DNA甲基化作为法医学组织标记的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景鉴别在犯罪现场发现的斑痕等人体检材的组织来源,对判断案件类型和证明犯罪事实有重要的作用。当代法庭科学对微量、陈旧生物证据的应用,使组织鉴别变得更为必要,同时在技术是也提出了更高的要求。探索新型的分子组织标记,研究开发与当代DNA分析技术相匹配的组织鉴别技术,是目前法医物证学的研究热点之一。
     目的本研究调查人体主要组织胶质纤维酸性蛋白(Glial fibrillary acidic protein,GFAP)基因和DEAD盒多肽4(DEAD (Asp-Glu-Ala-Asp) box polypeptide 4,DDX4)基因的启动子甲基化水平,评估GFAP启动子低甲基化作为脑组织、DDX4启动子低甲基化作为精液斑组织标记的可行性,初步探讨DNA甲基化作为法医组织标记的意义。
     方法应用联合亚硫酸氢盐的限制酶法(Combined Bisulfite Restriction Analysis,COBRA),一种半定量的DNA甲基化检测技术,调查6例尸体主要组织(大脑、心脏、肺、肝、胰、脾、肾、皮肤)和17例精液的GFAP和DDX4启动子甲基化水平,对数据进行单因素方差分析并确定判别值。
     结果人类大脑组织GFAP启动子甲基化水平均低于45.82%((X| ̄)_(brain)=44.70%,S_(brain)=8.38%),非脑组织均高于58.60%((X| ̄)_(non-brain)=68.01%, S_(non-brain)=1.42%),以52.87%为判别值,可以有效的区别脑组织与非脑组织。人精液DDX4启动子甲基化水平均低于50.41 % ((X| ̄)sperm=11.52%_(EcoRI), 11.88%_(TaqI) ; S_(sperm)=8.98%_(EcoRI), 10.25%_(TaqI)) ,体细胞组织均高于75.41%((X| ̄)_(somatic)=82.73%_(EcoRI), 82.94%_(TaqI);S_(somatic)=3.54%_(EcoRI), 3.91%_(TaqI)),以49.85%(EcoRI位点)或50.58%(TaqI位点)为判别值,可以有效的区别精液斑组织与非精液斑组织。
     结论大脑组织的GFAP启动子甲基化水平显著低与非脑组织,精液DDX4启动子甲基化水平显著低与非精液的体细胞组织,GFAP启动子低甲基化可作为脑组织特异标记,DDX4启动子低甲基化可作为精液特异标记。考虑到法医学检材的特殊性和DNA标记的优势,组织特异性甲基化变异位点(methylation-variable positions,MVPs)可能是一种理想的分子组织标记。筛选一组合适的组织特异性MVPs位点,开发通用的基于DNA甲基化的组织ID系统,可能是解决目前法医组织鉴定问题的有效途径。
Background and Objective The identification of tissue origins can be of crucial importance in forensic casework. Method for tiny and aged tissues discrimination remains a challenge due to many cross reaction existing in immunodetection and unstable mRNA. DNA methylation is an epigenetic mark on the mammalian genome. There are numerous tissue-dependent and differentially methylated regions (T-DMRs) in the unique sequences distributed throughout the genome. Recently study had shown that the detection tissue specific DNA methylation is a suitable technique to identify neuronal tissue in raw meat products which is prohibited by BSE (Bovine Spongiform Encephalopathy) legislation. Cell/tissue-specific expressions of various genes had been explained by the binding of cell/tissue specific transcription factors to their promoters. Taken together, in order to support a model in which the promoter regions special methylate pattern of gene are accessible for discriminate one tissue from the other. To study the feasibility of DNA methylation as forensic tissue markers, the promoter of human GFAP and DDX4 gene were selected as samples.
     Method Methylation levels of GFAP and DDX4 promoter of human tissue samples including brain, heart, lungs, liver, pancreas, spleen, kidney, skin, and semen(n=6) were detected by the combined bisulfite restriction enzyme analysis (COBRA), a semiquantitative DNA methylation analytical method. One-way variance of data was carried out and discrimate values were defined.
