两种转基因大米食用安全性的毒理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是我国最重要的粮食作物之一,世界上近一半以上的人口都以大米为主食,因此大米的品质也越来越受到人们的关注。利用转基因技术对传统水稻品种进行改良,可以提高大米的营养价值或拓展其功能。但是,由于对转基因水稻的安全性一直存在争议,因此,有必要对转基因水稻的食用安全性进行深入系统的研究,为转基因水稻的发展提供科学依据。
     本论文以转GL融合蛋白基因和转双反义分支酶基因大米为研究对象,通过系统的毒理学试验研究与分析两种转基因大米的食用安全性,为转基因大米食用安全性评价技术体系的构建提供参考。主要研究内容与结果如下:
     1.对转双反义分支酶基因大米进行了急性毒性试验研究。将转基因大米以2.15、4.64、10.00和21.50 g/kg·bw的剂量灌胃小鼠,连续观察14天。结果表明,转基因大米的LD50>21.50 g/kg·bw;试验期间,动物状态良好,无死亡和异常现象;对各组小鼠体重、血常规、脏器系数和主要脏器病理学观察也未见显著性差异。因此,转双反义分支酶基因大米属无毒级别。
     2.对转双反义分支酶基因大米进行了遗传毒性试验研究。对转基因大米进行小鼠骨髓细胞微核试验、精子畸形试验、Ames试验和彷徨试验研究。结果表明,以上试验均呈阴性,未见转双反义分支酶基因大米产生遗传毒性。
     3.对转双反义分支酶基因大米进行了致畸毒性试验研究。用含有转基因大米的饲料喂养大鼠,观察和分析转基因大米对孕鼠生长及胎鼠发育的影响。结果表明,转基因大米对孕鼠体重增长、孕鼠生殖能力、胎鼠发育(外观、内脏及骨骼)均未产生不良影响,即转双反义分支酶基因大米未对试验大鼠产生致畸作用。
     4.对转双反义分支酶基因大米进行了90天喂养试验研究。用含有转基因大米的饲料喂养大鼠90天,对大鼠体重、进食量、进水量、血常规、血生化、尿常规、性激素、脏器系数及组织病理学进行检测。结果表明,转基因大米组和亲本大米组相比未见显著性差异;转基因大米组和对照组相比,小部分生化指标存在差异,但不具有生物学意义,即转双反义分支酶基因大米未对试验大鼠产生毒性作用。
     5.对两种转基因大米进行了三代繁殖试验研究。对转基因大米进行了大鼠三代繁殖试验研究,观察FO代、F1代和F2代孕鼠繁殖指标(交配成功率、受孕率、妊娠时间和活产率);F1代、F2代和F3代仔鼠繁殖指标(出生成活率、窝平均仔鼠数、仔鼠雌雄比率、出生窝总重、仔鼠出生体重、身长、尾长、肛殖距):大鼠生长发育及妊娠哺乳期的体重、进食量及食物利用率;雌雄成年大鼠血常规、血生化指标;断乳仔鼠及成年大鼠脏器系数及病理切片。结果表明,转基因大米组的小部分血液学指标和脏器系数指标存在显著性差异,这些差异主要集中在转基因大米组和对照组之间,且这些差异具有随机分散性,所以不具有生物学意义。因此转基因大米未影响母鼠及仔鼠的繁殖能力,未对大鼠产生毒性作用。
     6.对两种转基因大米进行了生殖毒性试验研究。给大鼠饲喂转基因大米,观察与测定雌性大鼠的动情周期、卵巢组织抗氧化能力;观察与测定雄性大鼠的精子数量和畸变率,睾丸细胞周期变化;测定雌雄大鼠的性激素水平、肛殖距、生殖器官脏器系数及病理切片。结果表明,转基因大米组与亲本大米组相比,各项指标均无显著性差异;与对照组相比,小部分指标(睾丸细胞周期、生殖器官脏器系数)存在差异,但是不具有生物学意义。因此转基因大米未对大鼠生殖系统的结构和功能产生不利影响。
     7.对转GL融合蛋白基因大米进行了免疫毒性试验研究。对转基因大米进行了balb/c小鼠免疫毒性及免疫原性试验研究,观察并测量小鼠血常规、淋巴细胞亚群、迟发型超敏反应(DTH)、刀豆球蛋白(ConA)诱导淋巴细胞转化、溶血素水平、腹腔巨噬细胞吞噬鸡红细胞、免疫器官脏器系数及外源蛋白检测情况。结果表明,转基因大米组、亲本大米组及对照组之间均无显著性差异,未在动物体内及其粪便中检测到转基因大米的外源蛋白。因此未见转GL融合蛋白基因大米对小鼠产生免疫毒性,转基因大米中的外源蛋白能被机体完全消化分解,不具有免疫原性。
Rice (Oryza sativa L.) is one of the most important crops in our country, and it is used to feed half of the world population, as a result there are concerns on the quality of rice consumed by people. Genetic engineering technology can be used to improve the nutritional and functional value of traditional rice, but there are some controversies on the usage of this technology with regards to the safety of transgenic rice. Therefore studying the food safety of transgenic rice and providing scientific basis for the development of transgenic rice is of great significance.
