical potentiodynamic reactivation method to evaluate intergranular corrosion susceptibility of stainless steel [J]. Corrosion,1998,54:339-346.
    [38]MatulaM, Hyspecka, SvobodaM, et al. Intergranular corrosion of AISI 316L steel mater [J]. Charact,2001,46:203-210.
    [39]蔡开科.连铸坯表面裂纹的控制[J].鞍钢技术.2004,3.
    [40]严彪.不锈钢手册[M].北京:化学工业出版社,2009,6.
    [41]中国铸造协会.熔模铸造手册[M].北京:机械工业出版社,2000:341.
    [42]中国机械工程协会铸造分会.铸造手册,第二卷铸钢[M].北京:机械工业出版社,2003:389
    [43]王东,李玉海.铸造过程补缩机理及其数学模型[J].铸造,1996,8(2):13-15.
    [44]王晓东,李廷举,金俊泽.旋转电磁场作用下金属凝固补缩机理探讨[J].材料工程,2001,20(11):3-5.
    [45]美国铸造学会.缺陷图谱及分析[M],1994.
    [46]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2004.
    [47]J. D. Hunt. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic[J]. Materials Science and Engineering,1984, (65):75.
    [48]Jin Wenzhong, Bai Fudong, Li Tingju. Grain refinement of super alloy IN100 under the action of rotary magnetic fields and inoculants[J]. Materials Letters.2008, 62:1555-1588.
    [49]唐纳德 匹克纳 著,顾守仁,周有德等译.不锈钢手册[M].北京:机械工业出版社,1984.
    [50]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:43-56.
    [51]J.D. Hunt. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Material Science and Engineering,1984, (65):75.
    [52]Charles Vies. Crystallization of semisolid magnesium alloys and composites in the Presence of magneto hydro dynamic shear flows [J]. Journal of Crystal Growth,1994,137(3-4):653-662.
    [53]V. MikiH. Kitaoka T. Mechanism for Separating In elusions from molten steel Stirred with a Rotating electromagnetic Field [J]. ISIJ Intenational,1992,32(1):42-49.
    [54]GB/T13305—2008不锈钢中α-相面积含量金相测定法[S].北京:中国国家标准化管理委员会,2008-08-19.
    [55]Perrin A. RoAustK. T. Transient voltage changes produced in corroding metals and alloys [J] Materials, Sci. Eng,1981,51:165.
    [56]杨德钧.金属腐蚀学[M]北京:冶金工业出版社,2003.9:259
    [57]赵麦群.金属的腐蚀与防护[M]北京:国防工业出版社,2002.9:176-180.
    [58]Isaacs H S. Ishikawa Y, Current and potential transients during localized corrosion of stainless steel[J]. Electrochemical.1985,132:1288-1295.
    [59]曹占锋,乔利杰,褚武扬.321不锈钢点蚀电位影响因数的研究[J].中国腐蚀与防护学报,2006,26(1):22-26.
    [60]Carla, Gouveia, M. Isabel. Electrochemical noise and impedance study of aluminum in weakly acid chloride solution [J]. Electrochemical. Soc.,2004,49:785-793.
    [61]Hashimoto M, Miyajima S, Murata T. An experimental study of potential fluctuation during passive film breakdown and repair on iron[J]. Corros. Sci.1992,37:905-915
    [62]王正樵,吴幼林.腐蚀与防护全书-不锈钢[M].北京:化学工业出版社,1991,12:245-263.
    [63]李伟善,陈红雨,袁中直等.Fe基合金钝化膜点蚀敏感性的电化学研究[J].电化学,2004,10(4):397-402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700