离散时间切换系统控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在控制工程中,存在着具有模式切换特性的系统,因此,切换系统的控制问题应运而生,其研究具有重要的理论意义和工程应用价值。
     本文针对一类离散模式切换由外部离散扰动输入事件触发,且连续动态系统用离散时间差分方程描述的切换系统展开讨论,分别对其状态反馈和输出反馈控制问题进行了深入研究。在控制器的设计过程当中,考虑了影响系统动态的参数不确定性、外部干扰、非线性以及多时域约束和性能要求等因素,并将所提出的理论方法应用到汽车发动机怠速控制问题中,探讨了本文提出的理论方法在实际问题中的有效性。
     在系统受到状态和控制量约束的情况下,研究了线性切换系统的状态反馈镇定问题。基于正定不变性的概念,提出了一种状态反馈控制器设计方法。主要思想是将状态约束集设计成为闭环系统的一个受控不变集合,并将其设计在控制量的线性未饱和区域中。在上述给出的镇定控制器当中,选取出使得闭环系统具有较快收敛速度的控制器具有重要意义。通过构造与闭环系统收敛速度对应的一个等价条件,将最优镇定控制器的选取问题转化为受约束的优化问题,易于实现。本章设计的控制器在满足约束的同时,能够保证闭环系统的稳定性,且使得闭环系统具有较快的收敛速度。
     实际系统往往受到不确定性的影响,如不考虑这些因素,将难以实现期望的控制目标。针对具有参数不确定性或外部连续干扰情况下的线性切换系统,分别研究了状态反馈镇定问题。针对具有参数不确定性的情况,建立了系统鲁棒稳定性与存在鲁棒受控不变集合的关系,并将鲁棒受控不变集合的判定转化为可通过有限步计算实现的检测问题。进而,基于扩展的正定不变方法,给出了判定某一能够实现镇定名义系统的状态反馈控制器是否具有鲁棒性的检测方法,获得鲁棒镇定控制器。针对具有外部连续干扰的情况,为了保证受扰系统的ISS (Input-to-State Stability)稳定性,引入了受控D不变性的概念。采用类似的研究思路,给出了一种满足系统约束且使得闭环系统ISS稳定的状态反馈控制器设计方法。本章提出的控制器形式简单,可以通过在有限个点处的验证或对有限个不等式的求解而获得。
     系统的状态并不是都可测量的,根据系统的测量输出,设计输出反馈控制器保证闭环系统的稳定性是一个重要的控制问题。针对线性切换系统,考虑到最小驻留时间特性,本章提出了保证稳定性的一种新的条件,即存在δm-受控不变集。在考虑椭球体描述集合情况下,给出了这一集合易于求解的判定条件。以此为基础,当线性切换系统的连续状态不可测量时,分别提出了基于连续状态观测器的输出反馈和具有一般形式的输出反馈控制器设计方法。本章提出的控制器设计方法均可以通过LMI (Linear Matrix Inequality)的可行性问题而给出,易于计算获得。
     在实际系统中,非线性动态广泛存在,考虑系统的非线性动态更具有一般性。针对一类具有Lipschitz-like非线性的切换系统,分别研究了全状态反馈控制器、连续状态观测器及基于连续状态观测器的输出反馈控制器设计问题。主要思想是构造闭环系统的不同形式的混杂Lyapunov函数,使得其沿着闭环系统的执行是不增的以保证稳定性。在LMI理论框架下,将控制器和观测器的设计转化为LMI的可行性问题。本章给出的控制器及观测器设计方法不依赖于具体的非线性动态形式,只与其Lipschitz-like常值矩阵有关,易于求解。
     针对具有自环模式跃迁及受控和仿射项重置函数的约束切换系统,在受到参数不确定性及外部连续扰动影响下,研究了系统输出的l∞性能问题,提出了保证系统具有最小l∞输出性能的控制器设计方法。主要思想是将求取系统的输出性能问题转化为系统状态的安全性控制问题,通过设计保证安全性的最大安全集合及其控制律,并结合二分法,获得最小的l∞输出性能。同时,将本章的理论方法应用于汽车发动机怠速控制器设计中。针对四缸四冲程火花塞点火直列式发动机,在考虑外部负载力矩及大气温度变化的影响下,建立了发动机怠速工况下的不确定切换模型,并将发动机怠速要求转化为本章切换系统的l∞输出性能问题,给出了发动机怠速控制器的设计方法。通过在不同情况下的仿真表明,设计出的怠速控制器使得发动机怠速具有良好的控制性能。
In control engineering, there exist control systems which often have the character-istic of mode transitions, therefore, the control problems of switching systems are takeninto consideration, its research has both theoretical significance and engineering value.
     In this thesis, a class of switching systems is discussed, whose discrete mode tran-sitions are caused by discrete disturbance events and the continuous dynamical systemis described by discrete-time difference equation, the state-feedback control and output-feedback control problems are investigated deeply. During the controller designs, thefactors which affect the dynamics of switching systems are considered, such as the pa-rameter uncertainty、disturbances、nonlinear dynamics、time-domain satisfaction andthe required performances. Accordingly, the feasibility of applying the proposed methodsto idle speed control problem (ISCP) is discussed.