     Transgenic rice lines expressing GL fusion protein gene and double antisense branching enzymes gene were used in this study. Through the systematic toxicological research, the safety of the two transgenic rice were assessed in order to provide reference for the evaluation of food safety with regard to transgenic rice. The main research contents and results are as following:
     1. The acute toxicity study of the transgenic rice expressing double antisense branching enzymes gene. The mice were observed for 14 days following acute oral exposure at a dose of 2.15,4.64,10.00 and 21.50g/kg of body weight. The results indicated that no adverse toxic effect appeared in mice growth. There were no significant differences in the body weight, haematology, organ relative weights and histopathology in the different groups. So this transgenic rice can be classified as a nontoxic rice.
     2. The mutagenicity study of the transgenic rice expressing double antisense branching enzymes gene. On the mutagenicty study the following test were conducted: mice bone marrow cell micronucleus test, mice sperm abnormality test, Ames test and fluctuation test. Test results gave no indication that this transgenic rice possessed any mutagenic potential.
     3. The teratogenicity toxicology study of the transgenic rice expressing double antisense branching enzymes gene. The rats were fed with genetically modified rice feed, while pregnant rats and their fetuses development were studied. The results indicated that no adverse effect were observed on the body weight gain and fecundity of pregnant rats and fetuses growth (appearance, viscera and bone), the transgenic rice expressing double antisense branching enzymes gene have no teratogenesis on test rats.
     4. The ninety days feeding study of the transgenic rice expressing double antisense branching enzymes gene. The rats were fed with genetically modified rice feed and was analysed on the basis of the rats body weight, food consumption, water intake, hematology, serum chemistry, urinalysis, serum sex hormoneorgan, organ weight, ratio and pathology. The results showed that there were no significant differences in the transgenic rice group compared with the non-transgenic rice group, some statistical differences were observed in the transgenic rice group compared with the control diet, but it were not considered biologically significant or related to exposure to the transgenic rice.
     5. The three generation study of two transgenic rice. The three generation experiment of the two transgenic rice were studied on rats, some parameters were observed such as reproductive parameters for F0, F1 and F2 pregnant rats (including copulation index, fertility index, gestation length and live-birth rate), F1, F2 and F3 offspring (including viability index at birth, number of pups birth, sex ratio of pups, body weight, body length, tail length and anogenital distance at birth), body weight and food consumption during the pre-mating, gestation and lactation periods, hematology and serum chemistry for adult rats, organ ratio and pathology for litters after weanlings and adult rats. The results indicated that small serum chemistry and organ ratio parametersshowed statistical differences, this was found mostly in the transgenic rice group compared with the control rice. These differences had random dispersion and no gender unity, so it was not considered biologically significant. Therefore this form of transgenic rice have no adverse effect on the reproductive abilities of the rats.
     6. The reproductive study of two transgenic rice. The rats were fed with genetically modified rice feed, this was analysed based on estrous cycle and antioxidant capacity of the ovarian tissue of the female rats, number of sperm and morphologically abnormal sperm, testicular cells cycle for male rats, serum sex hormoneorgan, anogenital distance, reproductive organs ratio and the pathology of the male and female rats. The results revealed that no statistical difference was observed in the transgenic rice group compared with the non-transgenic rice group. The small parameters (testicular cells cycle and reproductive organs ratio) have statistical differences in the transgenic rice group compared with the control rice, but it were not considered biologically significant. Therefore this transgenic rice have no adverse effect on the structure and the function of the reproductive system of the rats.