     Result The results showed that the methylation level of GFAP promotor in all huamn brain were lower than 45.82%((X| ̄)_(brain)=44.70%, S_(brain)=8.38%), while that in all non-brain human tissues were larger than 58.60%((X| ̄)_(non-brain)=68.01%, S_(non-brain)=1.42%),; When the discriminant value was set at 52.87%, brain and non-brain huamn tissues can be discriminated effectively. The methylation level of DDX4 promotor in all semen were lower than 50.41 % ((X| ̄)_(sperm)=11.52%_(EcoRI), 11.88%_(TaqI) ; S_(sperm)=8.98%_(EcoRI), 10.25%_(TaqI)), while that in all somatic tissues were larger than 75.41 % ((X| ̄)_(somatic)=82.73%_(EcoRI), 82.94%_(TaqI) ; S_(somatic)=3.54%_(EcoRI), 3.91%_(TaqI)). When the discriminant value was set at 49.85%(EcoRIsite)or 50.58%(TaqI site), semen and non- semen huamn tissues can be discriminated effectively.
     Conclusion Methylation level of GFAP promoter in brain tissue(including gray and white matter) was significantly lower than that in non-brain tissues, DNA methylation level of GFAP promoter can be used as a brain tissue-specific markers.
     Methylation level of DDX4 promoter in semen was significantly lower than that in somatic tissue, DNA methylation level of DDX4 promoter can be used as a semen-specific markers.
     As a proof of concept study, the sample size, methylation marker selected and techniques used here may not be suitable for the forensic practice. However, considering the characteristics of forensic samples and the advantages of DNA markers, tissue specific methylation-variable positions (MVPs) may be ideal tissue makers. Screening for different methylation regions (DMR) among tissues, developing a universally adapted DNA methylation-based tissue ID system may be a solution to the present problems in forensic tissue identification.
引文
[1] Khaldi N, Miras A, Botti K, Benali L, Gromb S. Evaluation of three rapid detection methods for the forensic identification of seminal ?uid in rape cases[J]. J Forensic Sci, 2004, 49(4):749–753.
    [2] Stowell L I, Sharman L E, Hamel K, et al. An enzyme linked immunosorbent assay (ELISA) for prostate specific antigen[J]. Forensic Sci Int, 1991, 50(1):125–138.
    [3] Itoh Y, Matsuzawa S. Detection of human hemoglobin A (HbA) and human hemoglobin F (HbF) in biological stains by microtiter latex agglutination-inhibition test[J]. Forensic Sci Int, 1990, 47(1):79–89.
    [4] Caron H, van Schaik B, van der Mee M, et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains[J]. Science, 2001, 291(5507):1289–1292.
    [5] Ferri G, Bini C, Ceccardi S, et al. Successful identification of two years old menstrual bloodstain by using MMP-11 shorter amplicons[J]. J Forensic Sci, 2004, 49(6):1387
    [6] Karlsson H, Guthenberg C, von Dobeln U, et al. Extraction of RNA from dried blood on filter papers after longterm storage[J]. Clin Chem, 2003, 49(6 Pt 1):979–981.
    [7] Anderson S, Howard B, Hobbs G R, et al. A method for determining the age of a bloodstain[J]. Forensic Sci Int, 2005, 148(1):37–45.
    [8] Bauer M, RNA in forensic science[J]. Forensic Sci Int, 2007, 1(1):69–74.
    [9] Brewer G. Messenger RNA decay during aging and development[J]. Age Res Rev, 2002, 4 (1):607–625
    [10] Ross J. Control of messenger RNA stability in higher eukaryotes[J]. Trends Genet, 1996, 24(5):171–175
    [11] Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes[J]. Crit Rev Biochem Mol Biol, 2004, 39(4):197–216.
    [12] Bauer M, Patzelt D. Evaluation of mRNA markers for the identification of menstrual blood[J]. J Forensic Sci, 2002, 47(6):1278–1282.
    [13] Juusola J, Ballantyne J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification[J]. Forensic Sci Int, 2003, 135(2):85–96.
    [14] Nussbaumer C, Gharehbaghi-Schnell G, Korschineck I. Messenger RNA profiling: a novel method for body fluid identification by Real-Time PCR[J]. Forensic Sci Int, 2006, 157(2-3):181–186.
    [15] Foot C H, Wiener K. Phadebas amylase test kits[J]. Clin Chem, 1979, 25(5):818.
    [16] Quarino L, Dang Q, Hartmann J, et al. An ELISA method for the identification of salivary amylase[J]. J Forensic Sci, 2005, 50(4):873–876.