     In the presence of state and control input bounds, the state-feedback stabilizing prob-lem of linear switching systems is researched. Based on the concept of positive invariance,a state-feedback controller design methodology is proposed. The basic idea of this methodis to design the state constraint set as a controlled invariant one for closed-loop systems,and guarantee the state constraint set contained in a polyhedral domain of linear behaviorwhere the control input does not saturate. Among the stabilizing controllers above, it isof great importance to select the controller which can guarantee the closed-loop switch-ing systems have the optimal convergence rate. An equivalent condition which impliesthe closed-loop systems have the optimal convergence rate is proposed, then the selectionof optimal stabilizing controller is converted to an optimization problem, which is easyto implement. The proposed controller design method in this chapter can guarantee thestability of systems, and the closed-loop switching systems have the optimal convergencerate, also the constraints on state and control input are satisfied.
     In practice, the control systems always suffer uncertainties, if these influences are nottaken into account, the expected control objectives cannot be achieved. For linear switch-ing systems with parameter uncertainty or continuous disturbances, the state-feedbackstabilizing problems are discussed. In the case of parameter uncertainty, the relation be-tween robust stability of systems and the existence of robust controlled invariant set is given, and the condition which can test the robust controlled invariance is converted toa problem that can be judged in finite-step calculations. Then, based on the extendedpositive invariant approach, a condition to test the robustness of a state feedback con-troller which can stabilize the nominal linear switching systems is proposed, and obtainthe robust stabilizing controller. In the presence of continuous disturbances, in order toguarantee the ISS (Input-to-State Stability) of systems, the concept of controlled D invari-ance is introduced. Taking the similar idea, a procedure which can stabilize the disturbedlinear switching systems and also satisfy the state and control input constraints, is given.The form of controller in this chapter is simple, and can be obtained from the judgment ata finite number of points or solving of a finite number of inequalities.
     Usually, the state of systems cannot be directly measured, then it is an importantcontrol problem to design output feedback controller by using the measured output ofsystems to guarantee the stability of closed-loop systems. For linear switching systems,taking into account the concept of the minimum dwell time, a new condition of stabilityis presented, which is the existence of δm-controlled invariant set. In the case of invariantellipsoids, existence conditions to obtain such a set are given. Then, under the assumptionthat the continuous state is unavailable for feedback, this result is used to find the observer-based output feedback controller and ordinary output feedback controller design methods.The proposed approaches in this chapter can be obtained from the feasible problem ofLMI, and easy to calculate.
     In practice, the nonlinear dynamics is widespread existence, it is practically impor-tant to consider the effects of nonlinear terms in the dynamical system. For switching sys-tems with Lipschitz-like nonlinear term, full-state feedback controller design、continuousstate observer design and observer-based output feedback controller design problems areconsidered. The basic idea of the proposed approaches is to construct the different types ofHybrid Lyapunov function which are not increasing to guarantee the stability of closed-loop systems. In the framework of LMI, all of those methods are given in the form offeasible problem of LMI. The results obtained in this chapter are only dependent on theLipschitz-like constant matrices without regard to the specific nonlinear forms in switch-ing systems, easy to implement.
     For the constrained switching systems with in-loop transitions and controlled affine-resets, in the presence of parameter variations and additive disturbances, the control prob- lem of determining the non-conservative bounds on the l∞performance of the controlledoutput is considered, and the controller design methodology which can obtain the minimall∞performance is proposed. The basic idea is to translate the required level of perfor-mance into the safety problem of systems, then the algorithm for maximal safe set andcontroller design methodology are given, together with the bisection method, the minimall∞performance can be obtained. Meanwhile, this method is applied to controller designof ISCP. For the4-cylinder4-stroke spark ignition in-line engine in idle mode, taking intoaccount the effect of disturbance torque and air temperature, a reduced switching model ofISCP is given, also, the control problem of ISCP is considered as the minimal l∞perfor-mance problem of switching systems in this chapter, then a controller design technologyof ISCP is presented. Different simulation results show that the controller of ISCP has agood control performances.
引文
1A. Gollu, P. Varaiya. Hybrid Dynamic Systems[C]//Proceedings of the28th IEEEConference on Decision and Control. Florida USA,1989:2708–2712.
    2M. S. Branicky. Multiple-lyapunov Functions and Other Analysis Tools forSwitched and Hybrid Systems[J]. IEEE Transactions on Automatic Control,1998,43(4):475–482.3郅跃茹.混合动态系统中几个关键技术的研究[D]浙江:浙江大学,2004:12–49.4吴志虎.汽车怠速和巡航控制系统的鲁棒控制器设计与仿真[D]哈尔滨:哈尔滨工业大学,2009:3–15.
    5M. D. D. Benedetto, G. Pola. Inventory of Error Evolution Control Problems inAir Traffic Management[M]. Technical Report WP7, Deliverable D7.1, Hybridge,2002.