     7. The immunotoxicity study of the transgenic rice expressing GL fusion protein gene. The immunotoxicologic and immunogenic experiment of the transgenic rice expressing GL fusion protein gene were studied on balb/c mice, this was analysed on the bases the rats hematology, lymphocyte subsets, delayed type hypersensitivity (DTH), T lymphocyte transformation induced by ConA, hemolysin level, phagocytosis ratio of peritoneal macrophages, immune organs ratio and exogenous protein detection. The findings of this study showed no statistical difference was observed in the transgenic rice group compared with the non-transgenic rice group and as well as the control diet. Moverover, the exogenous protein of the transgenic rice were not detected in the animal organs and their feces consequently, no immunotoxicity was observed on mice fed with transgenic rice this indicates that exogenous protein of transgenic rice can be digested completely and have no immunogenicity.
引文
[1]Halford, N. G. Genetically modified crops. Imperial College Press,2003.
    [2]James C. Global status of commercialized Biotech/GM crops:2010. ISAAA Briefs.2010, 41-2009.
    [3]Hareau, G. G. Transgenic rice in Asia:A general equilibrium assessment of potential welfare effects and regional distribution, Virginia Polytechnic Institute and State University,2006.
    [4]Nagadhara, D. R., S., Pasalu, I., Rao, Y. K., Sarma, N., Reddy, V. & Rao, K. Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper(Sogatella furcifera). TAG Theoretical and Applied Genetics, 2004,109 (7):1399-1405.
    [5]Xiao, B. Z., Chen, X., Xiang, C. B., Tang, N., Zhang, Q. F. & Xiong, L. Z. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Molecular Plant,2009,2(1):73-83.
    [6]Ye, R., Huang, H., Yang, Z., Chen, T., Liu, L., Li, X., Chen, H. & Lin, Y. Development of insect-resistant transgenic rice with CrylC*-free endosperm. Pest management science, 2009,65 (9):1015-1020.
    [7]张小红,王春连,李桂芬,张晓科,梁云涛,孙亮庆,赵开军.转Xa23基因水稻的白叶枯病抗性及其遗传分析.作物学报,2008,34(10):1679-1687.
    [8]Katsube, T., Kurisaka, N., Ogawa, M., Maruyama, N., Ohtsuka, R., Utsumi, S. & Takaiwa, F. Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiology,1999,120(4):1063-1074.
    [9]Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P. & Potrykus, I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science,2000,287 (5451):303.
    [10]刘巧泉.基因工程技术提高稻米赖氨酸含量,扬州大学博士学位论文,2002.
    [11]刘巧泉,姚泉洪,王红梅,顾铭洪.转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量.遗传学报,2004,31(005):518-524.
    [12]Engel, K. H., Frenzel, T. & Miller, A. Current and future benefits from the use of GM technology in food production. Toxicology letters,2002,127 (1-3):329-336.
    [13]Kuiper, H. A. & Kleter, G. A. The scientific basis for risk assessment and regulation of genetically modified foods. Trends in food science & technology,2003,14 (5-8):277.
    [14]Kuiper, H. A., Kleter, G. A., Notebom, H. P. J. M. & Kok, E. J. Assessment of the food safety issues related to genetically modified foods. The plant journal,2001,27 (6):503-528.
    [15]张丽丽,曹晶,李宗军,王远亮.转基囚大米及其安全性评价研究进展.粮食与饲料工业,2010,(004):9-12.
    [16]Novak, W. & Haslberger, A. Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food and Chemical Toxicology,2000,38 (6): 473-483.
    [17]付仲文,连庆,李宁.转基因植物食用安全性评价现状.农业科技管理,2009,28(006):24-27.
    [18]Food, Nations, A. O. o. t. U. & Programme, W. H. O. F. S. Food Safety Programme, World Health Orgainization,2000.
    [19]Cellini, F., Chesson, A., Colquhoun, I., Constable, A., Davies, H., Engel, K., Gatehouse, A., Karenlampi, S., Kok, E. & Leguay, J. J. Unintended effects and their detection in genetically modified crops. Food and Chemical Toxicology,2004,42 (7):1089-1125.
    [20]Van Hooser, B. & Crawford, L. Allergy diets for infants and children. Comprehensive therapy,1989,15 (10):38.