    [17] Keating S M, Higgs D F. The detection of amylase on swabs from sexual assault cases[J]. J Forensic Sci Soc, 1994, 34(2):89–93.
    [18] Kramer J A, Krawetz S A. RNA in spermatozoa: implications for the alternative haploid genome[J]. Mol Hum Reprod, 1997, 3(6):473–478.
    [19] Amin K M, Scarpa A L, Winkelmann J C, et al. The exon–intron organization of the human erythroid beta-spectrin gene[J]. Genomics, 1993, 18(1):118–125.
    [20] Chu Z L, Wickrema A, Krantz S B, Erythroid-specific processing of human beta spectrin I premRNA[J]. Blood, 1994, 84(6):1992–1999.
    [21] Gubin A N, Miller J L. Human erythroid porphobilinogen deaminase exists in 2 splice variants[J]. Blood, 2001, 97(3):815–817.
    [22] Bauer M, Patzelt D. Protamine mRNA as molecular marker for spermatozoa in semen stains[J]. Int J Legal Med, 2003, 117(3):175–179.
    [23] Steger K, Pauls K, Klonisch T, et al. Expression of protamine-1 and -2 mRNA during human spermiogenesis[J]. Mol Hum Reprod, 2000, 6 (3):219–225.
    [24] Valore E V, Park C H, Quayle A J, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues[J]. J Clin Invest, 1998, 101(8):1633–1642.
    [25] Gipson I K, Spurr-Michaud S, Moccia R, et al. MUC4 and MUC5B transcripts are the prevalent mucin messenger ribonucleic acids of the human endocervix[J]. Biol Reprod, 1999, 60(1):58–64.
    [26] Sabatini L M, He Y Z, Azen E A. Structure and sequence determination of the gene encoding human salivary statherin[J]. Gene, 1990, 89(2):245–251.
    [27] Sabatini L M, Ota T, Azen E A, et al. Nucleotide sequence analysis of the human salivary protein genes HIS1 and HIS2, and evolution of the STATH/HIS gene family[J]. Mol Biol, 1993, 10(3):497–511.
    [28] Gipson I K. Mucins of the human endocervix[J]. Front Biosci, 2001, 6:D1245–D1255.
    [29] Chen J T, Hortin G L. Interferences with semen detection by an immunoassay for a seminal vesicle-specific antigen[J]. J Forensic Sci, 2000, 45(1):234–235.
    [30] Sakurada K, Ikegaya H, Fukushima H, et al. Evaluation of mRNA-based approach for identification of saliva and semen[J]. Legal Medicine, 2009, 11(3):125–128.
    [31] Zubakov D, Hanekamp E, Kokshoorn M, et al. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples[J]. Int J Legal, 2008, 122(2):135–142.
    [32] Juusola J, Ballantyne J. Multiplex mRNA profiling for the identification of body fluids[J]. Forensic Sci Int, 2005, 152(1):1–12.
    [33] Bauer M, Patzelt D. Identification of menstrual blood by real time RT-PCR: technical improvements and the practical value of negative test results[J]. Forensic Sci, Int, 2008, 174(1):54–58.
    [34] Juusola J, Ballantyne J. mRNA profiling for body fluid identification by multiplex quantitative RT-PCR[J]. J Forensic Sci, 2007, 52(6):1252–1262.
    [35] Haas C, Klesser B, Kratzer A, et al. mRNA profiling for body fluid identification[J]. Forensic Sci Int Gene Suppl, 2008, 1(1):37–38.
    [36] Patel G, Peel C. Identifying the origin of cells[J]. Forensic Sci Int Gene Suppl, 2008, 1(1): 574–576.
    [37] Bird A P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern[J]. J Mol Biol, 1978,118(1):49–60.
    [38] Gruenbaum Y, Stein R, Cedar H, Razin A. Methylation of CpG sequences in eukaryotic DNA[J]. FEBS Lett, 1981, 124(1):67–71.
    [39] Razin A, Webb C, Szyf M, Yisraeli J, et al. Variations in DNA methylation during mouse cell differentiation in vivo and in vitro[J]. Proc Natl Acad Sci U S A, 1984, 81(8):2275–2279.
    [40] Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes[J]. J Mol Biol, 1987,196(2):261–282.
    [41] Larsen F, Gundersen G, Lopez R, et al. CpG islands as gene markers in the human genome[J]. Genomics, 1992, 13(4):1095–1107.