    6R. Ghosh, A. Tiwari, C. Tomlin. Automated Symbolic Reachability Analysis withApplication to Delta-notch Signaling Automata[J]. Hybrid Systems: Computationand Control,2003,2623:141–155.7段广仁.线性系统理论[M].哈尔滨:哈尔滨工业大学出版社,2004.
    8F. M. Callier, C. A. Desoer. Linear System Theory[M]. New York:Springer,1991.
    9A. Arnold. Finite Transition Systems: Semantics of Communicating Systems[M].Paris: Masson,1994:5–46.
    10C. G. Cassandras, S. Lafortune. Introduction to Discrete Event Systems[M]. NewYork:Springer,2008:26–43.
    11J. E. Hopcroft, R. Motwani, J. D. Ulmann. Introduction to Automata Theory, Lan-guages and Computation[M]. Boston:Addison-Wesley,2006:37–83.
    12H. R. Lewis, C. H. Papadimitriou. Elements of the Theory of Computation[M].New Jersey:Prentice-Hall,1998:55–110.13程代展,郭宇骞.切换系统进展[J].控制理论与应用,2005,22(6):954–960.
    14H. Lin, P. J. Antsaklis. Stability and Stabilizability of Switched Linear Systems:A Short Survey of Recent Results[C]//Proceedings of the2005IEEE InternationalSymposium on Intelligent Control. Limassol Cyprus,2005:24–29.
    15H. Lin, P. J. Antsaklis. Stability and Stabilizability of Switched Linear Systems:A Survey of Recent Results[J]. IEEE Transactions on Automatic Control,2009,54(2):308–322.
    16Z. Sun, S. S. Ge. Analysis and Synthesis of Switched Linear Control Systems[J].Automatica,2005,41(2):181–195.
    17R. Ma, J. Zhao, G. M. Dimirovski, et al. Backstepping H∞Control for SwitchedNonlinear Systems under Arbitrary Switchings[C]//Proceedings of the2010Amer-ican Control Conference. Baltimore USA,2010:1713–1718.
    18Y. Yang, C. Xiang, T. H. Lee. Feedback Stabilization for Planar Switched Lin-ear Systems with Two Subsystems under Arbitrary Switching[C]//Proceedings ofthe20119th IEEE International Conference on Control and Automation. SantiagoChile,2011:738–743.
    19L. Fainshil, M. Margaliot, P. Chigansky. On the Stability of Positive LinearSwitched Systems under Arbitrary Switching Laws[J]. IEEE Transactions on Au-tomatic Control,2009,54(4):897–899.
    20Z. Sun. Stabilizing Switching Design for Switched Linear Systems: A State-feedback Path-wise Switching Approach[J]. Automatica,2009,45(7):1708–1714.
    21H. Lin, G. Zhai, P. J. Antsaklis. Optimal Persistent Disturbance Attenuation Controlfor Linear Hybrid Systems[J]. Nonlinear Analysis Theory, Methods and Applica-tions,2006,65(6):1231–1250.
    22丁大伟.线性切换系统的若干问题研究[D]沈阳:东北大学,2009:13–97.
    23邹洪波.切换线性系统稳定性若干问题研究[D]浙江:浙江大学,2007:35–68.
    24李莉莉.几类非线性切换系统的H∞控制问题研究[D]沈阳:东北大学,2009:17–106.
    25王敏.级联非线性切换系统的镇定、跟踪与H∞控制[D]沈阳:东北大学,2009:17–116.
    26胡柯.切换系统稳定性及时滞相关问题研究[D]上海:上海交通大学,2008:31–96.
    27袁帅.时滞切换系统H∞故障估计问题研究[D]山东:山东大学,2011:13–93.
    28闻继伟.随机切换系统的模型预测控制研究[D]江苏:江南大学,2011:13–128.
    29何召兰.几类切换系统的滑模控制[D]哈尔滨:哈尔滨工业大学,2008:19–96.
    30龙飞.切换动态系统的H∞控制研究[D]江苏:东南大学,2006:23–99.
    31A. Balluchi, L. Benvenuti, M. D. D. Benedetto, et al. Automotive Engine Controland Hybrid Systems: Challenges and Opportunities[J]. Proceedings of the IEEE,Special Issue on Hybrid Systems,2000,88(7):888–912.
    32G. Pola. Switching Systems: Analysis and Control[D]L′Aquila:University ofL′Aquila,2004:14–27.
    33J. Lygeros, K. H. Johansson, S. N. Simic′, et al. Dynamical Property of HybridAutomata[J]. IEEE Transactions on Automatic Control,2003,48(1):2–17.
    34C. J. Tomlin, J. Lygeros, S. Sastry. A Game Theoretic Approach to ControllerDesign for Hybrid Systems[J]. Proceedings of the IEEE, Special Issue on HybridSystems,2000,88(7):949–970.