    [21]王文高,陈正行.低过敏大米研究进展.粮食与油脂,2001,5:32-33.
    [22]Mekori, Y. A. Introduction to allergic diseases.1996.
    [23]胡贻椿,陈天金,朴建华,杨晓光.转基因水稻及安全性的研究进展.中国食物与营养,2009,(008):19-22.
    [24]Directorate, D. E., Science, D. D. f. & Safety, D. G. o. N. E. o. Safety evaluation of foods derived by modern biotechnology:concepts and principles. Organization for Economic, 1993.
    [25]Unit, W. H. O. F. S. Application of the Principles of Substantial Equivalence to the Safety Evaluation of Foods Or Food Components from Plants Derived by Modern Biotechnology: Report of a WHO Workshop; World Health Organization, Food Safety Unit. WHO,1995.
    [26]Herman, R. A., Storer, N. P., Phillips, A. M., Prochaska, L. M. & Windels, P. Compositional assessment of event DAS-59122-7 maize using substantial equivalence. Regulatory Toxicology and Pharmacology,2007,47 (1):37-47.
    [27]Lundry, D. R., Ridley, W. P., Meyer, J. J., Riordan, S. G, Nemeth, M. A., Trujillo, W. A., Breeze, M. L. & Sorbet, R. Composition of grain, forage, and processed fractions from second-generation glyphosate-tolerant soybean, MON 89788, is equivalent to that of conventional soybean (Glycine max L.). Journal of agricultural and food chemistry,2008, 56 (12):4611-4622.
    [28]Obert, J. C., Ridley, W. P., Schneider, R. W., Riordan, S. G., Nemeth, M. A., Trujillo, W. A., Breeze, M. L., Sorbet, R. & Astwood, J. D. The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.). Journal of agricultural and food chemistry,2004,52 (5):1375-1384.
    [29]Goto, F., Yoshihara, T., Shigemoto, N., Toki, S. & Takaiwa, F. Iron fortification of rice seed by the soybean ferritin gene. Nature biotechnology,1999,17 (3):282-284.
    [30]Momma, K., Hashimoto, W., Ozawa, S., Kawai, S., Katsube, T., Takaiwa, F., Kito, M., Utsumi, S. & Murata, K. Quality and safety evaluation of genetically engineered rice with soybean glycinin:analyses of the grain composition and digestibility of glycinin in transgenic rice. Bioscience, biotechnology, and biochemistry,1999,63 (2):314-318.
    [31]Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., Wright, S. Y., Hinchliffe, E., Adams, J. L. & Silverstone, A. L. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature biotechnology,2005, 23 (4):482-487.
    [32]王为民,赵倩,于静娟,朱登云,敖光明.水稻转高赖氨酸蛋白质基因(sb401)植株的获得及种子中蛋白质和氨基酸的含量分析.作物学报,2005,31(5):603-607.
    [33]刘华清,李胜清,陈浩.转基因作物安全评价及检测技术.华中农业大学学报:社会科学版,2010,(006):14-19.
    [34]Domingo, J. L. & Gine Bordonaba, J. A literature review on the safety assessment of genetically modified plants. Environment international,2011.
    [35]刘宁,沈明浩.食品毒理学.中国轻工业出版社,2005.
    [36]王茵,来伟旗.抗除草剂基因(BAR)转基因水稻的毒性试验.卫生研究,2000,29(003):141-142.
    [37]王忠华,王茵,舒庆尧,吴殿星,夏英武.转Bt基因水稻稻米的诱变活性研究.中国农业科学,2004,37(12):2043-2046.
    [38]王慧中,应奇才,钟国庆,黄大年,钱前,张红生.转mtlD/gutD双价基因稻米对小鼠的毒性试验.中国粮油学报,2003,18(006):16-19.
    [39]王慧中,应奇才,钟国庆,田菊霞,陈河,黄大年,钱前,张红生.转mtlD/gutD双价基因稻米对大鼠的毒性试验.中国水稻科学,2004,18(003):208-212.
    [40]薛大伟,马丽莲,姜华,华志华,郭龙彪,黄大年,钱前.抗除草剂转基因水稻的安全性评价.农业生物技术学报,2005,13(6):723-727.