    [42] Suzuki Y, Tsunoda T, Sese J, et al. Identification and characterization of the potential promoter regions of 1031 kinds of human genes[J]. Genome Res, 2001, 11(5):677–684.
    [43] Grunau C, Hindermann W, Rosenthal A. Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes[J]. Hum Mol Genet, 2000, 9(18):2651–2663.
    [44] Robertson K D, Jones P A. DNA methylation:past, present and future directions[J]. Carcinogenesis. 2000, 21(3):461–467.
    [45] Jones P A, Takai D. The role of DNA methylation in mammalian epigenetics[J]. Science, 2001, 293(5532):1068–1070.
    [46] Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures within the human brain[J]. Am J Hum Genet, 2007, 81(6):1304–1315.
    [47] Lee Y, Messing A, Su M, Brenner M. GFAP promoter elements required for region-specific and astrocyte-specific expression[J]. Glia, 2008, 56(5):481–493.
    [48] Porchet R, Pr obst A, Bouras C, et al . Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease[J].Proteomics,2003,3(8):1476–1485.
    [49] Bonni A, Sun Y, Nadal-Vicens M, et al. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway[J]. Science, 1997, 278(5337):477–483.
    [50] Uemura A, Takizawa T, Ochiai W, et al. Cardiotrophin-like cytokine induces astrocyte differentiation of fetal neuroepithelial cells via activation of STAT3[J]. Cytokine, 2002, 18(1):1–7.
    [51] Ochiai W, Yanagisawa M, Takizawa T, et al. Astrocyte differentiation of fetal neuroepithelial cells involving cardiotrophin-1-induced activation of STAT3[J]. Cytokine, 2001, 14(5):264–271.
    [52] Takizawa T, Yanagisawa M, Ochiai W, et al. Directly linked soluble IL-6 receptor-IL-6 fusion protein induces astrocyte di?erentiation from neuroepithelial cells via activation of STAT3[J]. Cytokine, 2001, 13(5):272–279.
    [53] Yanagisawa M, Nakashima K, Taga T. STAT3-mediated astrocyte differentiation from mouse fetal neuroepithelial cells by mouse oncostatin M[J]. Neurosci Lett, 1999, 269(3):169–72.
    [54] Nakashima K, Wiese S, Yanagisawa M, et al. Developmental requirement of gp130 signaling in neuronal survival and astrocyte di?erentiation[J]. J Neurosci, 1999, 19(13):5429–5434.
    [55] Oakes C C, La Salle S, Smiraglia D J, et al. A unique configuration of genome-wide DNA methylation patterns in the testis[J]. Proc Natl Acad Sci U. S. A, 2007, 104(1):228–233.
    [56] Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22[J]. Nat Genet, 2006, 38(12):1378–1385.
    [57] Geyer C B, Kiefer C M, Yang T P, et al. Ontogeny of a demethylation domain and its relationship to activation of tissue-specific transcription[J]. Biol Reprod, 2004, 71(3):837–844.
    [58] BellvéA R, Cavicchia J C, Millette C F, et al. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization[J]. J Cell Biol, 1977, 74(1):68–85.
    [59] Shiota K, Kogo Y, Ohgane J, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice[J]. Genes Cells, 2002, 7(9):961–969.
    [60] Song F, Smith J F, Kimura M T, et al., Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression[J]. Proc Natl Acad Sci USA, 2005, 102(9):3336–3341.
    [61] Noce T, Okamoto-Ito S, Tsunekawa N. Vasa homolog genes in mammalian germcell development[J], Cell Struct Funct, 2001, 26 (3):131–136.
    [62] Castrillon D H, Quade B J, Wang T Y, et al. The human VASA gene is specifically expressed in the germ cell lineage[J], Proc Natl Acad Sci USA, 2000, 97(17):9585–9590.
    [63] Kitamura E, Igarashi J, Morohashi A, et al. Analysis of tissue-specific differentially methylated regions (TDMs) in humans[J]. Genomics, 2007, 89(3):326–337.
    [64] Zeeman A M, Stoop H, Boter M, et al. VASA is a specific marker for both normal and malignant human germ cells[J]. Lab Invest, 2002, 82(2):159–166.
    [65] Bauer M, Patzelt D. Identification of menstrual blood by real time RT-PCR: technical improvements and the practical value of negative test results[J]. Forensic Sci, Int, 2008, 174(1):54–58.