    35L. Berardi, E. D. Santis, M. D. D. Benedetto. Control of Switching Systems un-der State and Input Constraints[C]//Proceedings of the38th IEEE Conference onDecision and Control. Arizona USA,1999:7–10.
    36J. K. Tugnait. Detection and Estimation for Abruptly Changing Systems[J]. Auto-matica,1982,18(3):607–615.
    37J. Hespanha, A. S. Morse. Stability of Switched Systems with Average Dwell-time[C]//Proceedings of the38th IEEE Conference on Decision and Control. Ari-zona USA,1999:2655–2660.
    38E. D. Sontag. Nonlinear Regulation: The Piecewise Affine Approach[J]. IEEETransactions on Automatic Control,1981,26(2):346–357.39高亚辉.基于LMI的分段仿射离散系统控制方法研究[D]哈尔滨:哈尔滨工业大学,2009:2–13.
    40A. Bemporad, M. Morari. Control of Systems Integrating Logic, Dynamics andConstraints[J]. Automatica,1999,35(3):407–427.
    41R. R. Negenborn, M. Houwing, B. D. Schutter, et al. Model PredictiveControl for Residential Energy Resources Using a Mixed Logical DynamicModel[C]//Proceedings of the2009IEEE International Conference on Network-ing, Sensing and Control. Okayama Japan,2009:702–707.
    42M. A. Wicks, P. Peleties, R. A. Decarlo. Switched Controller Synthesis for theQuadratic Stabilization of a Pair of Unstable Linear Systems[J]. European Journalof Control,1998,4(2):140–147.
    43J. Daafouz, P. Riedinger, C. Iung. Static Output Feedback Control for SwitchedSystems[C]//Proceedings of the40th IEEE Conference on Decision and Control.Florida USA,2001:2093–2094.
    44S. Sastry. Nonlinear Systems: Analysis, Stability and Control[M]. NewYork:Springer,1999:10–11.
    45A. Isidori. Nonlinear Control Systems[M]. New York:Springer,1995:1–5.
    46A. S. Morse. Supervisory Control of Families of Linear Set-point Controllers-part1: Exact Matching[J]. IEEE Transactions on Automatic Control,1996,41(10):1413–1431.
    47C. M. Ozveren, A. S. Willsky. Observability of Discrete Event Dynamic Systems[J].IEEE Transactions on Automatic Control,1990,35(7):797–806.
    48J. Lygeros, C. Tomlin, S. Sastry. Controllers for Reachability Specifications forHybrid Systems[J]. Automatica,1999,35(3):349–370.
    49C. Tomlin, J. Lygeros, S. Sastry. Synthesizing Controllers for Nonlinear HybridSystems[C]//Proceedings of the19981st International Workshop on Hybrid Sys-tems: Computation and Control. Berkeley USA,1998:360–373.
    50L. Berardi, E. D. Santis, M. D. D. Benedetto. A Structural Approach to the Controlof Switching Systems with an Application to Automotive Engines[C]//Proceedingsof the38th Conference on Decision and Control. Arizona USA,1999:3526–3531.
    51L. Berardi, E. D. Santis, M. D. D. Benedetto. Invariant Sets and Control Synthesisfor Switching Systems with Safety Specifications[C]//Proceedings of the Third In-ternational Workshop on Hybrid Systems: Computation and Control. London UK,2000:59–72.
    52L. Berardi, E. D. Santis, M. D. D. Benedetto, et al. Controlled Safe Sets for Contin-uous Time Linear Systems[C]//Proceedings of the European Control Conference.Porto Portugal,2001:803–808.
    53E. D. Santis, M. D. D. Benedetto, G. Pola. Inner Approximations of Domains ofAttraction for Constrained Continuous Time Linear System[C]//Proceedings of theAmerican Control Conference. Anchorage USA,2002:1216–1221.
    54L. Berardi, E. D. Santis, M. D. D. Benedetto, et al. Approximations of MaximalControlled Safe Sets for Hybrid Systems[J]. Nonlinear and Hybrid Systems inAutomotive Control,2003,6(1):335–350.
    55E. D. Santis, M. D. D. Benedetto, G. Pola. Digital Control of Continuous-timeSwitching Systems with Safety Constraints[C]//Proceedings of the43rd IEEE Con-ference on Decision and Control. Atlantis Bahamas,2004:1878–1883.
    56E. D. Santis, M. D. D. Benedetto, L. Berardi. Computation of Maximal Safe Sets forSwitching Systems[J]. IEEE Transactions on Automatic Control,2004,49(2):184–195.
    57A. Balluchi, L. Benvenuti, L. Berardi, et al. Engine Idle Speed Control via Maxi-mal Safe Set Computation in the Crank-angle Domain[C]//Proceedings of the2002IEEE International Symposium on Industrial Electronics. L′Aquila Italy,2002:618–622.
    58A. Balluchi, L. Benvenuti, M. D. D. Benedetto, et al. Idle Speed Control Design andVerification for an Automotive Engine[C]//Proceedings of the International Work-shop on Modeling, Emissions and Control in Automotive Engine. Salerno Italy,2001.