    [41]姚春馨,许明辉,李进斌,谭学林,田文忠,唐祚舜.转溶菌酶基因水稻稻米毒理及致畸作用试验.西南农业学报,2006,19(B09):103-110.
    [42]姚春馨,许明辉,李进斌,谭学林,田文忠,唐祚舜.转几丁质酶-葡聚糖酶双价基因水 稻稻米毒理试验.中国粮油学报,2007,22(4):18-23.
    [43]刘雨芳,刘文海,:贺玲,李白君.湖南科技大学学报(自然科学版),2008,23,(4):111-117.
    [44]Konig, A., Cockburn, A., Crevel, R., Debruyne, E., Grafstroem, R., Hammerling, U., Kimber, I., Knudsen, I., Kuiper, H. A. & Peijnenburg, A. Assessment of the safety of foods derived from genetically modified (GM) crops. Food and Chemical Toxicology,2004,42 (7):1047-1088.
    [45]Cao, S., He, X., Xu, W., Ran, W., Liang, L., Luo, Y. B., Yuan, Y., Zhang, N. & Zhouand Kunlun, X. Safety assessment of Cryl C protein from genetically modified rice according to the national standards of PR China for a new food resource. Regulatory Toxicology and Pharmacology,2010,58 (3):474-481.
    [46]Herouet, C., Esdaile, D. J., Mallyon, B. A., Debruyne, E., Schulz, A., Currier, T., Hendrickx, K., van der Klis, R. J. & Rouan, D. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regulatory Toxicology and Pharmacology,2005,41 (2):134-149.
    [47]李英华,朴建华,陈小萍,卓勤,毛德倩,杨丽琛,杨晓光.Xa21转基因大米的营养学评价.卫生研究,2004,33(003):303-306.
    [48]陈小萍,卓勤,顾履珍,朴建华,杨晓光.转基因大米营养评价试验.营养学报,2004,26(2):119-123.
    [49]刘雨芳,刘文海,贺玲,李双,朱春花.转基因抗虫杂交稻大米对SD大鼠行为与生理的影响.生命科学研究,2008,12(3):257-261.
    [50]刘雨芳,刘文海,李双,朱春花.转基因抗虫水稻MSA4大米对大鼠脏器系数,血常规与血生化的影响.湘潭师范学院学报:自然科学版,2008,29(4):112-116.
    [51]刘雨芳,刘文海,朱春花,李双.转基因工程抗虫杂交稻大米的食品安全性评价.湖南科技大学学报(自然科学版),2007:4.
    [52]Momma, K., Hashimoto, W., Yoon, H. J., Ozawa, S., Fukuda, Y, Kawai, S., Takaiwa, F., Utsumi, S. & Murata, K. Safety assessment of rice genetically modified with soybean glycinin by feeding studies on rats. Bioscience, biotechnology, and biochemistry,2000,64 (9):1881-1886.
    [53]Organization, W. H. Safety aspects of genetically modified foods of plant origin. Report of a joint FAO/WHO expert consultation on foods derived from biotechnology, held in Geneva, Switzerland,2000,29:1-35.
    [54]Wang, Z., Wang, Y., Cui, H., Xia, Y, Altosaar, I. & Shu, Q. Toxicological evaluation of transgenic rice flour with a synthetic crylAb gene from Bacillus thuringiensis. Journal of the Science of Food and Agriculture,2002,82 (7):738-744.
    [55]张珍誉,刘立军,张琳,颜亨梅.转Bt基因稻谷对小鼠的亚慢性毒性实验.毒理学杂志,2010,24(2):126-129.
    [56]李英华,朴建华,卓勤,陈小萍,陈晓滨,杨晓光.转Xa21基因大米业慢性毒性实验.卫生研究,2004,33(005):575-578.
    [57]卓勤,陈小萍,朴建华,顾履珍,李宁,杨晓光.转豇豆胰蛋白酶抑制剂大米90天喂养实验研究.卫生研究,2004,33(002):176-179.
    [58]李敏,朴建华,杨晓光.转双反义SBE基因大米的亚慢性毒性实验.卫生研究,2010,39(4):436-439.
    [59]Schr(?)der, M., Poulsen, M., Wilcks, A., Kroghsbo, S., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Emami, K. & Gatehouse, A. A 90-day safety study of genetically modified rice expressing CrylAb protein (Bacillus thuringiensis toxin) in Wistar rats. Food and Chemical Toxicology,2007,45 (3):339-349.