    [66] Su A I, Cooke M P, Ching K A, et al. Large-scale analysis of the human and mouse transcriptomes[J]. Proc Natl Acad Sci USA, 2002, 99(7):4465–4470.
    [67] Tanaka S S, Toyooka Y, Akasu R, et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells[J]. Genes Dev, 2000, 14(7), 841–853.
    [68] Fraga M F, Ballestar E, Paz M F, et al. Epigenetic differences arise during the lifetime of monozygotic twins[J]. Proc Natl Acad Sci U S A, 2005, 102(30):10604–10609.
    [69] Brenner M, Kisseberth W C, Su Y, et al. GFAP promoter directs astrocyte-specific expression in transgenic mice[J]. J Neurosci, 1994, 14(3):1030–1037.
    [70] Gout S, Valdivia H, Dowell D M, et al. Detection of neuronal tissue in meat using tissue specific DNA modifications[J]. Biotechnol Agron Soc Environ, 2004, 8(4):229–234.
    [71] Takizawa T, Nakashima K, Namihira M. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain[J]. Dev Cell, 2001, 1(6):749–758.
    [72] Ohno M, Kohyama J, Namihira M, et al. Neuropoietin induces neuroepithelial cells to differentiate into astrocytes via activation of STAT3[J]. Cytokine, 2006, 36(1-2):17–22.
    [73] Xiong Z, Laird P W. COBRA: a sensitive and quantitative DNA methylation assay[J]. Nucleic Acids Res, 1997, 25(12):2532–2534.
    [74] Li L C, Dahiya R. MethPrimer:designing primers for methylation PCRs[J]. Bioinformatics, 2002, 18(11):1427–1431.
    [75] Laird P W. The power and the promise of DNA methylation markers[J]. Nat Rev Cancer, 2003, 3(4):253–266.
    [76] WHO. Laboratory manual for the examination of human semen and sperm-cervical mucus interaction[M]. The Fourth edition. Cambridge University Press, 1999, 15–37.
    [77] UCSC Genome Browser, http://genome.ucsc.edu/cgi-bin/hgGateway.
    [78] Fielder A, Rehdorf J, Hilbers F, et al. Detection of semen (human and boar) and saliva on fabrics by a very high powered UV-/VIS-light source[J]. Open Forensic Sci J, 2008, 1(1): 12–15.
    [79] Hooft P J, van de Voorde H P, Bayesian evaluation of the modified zinc test and the acid phosphatase spot test for forensic semen investigation[J]. Am J Forens Med Pathol, 1997, 18(1):45–49.
    [80] Healy D A, Hayes C J, Leonard P, et al. Biosensor developments:application to prostate-specific antigen detection[J]. Trends Biotechnol, 2007, 25(3):125–131.
    [81] Hochmeister M, Rudin O, Borer UV, et al. Evaluation of prostate-specific antigen (PSA) membrane test assays for the forensic identification of seminal fluid[J]. J Forensic Sci, 1999, 44 (5):1057–1060.
    [82] Alvarez M, Juusola J, Ballantyne J. An mRNA and DNA co-isolation method for forensic casework samples[J]. Anal. Biochem,2004, 335(2):289–298.
    [83] Fang R, Manohar C F, Shulse C. Real-time PCR assays for the detection of tissue and body fluid specific mRNAs[J]. Int Cong Ser, 2006, 1288(3):685– 687.
    [84] Haas C, Muheim C, Kratzer A, et al. mRNA profiling for the identification of sperm and seminal plasma[J]. Forensic Sci Int Gene Suppl, 2009, 2(2):534–535.
    [85] Hanson E K, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs[J]. Anal Biochem, 2009, 387(2):303–314.
    [86] Blenkiron C, Miska E A. miRNAs in cancer: approaches, aetiology, diagnostics and therapy[J]. Hum Mol Genet, 2007, 16(R1):R106-R113.
    [87] Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues[J]. BMC Genomics, 2007, 8(1):166.
    [88] Macleod N A, Matousek P. Emerging non-invasive Raman methods in process control and forensic applications[J]. Pharm Res, 2008, 25(10):2205–2215.
    [89] Virkler K, Lednev I K. Raman spectroscopic signature of semen and its potential application to forensic body ?uid identification[J]. Forensic Sci Int, 2009, 193(1):56–62.
    [90]杨滨,夏欣一.精子的表观遗传学研究进展[J].中华男科学杂志, 2007, 13(12):1125-1129. [J]. Int J Legal Med, 2003, 117(3):175–179.