    59E. D. Santis, M. D. D. Benedetto, G. Pola. Digital Idle Speed Control of AutomotiveEngines: A Safety Problem for Hybrid Systems[J]. Nonlinear Analysis,2006,65(9):1705–1724.
    60O. Stursberg, B. H. Krogh. Efficient Representation and Computation of ReachableSets for Hybrid Systems[J]. Hybrid Systems: Computation and Control,2003,2623:482–497.
    61N. Lynch, B. H. Krogh. Third International Workshop Hscc2000, Hybrid Systems:Computation and Control[M]. New York:Springer,2000:20–28.
    62O. Maler, A. Pnueli. Sixth International Workshop Hscc2003, Hybrid Systems:Computation and Control[M]. New York:Springer,2003:4–35.
    63M. Kvasnica, P. Grieder, M. Baotic′, et al. Multi-parametric Toolbox[J]. HybridSystems: Computation and Control,2004,2993:448–462.
    64E. Asarin, O. Bournez, T. Dang, et al. Approximate Reachability Analysis of Piece-wise Linear Dynamical Systems[J]. Hybrid Systems: Computation and Control,2000,1790:21–31.
    65A. Kurzhanski, P. Varaiya. Ellipsoidal Techniques for Reachability Analysis[J].Hybrid Systems: Computation and Control,2000,1790:202–214.
    66E. D. Santis, M. D. D. Benedetto, G. Pola. Can Linear Stabilizability AnalysisBe Generalized to Switching Systems?[C]//Proceedings of the16th InternationalSymposium of Mathematical Theory of Networks and Systems. Leuven Belgium,2004.67郑大钟.线性系统理论[M].北京:清华大学出版社,1990.
    68R. E. Kalman. Mathematical Description of Linear Dynamic System[J]. SIAMJournal on Control, ser. A,1963,1(2):152–192.
    69E. D. Santis, M. D. D. Benedetto, G. Pola. Stabilizability Based State Space Reduc-tions for Hybrid Systems[C]//Proceedings of the2nd IFAC Conference on Analysisand Design of Hybrid Systems. Alghero Italy,2006:112–117.
    70G. Pola, J. W. Polderman, M. D. D. Benedetto. Balancing Dwell Times for Switch-ing Linear Systems[C]//Proceedings of the16th International Symposium on Math-ematical Theory of Networks and Systems. Leuven, Belgium,2004.
    71E. D. Santis, M. D. D. Benedetto, G. Pola. Stabilizability of Affine SwitchingSystems: A Kalman-like Approach[C]//International Scientific and Technical En-cyclopedia. London UK,2006:263–276.
    72H. Ye, A. Michel, L. Hou. Stability Theory for Switched and Hybrid Systems[J].IEEE Transactions on Automatic Control,1998,43(4):461–474.
    73R. A. Decarlo, M. S. Branicky, S. Pettersson, et al. Perspectives and Results onthe Stability and Stabilizability of Hybrid Systems[J]. Proceedings of the IEEE,Special Issue on Hybrid Systems,2000,88(7):1069–1082.
    74M. Johansson, A. Rantzer. Computation of Piecewise Quadratic Lyapunov Func-tions for Hybrid Systems[J]. IEEE Transactions on Automatic Control,1998,43(4):555–559.
    75D. Liberzon, A. S. Morse. Basic Problems in Stability and Design of SwitchedSystems[J]. IEEE Control Systems Magazine,1999,19(5):59–70.
    76E. D. Santis, M. D. D. Benedetto, G. Pola. Stabilizability of Linear SwitchingSystems[J]. Nonlinear Analysis: Hybrid Systems,2008,2(3):750–764.
    77A. Benzaouia, C. Burgat. Regulator Problem for Linear Discrete-time Systems withNon-symmetrical Constrained Control[J]. International Journal of Control,1988,48(6):2441–2451.
    78A. Benzaouia, F. Mesquine. Regulator Problem for Uncertain Linear Discrete-time Systems with Constrained Control[J]. International Journal of Robust andNonlinear Control,1994,4(3):387–395.
    79A. Benzaouia. The Resolution of Equation XA+XBX=HX and the Pole Assign-ment Problem[J]. IEEE Transactions on Automatic Control,1994,39(10):2091–2095.
    80G. Bitsoris. On the Positive Invariance of Polyhedral Sets for Discrete-time Sys-tems[J]. Systems and Control Letters,1988,11(3):243–248.
    81F. Blanchini. Set Invariance in Control: A Survey[J]. Automatica,1999,35(11):1747–1768.
    82A. Benzaouia, E. D. Santis, P. Caravani, et al. Constrained Control of SwitchingSystems: A Positive Invariant Approach[J]. International Journal of Control,2007,80(9):1379–1387.
    83D. G. Luenberger. Observing the State of a Linear System[J]. IEEE Transactionson Military Electronics,1964,8(2):74–80.
    84D. G. Luenberger. An Introduction to Observers[J]. IEEE Transactions on Auto-matic Control,1971,16(6):596–602.