    [60]Betz, F. S., Hammond, B. G. & Fuchs, R. L. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology,2000,32 (2):156-173.
    [61]Appenzeller, L. M., Munley, S. M., Hoban, D., Sykes, G. P., Malley, L. A. & Delaney, B. Subchronic feeding study of grain from herbicide-tolerant maize DP-098140-6 in Sprague-Dawley rats. Food and Chemical Toxicology,2009,47 (9):2269-2280.
    [62]Delaney, B., Appenzeller, L. M., Munley, S. M., Hoban, D., Sykes, G. P., Malley, L. A. & Sanders, C. Subchronic feeding study of high oleic acid soybeans (event DP-305423-1) in Sprague-Dawley rats. Food and Chemical Toxicology,2008,46 (12):3808-3817.
    [63]Poulsen, M., Kroghsbo, S., Schroder, M., Wilcks, A., Jacobsen, H., Miller, A., Frenzel, T., Danier, J., Rychlik, M. & Shu, Q. A 90-day safety study in Wistar rats fed genetically modified rice expressing snowdrop lectin Galanthus nivalis (GNA). Food and Chemical Toxicology,2007,45 (3):350-363.
    [64]Schreder, M., Poulsen, M., Wilcks, A., Kroghsbo, S., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Emami, K. & Gatehouse, A. A 90-day safety study of genetically modified rice expressing Cryl Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food and Chemical Toxicology,2007,45 (3):339-349.
    [65]卓勤,陈小萍,朴建华,韩驰,杨晓光.转豇豆胰蛋白酶抑制剂大米的致畸作用研究.卫生研究,2004,33(001):74-77.
    [66]李英华,朴建华,卓勤,陈小萍,毛德倩,杨丽琛,杨晓光.Xa21转基因大米对大鼠致畸作用的实验研究.卫生研究,2004,33(006):710-712.
    [67]陈小萍,卓勤,朴建华,杨晓光.转基因大米的免疫毒理学评价.卫生研究,2004,33(1):77-80.
    [68]李英华,朴建华,陈小萍,卓勤,毛德倩,杨丽琛,杨晓光.转基因大米的免疫毒理学评价.中国公共卫生,2004,20(004):404-406.
    [69]陈河,王慧中,赵文华,蔡玲斐,王灵均,陈小囡,黄大年.转mtlD/gutD基因稻米对大鼠性腺毒性的实验研究.中国水稻科学,2007,21(4):341-344.
    [70]Dearman, R. J. & Kimber, I. Determination of protein allergenicity:studies in mice. Toxicology letters,2001,120(1-3):181-186.
    [71]Ermel, R. W., Kock, M., Griffey, S. M., Reinhart, G. A. & Frick, O. L. The atopic dog:a model for food allergy. Laboratory animal science,1997,47 (1):40.
    [72]Helm, R. M., Furuta, G T., Stanley, J. S., Ye, J., Cockrell, G., Connaughton, C., Simpson, P., Bannon, G. A. & Burks, A. W. A neonatal swine model for peanut allergy. Journal of allergy and clinical immunology,2002,109:136-142.
    [73]Penninks, A. H. & Knippels, L. M. J. Determination of protein allergenicity:studies in rats. Toxicology letters,2001,120(1-3):171-180.
    [74]GB15193.1-21,2003,食品安全性评介程序和方法[S].中国国家标准汇编(2003年修订-17).北京:中国标准出版社,2004.
    [75]严卫星.转基因植物及其产品食用安全性评价导则(NY/T1101-2006).
    [76]Kamber, M., Fluckiger-Isler, S., Engelhardt, G., Jaeckh, R. & Zeiger, E. Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity. Mutagenesis,2009,24 (4): 359-366.
    [77]黄燕,钟振国,罗沛.两种Ames试验方法在蒲葵子提取物致突变试验中灵敏度的研究.时珍国医国药,2009,20(007):1578-1579.
    [78]裴秋玲.现代毒理学基础.中国协和医科大学出版社,2008.
    [79]袁伯俊,廖明阳,李波.药物毒理学实验方法与技术.化学工业出版社,2007.