    [91] Armstrong L, Lako M, Dean W, et al. Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer[J]. Stem Cell, 2006, 24(4):805–814.
    [92]赵贵森,杨庆恩.甲基化标记法医学应用探讨[J].法医学杂志, 2005, 21(1):61–63.
    [93] Lieb J D, Beck S, Bulyk M L, et al. Applying whole-genome studies of epigenetic regulation to study human disease[J]. Cytogenet Genome Res, 2006, 114(1):1–15.
    [94] Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases[J]. J Mol Biol, 1988;203(4):971–983.
    [95] Bird A P, Wolffe A P. Methylation-induced repression--belts, braces, and chromatin[J]. Cell, 1999, 99(5):451–454.
    [96] Shiota K. DNA methylation profiles of CpG islands for cellular differentiation and development in mammals[J]. Cytogenet Genome Res, 2004, 105(2–4):325–334.
    [97] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammaliandevelopment [J]. Science, 2001, 293(5532):1089–1093.
    [98] RideoutⅢW M, Eggan K, Jaenisch R. Nuclear cloning and epigeneticreprogramming of the genome[J]. Science, 2001, 293(5532):1093–1098.
    [99] Monk M. Variation in epigenetic inheritance[J]. Trends Genet, 1990, 6:110–114
    [100] Holliday R. DNA methylation in eukaryotes: 20 years on[M]. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1996, 5–27.
    [101] Yuasa Y. DNA methylation in cancer and ageing [J]. Mech Ageing Dev. 2002 Nov;123(12):1649–1654.
    [102] Singal R, Ginder G D. DNA methylation[J]. Blood, 1999, 93(12):4059–4070
    [103] Surani M A. Imprinting and the initiation of gene silencing in the germ line[J]. Cell, 1998, 93(3):309–312.
    [104] Reik W, Walter J. Imprinting mechanisms in mammals[J]. Curr Opin Genet Dev, 1998, 8(2):154–164.
    [105] Feil R. Genomic imprinting in mammals: an interplay between chromatin and DNA methylation[J]. Trends Genet, 1999, 15(11):431–435.
    [106] Khulan B, Thompson R F, Ye K, et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay[J]. Genome Res,2006,16(8):1046–1055.
    [107] Ordway J M, Bedell J A, Citek R W, et al. Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets [J]. Carcino genesis, 2006, 27(12):2409–2423.
    [108]托尔夫波.表观遗传学实验手册[M].上海:上海科学技术出版社, 2007, 220–233.
    [109] Okamoto A. Chemical approach toward efficient DNA methylation analysis[J]. Org Biomol Chem, 2009, 7(1):21–26.
    [110] Ogino M, Taya Y, Fujimoto K. Highly selective detection of 5-methylcytosine using photochemical ligation[J].Chem Commun Camb 2008, (45):5996–5998.
    [111] Shames D S, Minna J D, Gazdar AF. Methods for detecting DNA methylation in tumors: from bench to bedside[J]. Cancer Lett, 2007, 251(2):187–198.
    [112] Yegnasubramanian S, Lin X, Haffner M C, et al. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation[J]. Nucleic Acids Res, 2006, 34(3):e19.
    [113] Shiraishi M, Sekiguchi A, Oates A J, et al. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation[J]. Ana Biochem, 2004, 329(1):1–10.
    [114] Gonzalgo M L, Jones P A. Rapid quantitation of methylation differences atspecific sites using methylation-sensitive single nucleotide primer extension(Ms-SNuPE)[J].Nucleic Acids Res, 1997, 25(12):2529–2531.
    [115] Malabendu J, Arundhati J, Utpal P, et al. A Simplified Method for Isolating Highly Purified Neurons, Oligodendrocytes, Astrocytes, and Microglia from the Same Human Fetal Brain Tissue[J]. Neurochem Res, 2007, 32(12):2015–2022.
    [116] Makoto O, Jun K, Masakazu N, et al. Neuropoietin induces neuroepithelial cells to differentiate into astrocytes via activation of STAT3[J]. Cytokine, 2006, 36(1-2):17-22
    [117] Barresi V, Condorelli D F, Giuffrida Stella A M. GFAP gene methylation in different neural cell types from rat brain[J]. Int J Dev Neurosci, 1999, 17(8):821–828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700