    85E. D. Santis, M. D. D. Benedetto, G. Pola. On Observability and Detectablilityof Continuous Time Linear Switching Systems[C]//Proceedings of the42nd IEEEConference on Decision and Control. Hawaii USA,2003:5777–5782.
    86R. Vidal, A. Chiuso, S. Soatto, et al. Observability of Linear Hybrid Systems[J].Hybrid Systems: Computation and Control,2003,2023:526–539.
    87A. Bemporad, G. F. Trecate, M. Morari. Observability and Controllability of Piece-wise Affine and Hybrid Systems[J]. IEEE Transactions on Automatic Control,2000,45(10):1864–1876.
    88E. D. Santis, M. D. D. Benedetto. Design of Luenberger-like Observers for De-tectable Switching Systems[C]//Proceedings of the2005IEEE International Sym-posium on Intelligent Control. Limassol Cyprus,2005:30–35.
    89A. Balluchi, L. Benvenuti, M. D. D. Benedetto, et al. Design of Observers forHybrid Systems[J]. Hybrid Systems: Computation and Control,2002,2289:59–80.
    90E. D. Santis, M. D. D. Benedetto, S. D. Gennaro, et al. Critical Observability ofa Class of Hybrid Systems and Application to Air Traffic Management[J]. HybridSystems: Computation and Control,2006,337:141–170.
    91M. D. D. Benedetto, S. D. Gennaro, A.D′Innocenzo. Critical Observability and Hy-brid Observers for Error Detection in Air Traffic Management[C]//Proceedings ofthe20th IEEE International Symposium on Intelligent Control and13th Mediter-ranean Conference on Control and Automation. Limassol Cyprus,2005:1309–1314.
    92A. R. Trevino, I. R. Rangel, E. L. Mellado. Observability of Discrete Event Sys-tems Modeled by Interpreted Petri Nets[J]. IEEE Transactions on Robotics andAutomation,2003,19(4):557–565.
    93P. J. Ramadge. Observability of Discrete Event Systems[C]//Proceedings of the25th Conference on Decision and Control. Athens Greece,1986:1108–1112.
    94E. D. Santis, M. D. D. Benedetto, G. Pola. Observability and Detectability of LinearSwitching Systems: A Structural Approach[J]. http://www.eeci-institute.eu/pdf/M2/DeS obs.pdf.
    95E. D. Santis, M. D. D. Benedetto, G. Pola. A Structural Approach to Detectabilityfor a Class of Hybrid Systems[J]. Automatica,2009,45(5):1202–1206.
    96E. D. Santis, M. D. D. Benedetto, G. Pola. Observability of Internal Variables inInterconnected Switching Systems[C]//Proceedings of the45th IEEE Conferenceon Decision and Control. CA USA,2006:4121–4126.
    97E. D. Santis, M. D. D. Benedetto, G. Pola. Observability of Discrete Time Lin-ear Switching Systems[C]//Proceedings of the1st IFAC Workshop on DependableControl of Discrete Systems. Cachan France,2007:259–264.
    98E. D. Santis, M. D. D. Benedetto. Observer Design for Discrete-time Linear Switch-ing Systems[C]//Proceedings of the3rd IFAC Symposium on Power System, Struc-ture and Control. Iguassu Falls Brazil,2007.
    99E. D. Santis. On Location Observability Notions for Switching Systems[J]. SystemsControl Letters,2011,60(10):807–814.
    100P. Caravani, E. D. Santis. Observer-based Stabilization of Linear Switching Sys-tems[J]. International Journal of Robust Nonlinear Control,2008,19(14):1541–1563.
    101P. Caravani, E. D. Santis. Output Stabilization of Switching Systems with LinearDiscrete-time Modes[C]//Proceedings of the46th IEEE Conference on Decisionand Control. LA USA,2007:1758–1763.
    102J. Bosche, O. Bachelier, D. Mehdi. Robust Pole Placement by Static Output Feed-back[C]//Proceedings of the43rd IEEE Conference on Decision and Control. At-lantis Bahamas,2004:869–874.
    103A. Varga. Robust and Minimum Norm Pole Assignment with Periodic State Feed-back[J]. IEEE Transactions on Automatic Control,2000,45(5):1017–1022.
    104S. E. Faiz, M. A. Rami, A. Benzaouia. Stabilization and Pole Placement with Re-spect to State Constraints: A Robust Design via LMI[C]//Proceedings of the42ndIEEE Conference on Decision and Control. Hawaii USA,2003:616–621.
    105D. Mehdi, A. Benzaouia. State Feedback Control of Linear Discrete-time Systemsunder Nonsymmetrical State and Control Constraints[J]. International Journal ofControl,1989,50(1):193–201.
    106A. Benzaouia, F. Tadeo, F. Mesquine. The Regulator Problem for Linear Systemswith Saturations on the Control and its Increments or Rate: An LMI Approach[J].IEEE Transactions on Circuits and Systems,2006,53(12):2681–2691.