    [80]Appenzeller, L. M., Munley, S. M., Hoban, D., Sykes, G P., Malley, L. A. & Delaney, B. Subchronic feeding study of herbicide-tolerant soybean DP-356043-5 in Sprague-Dawley rats. Food and Chemical Toxicology,2008,46 (6):2201-2213.
    [81]Appenzeller, L. M., Malley, L., MacKenzie, S. A., Hoban, D. & Delaney, B. Subchronic feeding study with genetically modified stacked trait lepidopteran and coleopteran resistant (DAS-01507-lxDAS-59122-7) maize grain in Sprague-Dawley rats. Food and Chemical Toxicology,2009,47 (7):1512-1520.
    [82]He, X., Huang, K., Li, X., Qin, W., Delaney, B. & Luo, Y. Comparison of grain from corn rootworm resistant transgenic DAS-59122-7 maize with non-transgenic maize grain in a 90-day feeding study in Sprague-Dawley rats. Food and Chemical Toxicology,2008,46 (6): 1994-2002.
    [83]He, X. Y., Tang, M. Z., Luo, Y. B., Li, X., Cao, S. S., Yu, J. J., Delaney, B. & Huang, K. L. A 90-day toxicology study of transgenic lysine-rich maize grain (Y642) in Sprague-Dawley rats. Food and Chemical Toxicology,2009,47 (2):425-432.
    [84]Poulsen, M., Schroder, M., Wilcks, A., Kroghsbo, S., Lindecrona, R. H., Miller, A., Frenzel, T., Danier, J., Rychlik, M. & Shu, Q. Safety testing of GM-rice expressing PHA-E lectin using a new animal test design. Food and Chemical Toxicology,2007,45 (3):364-377.
    [85]Malley, L. A., Everds, N. E., Reynolds, J., Mann, P. C., Lamb, I., Rood, T., Schmidt, J., Layton, R. J., Prochaska, L. M. & Hinds, M. Subchronic feeding study of DAS-59122-7 maize grain in Sprague-Dawley rats. Food and Chemical Toxicology,2007,45 (7): 1277-1292.
    [86]章美霞.尿常规检查对于早期病诊的重要意义.医学信息:上旬刊,2011,24(13):4392-4393.
    [87]孙建新,安娟,连军.影响实验动物脏器重量及脏器系数因素分析.实验动物科学,2009,(1):49-51.
    [88]Hammond, B., Dudek, R., Lemen, J. & Nemeth, M. Results of a 13 week safety assurance study with rats fed grain from glyphosate tolerant corn. Food and Chemical Toxicology, 2004,42(6):1003-1014.
    [89]Pelc, I., Verbanck, P., Le Bon, O., Gavrilovic, M., Lion, K. & Lehert, P. Efficacy and safety of acamprosate in the treatment of detoxified alcohol-dependent patients. A 90-day placebo-controlled dose-finding study. The British Journal of Psychiatry,1997,171 (1): 73-77.
    [90]KIlle, A. & Akay, M. T. A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food and Chemical Toxicology,2008,46 (3):1164-1170.
    [91]Ermakova, I. Influence of genetically modified soya on the birth-weight and survival of rat pups:Preliminary Study. Proceedings epigenetics, transgenic plants and risk assessment, 2006,41-48.
    [92]王文祥,廖惠珍,曹建平,王章敬,林崴.亚慢性镉暴露对雄性大鼠生殖毒性的研究.中国公共卫生,2004,20(5):562-563.
    [93]王艺娟,李国平,陈耀星.性激素对大鼠子宫局部免疫调节作用的初步研究,福州:福建农林大学,2008.
    [94]高丽,隋波,沈东颖,李晔.雌性大鼠运动性动情周期抑制与卵巢,子宫显微结构及相关激素水平的变化.中国临床康复,2006,10(40):109-111.
    [95]Radhika, M. & Kaliwal, B. B. Monocrotophos induced dysfunction of estrous cycle and follicular development in mice. Ind Health,2002,40:237-224.
    [96]Miller, L. J., Girgis, C. & Gupta, R. Depression and related disorders during the female reproductive cycle. Women's Health,2009,5 (5):577-587.
    [97]Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. NATURE-LONDON-,2000:239-247.
    [98]Kelly, K., Havrilla, C. M., Brady, T. C., Abramo, K. H. & Levin, E. D. Oxidative stress in toxicology:established mammalian and emerging piscine model systems. Environmental Health Perspectives,1998,106 (7):375.
    [99]刘茹,陈建锋,何俊,宋玲,王心如.辛硫磷对大鼠卵巢抗氧化系统功能的影响.劳动医学,2004,21(002):94-97.
    [100]孙存普,张建中,段绍瑾,王爱国.自由基生物学导论.中国科学技术大学出版社,1999.
    [101]Kodaman, P. H. & Behnnan, H. R. Endocrine-regulated and protein kinase C-dependent generation of superoxide by rat preovulatory follicles. Endocrinology,2001,142 (2):687.
    [102]Seino, T. et al. Eight-hydroxy-2'-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertility and sterility,2002,77 (6):1184-1190.
    [103]Dharmarajan, A., Hisheh, S., Singh, B., Parkinson, S., Tilly, K. I. & Tilly, J. L. Antioxidants mimic the ability of chorionic gonadotropin to suppress apoptosis in the rabbit corpus luteum in vitro:a novel role for superoxide dismutase in regulating bax expression. Endocrinology,1999,140(6):2555.
    [104]Murdoch, W. Inhibition by oestradiol of oxidative stress-induced apoptosis in pig ovarian tissues. Journal of reproduction and fertility,1998,114(1):127.
    [105]Behrman, H. R., Kodaman, P. H., Preston, S. L. & Gao, S. Oxidative stress and the ovary. Journal of the Society for Gynecologic Investigation,2001,8 (1 suppl):S40-S42.
    [106]张军,潘发明.甲胺磷对小鼠精子质量的影响.中国工业医学杂志,2002,15(004):208-210.
    [107]王文亭,李建远.附睾分泌且与精子成熟,运动相关蛋白研究现状.中外医学研究,2011,9(12):118-119.
    [108]李宏辉,刘秀芳,马潇,张国奇.辛硫磷和灭多威混配对雄性小鼠生殖细胞的毒性作用.宁夏医科大学学报,2009,31(005):582-584.
    [109]刘秀芳,宁艳花,屠霞,聂臻,刘桂珠.辛硫磷对雄性小鼠生殖细胞毒性作用的实验研究.宁夏医学院学报,2006,28(5):412-414.
    [110]唐国华,唐朝克,贺修胜,何淑雅.甲氧滴滴涕对雄性大鼠生殖细胞毒性的影响.毒理学杂志,2006,19(4):275-277.
    [111]阮玲娟.正常动情周期和性腺摘除大鼠外周性激素对下丘脑的影响,浙江大学,2011.
    [112]戴方伟,陈文文,毛栋森,楼琦,卢领群,郭红刚,萨晓婴.SD雌性大鼠性发育早期性器官等脏器和性激素的动态变化.中国比较医学杂志,2009,19(007):33-37.
    [113]杨建华.促卵泡成熟激素与睾丸生精功能(附100例分析).中国男科学杂志,2001,15(3):172-174.
    [114]周少虎,翁治委,陈扬前,李翎,方永奇.复方玄驹胶囊对去势雄性大鼠性激素水平及性器官重量的影响.中华男科学杂志,2011,17(10):953-956.
    [115]张勇燕,舒为群,曹佳,罗教华,付文娟.邻苯二甲酸二丁酯宫内暴露对SD大鼠两代繁殖的影响.癌变·畸变·突变,2009,21(3):169-172.
    [116]周远忠,申旭渡,许洁,范奇元.大豆异黄酮对子代雄鼠生殖系统的危害.遵义医学院学报,2008,31(001):13-15.
    [117]罗文海,高永.过氧化苯甲酰对大鼠体重和脏器系数的影响,江苏医药,2011,(18):2202-2203.
    [118]唐婧,郭莉丹,姬凤彩,张海燕,马新,李世东,张慧洁.多次采血对Wistar大鼠脏器系数的影响.中国比较医学杂志,2011,21(1):67-69.
    [119]汤城,薛雅蓉,余飞,刘常宏.一种检测巨噬细胞吞噬鸡红细胞活性新方法的建立.畜牧与兽医,2005,37(011):47-49.
    [120]郝树彬,温红玲,尹玉霞,侯丽.BALB/c鼠脾脏T淋巴细胞体外转化试验条件的优化研究.中国医疗器械信息,2011,17(8):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700