    107F. Mesquine, F. Tadeo, A. Benzaouia. Regulator Problem for Linear Systemswith Constraints on the Control and its Increments or Rate[J]. Automatica,2004,40(8):1378–1395.
    108F. Mesquine, D. Mehdi. Pole Assignment in LMI Regions for Linear ConstrainedControl Systems[C]//Proceedings of the15th Mediterranean Conference on Controland Automation. Athens Greece,2007.
    109M. Vassilaki, J. C. Hennet, G. Bitsoris. Feedback Control of Linear Discrete-timeSystems under State and Control Constraints[J]. International Journal of Control,1988,47(6):1727–1735.
    110H. Chen. A Feasible Moving Horizon H∞Control Scheme for Constrained Uncer-tain Linear Systems[J]. IEEE Transactions on Automatic Control,2007,52(2):343–348.
    111B. Yordanov, C. Belta. Formal Analysis of Piecewise Affine Systems under Param-eter Uncertainty with Application to Gene Networks[C]//Proceedings of the Amer-ican Control Conference. Seattle WA,2008:2767–2772.
    112H. Gao, L. Zhang, P. Shi, et al. Stability and Stabilization of Switched LinearDiscrete-time Systems with Polytopic Uncertainties[C]//Proceedings of the Amer-ican Control Conference. Minnesota USA,2006:5953–5958.
    113S. V. Rakovic, P. Grieder, M. Kvasnica, et al. Computation of InvariantSets for Piecewise Affine Discrete Time Systems Subject to Bounded Distur-bances[C]//Proceedings of the43rd IEEE Conference on Decision and Control.Atlantis Bahamas,2004:1418–1423.
    114J. Jian, X. Zhang, R. Quan. A New Finitely Convergent Algorithm for Systems ofNonlinear Inequalities[J]. Applied Mathematics Letters,2007,20(4):405–411.
    115Y. He, C. Ma. On the Convergence of a New Smoothing Levenberg-marquardtMethod for the Nonlinear Inequalities[C]//Proceedings of the Third InternationalConference on Natural Computation. Hainan China,2007:241–245.
    116S. D. Grace, C. G. Jose′. Full Order Dynamic Output Feedback H∞Control forContinuous-time Switched Linear Systems[C]//Proceedings of the48th IEEE Con-ference on CDC and28th CCC. Shanghai China,2009:6377–6382.
    117B. Molaei. Optimization of Dynamic Output Feedback Controller for PiecewiseAffine Systems: An LMI Approach[J]. Journal of Circuits, Systems and Comput-ers,2008,17(2):263–277.
    118K. Zhou, J. C. Doyle, K. Glover. Robust and Optimal Control[M]. NewJersey:Prentice-Hall,1996:22–23.
    119S. Boyd, L. E. Ghaoui, E. Feron, et al. Linear Matrix Inequalities in System andControl Theory[M]. Philadelphia:SIAM,1994:68–69.
    120A. B. Kurzhanskii, I. Valyi. Ellipsoidal Calculus for Estimation and Control[M].Boston:Nelson Thornes,1997:91–120.
    121F. Amato, M. Ariola, P. Dorato. Finite-time Control of Linear Systems Subjectto Parametric Uncertainties and Disturbances[J]. Automatica,2001,37(9):1459–1463.
    122F. Amato, M. Ariola. Finite-time Control of Discrete-time Linear Systems[J]. IEEETransactions on Automatic Control,2005,50(5):724–729.
    123I. Salim, D. Sette. Novel LMI Conditions for Observer-based Stabilization of Lips-chitzian Nonlinear Systems and Uncertain Linear Systems in Discrete-time[J]. Ap-plied Mathematics and Computation,2008,206(2):579–588.124梅晓榕,柏桂珍,张卯瑞.自动控制元件及线路[M].北京:科学出版社,2005:10–63.125秦曾煌.电工学下册:电子技术[M].北京:高等教育出版社,2004:9–14.
    126J. P. Hespanha, D. Liberzon, A. R. Teel. Lyapunov Conditions for Input-to-stateStability of Impulsive Systems[J]. Automatica,2008,44(11):2735–2744.
    127Y. Zhang, J. Sun. Stability of Discrete Impulsive Systems with Time De-lays[C]//Proceedings of the48th IEEE Conference on CDC and28th CCC. Shang-hai China,2009:7227–7231.
    128N. H. El-Farra, P. Mhaskar, P. D. Christofides. Output Feedback Control ofSwitched Nonlinear Systems Using Multiple Lyapunov Functions[C]//Proceedingsof the2005American Control Conference. Portland USA,2005:3792–3799.
    129A. Y. Aleksandrov, Y. Chen, A. V. Platonov, et al. Stability Analysis and Designof Uniform Ultimate Boundedness Control for a Class of Nonlinear Switched Sys-tems[C]//Proceedings of the2009IEEE International Symposium on IntelligentControl. Saint Petersburg Russia,2009:944–949.
    130H. R. Shaker, J. P. How. Stability Analysis for Class of Switched Nonlinear Sys-tems[C]//Proceedings of the2010American Control Conference. Baltimore USA,2010:2517–2520.
    131Z. Yang, Y. Hong, Z. Jiang. Input-to-state Stability of Hybrid Switched Systemswith Impulsive Effects[C]//Proceedings of the7th World Congress on IntelligentControl and Automation. Chongqing China,2008:7172–7176.
    132W. Zhu. Stability Analysis of Switched Impulsive Systems with Time Delays[J].Nonlinear Analysis: Hybrid Systems,2010,4(3):608–617.
    133G. Xie, L. Wang. Stability and Stabilization of Switched Impulsive Sys-tems[C]//Proceedings of the2006American Control Conference. Minnesota USA,2006:4406–4411.
    134P. R. Pagilla, Y. Zhu. Controller and Observer Design for Lipschitz NonlinearSystems[C]//Proceedings of the2004American Control Conference. Boston Mas-sachusetts,2004:2379–2384.
    135A. Zemouche, M. Boutayeb. Observer Design for Lipschitz Nonlinear Systems:The Discrete-time Case[J]. IEEE Transactions on Circuits and Systems,2006,53(8):777–781.
    136F. Hao, L. Wang. An LMI Approach to Persistent Bounded Disturbance Rejec-tion for a Class of Nonlinear Impulsive Systems[J]. Nonlinear Analysis: HybridSystems,2007,1(3):297–305.
    137I. R. Petersen, V. A. Ugrinovskii, A. V. Sakin. Robust Control Design Using H∞Methods[M]. London:Springer,2000.
    138J. Daafouz, J. Bernussou. Parameter Dependent Lyapunov Functions for DiscreteTime Systems with Time Varying Parametric Uncertainties[J]. Systems and ControlLetters,2001,43(5):355–359.
    139V. Kiencke, L. Nielsen. Automotive Control Systems: For Engine, Driveline andVehicle[M]. Berlin: Springer,2005:120–128.140戴杰.汽油机怠速工况建模及控制[D]哈尔滨:哈尔滨工业大学,2007:1–5.
    141H. Lin, P. J. Antsaklis. Disturbance Attenuation Properties for Discrete-time Un-certain Switched Linear Systems[C]//Proceedings of the42nd IEEE Conference onDecision and Control. Hawaii USA,2003:5289–5294.
    142H. Lin, P. J. Antsaklis. Disturbance Attenuation in Classes of Uncertain Linear Hy-brid Systems[C]//Proceedings of the2004American Control Conference. BostonMassachusetts,2004:566–571.
    143L. Stefan, R. Luis. PWL and PWA H∞Controller Synthesis for UncertainPWA Slab Systems: LMI Approach[J]. International Journal of Control,2009,82(3):482–492.
    144F. Blanchini. Ultimate Boundedness Control for Uncertain Discrete-time Systemsvia Set-induced Lyapunov Functions[J]. IEEE Transactions on Automatic Control,1994,39(2):428–433.
    145T. Motzkin. The Theory of Linear Inequalities[M]. Santa Monica:Rand Corp.,1952.146郭宏志.汽油发动机怠速工况下控制方法的研究[D]长春:吉林大学,2009:29–72.147罗刚.汽油机怠速的鲁棒控制研究[D]长春:吉林大学,2007:50–64.
    148S. Li, H. Chen, M. Ma. Model Predictive Control Based on Linear Programming forEngine Idle Speed Control[C]//Proceedings of the2009International Conferenceon Mechatronics and Automation. Changchun China,2009:1167–1172.
    149Y. Yildiz, A. M. Annaswamy, D. Yanakiev, et al. Spark-ignition-engine Idle SpeedControl: An Adaptive Control Approach[J]. IEEE Transactions on Control SystemsTechnology,2011,19(5):990–1102.
    150Y. Zhang, N. Kurihara. Stability Improvement for Engine Idle-speed Control byVariable Structure Control[C]//Proceedings of the2009International Joint Confer-ence ICCAS-SICE. Fukuoka Japan,2009:1267–1272.
    151D. Hrovat, J. Sun. Models and Control Methodologies for IC Engine Idle SpeedControl Design[J]. Control Engineering Practice,1997,5(8):1093–1100.
    152J. D. Powell. A Review of IC Engine Models for Control System De-sign[C]//Proceedings of the10th IFAC World Congress on Automatic Control. Mu-nich Germany,1987:233–238.
    153M. Thornhill, S. Thompson, H. Sindano. A Comparison of Idle Speed ControlSchemes[J]. Control Engineering Practice,2000,8(5):519–530.
    154A. Balluchi, L. Benvenuti, T. Villa, et al. A Hybrid Model of a4-cylinder Enginefor Idle Speed Control[M]. Test Case for the Computation and Control EuropeanProject,2002.
    155A. Balluchi, C. D′Apice, M. Gaeta, et al. A Hybrid Feedback for a BenchmarkProblem of Idle Speed Control[J]. International Journal of Robust and NonlinearControl,2010,20(5):515–530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700