无模板剂ZSM-5沸石分子筛的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZSM-5沸石由于具有规整的孔道结构,好的热稳定性及较好的水热稳定性,广泛应用于催化材料和吸附材料。以ZSM-5沸石作为催化剂,以甲醇为原料合成汽油的科研成果曾经引起了世界同行的高度评价。此外作为催化剂,ZSM-5沸石在环己烯水合制环己醇方面也展现优良的性能,虽然转化率偏低,但环己醇的选择性达到99%以上,基本没有副产物。然而,ZSM-5沸石的传统合成方法要采用价格昂贵的有机模板剂(TPA+)来制得,成本高,需要高温焙烧脱除,脱除不完全容易造成孔道堵塞,同时造成环境污染。高温焙烧还容易引起沸石小颗粒烧结,不易分散。20世纪80年代Flanigen等报道了无模板剂法合成ZSM-5沸石以来,无模板剂法已经得到了工业化生产。无模板剂法合成ZSM-5沸石时需要严格控制合成液组成和合成条件,否则会产生杂晶或共生。小颗粒沸石晶体有很多优势,采用无模板剂法合成时条件的控制更重要。因此,无模板剂法合成ZSM-5沸石的研究仍然具有重要的学术价值和现实意义。
     本文在无有机模板剂条件下采用不同合成方法合成ZSM-5沸石,研究其合成规律。考察了两步变温法中高温预晶化时间和低温晶化时间等因素的影响,研究了预晶化液添加法中预晶化液添加量和组成等对形成的沸石结构与晶型的影响,提出了分步加碱法合成ZSM-5沸石亚微米分散颗粒的新方法。对合成后得到的ZSM-5沸石分子筛做了各种结构性能的表征,并评价了环己烯水合反应性能。主要研究内容和结果如下:
     (1)变温两步法合成小颗粒ZSM-5沸石:主要研究了无模板剂转动条件下变温两步法中晶化温度、晶化时间以及高温预晶化时间等因素对合成ZSM-5沸石的影响。在无模板剂存在下,以硅酸钠为硅源采用简单的变温两步法,通过控制高温预晶化时间,在转动烘箱中成功合成了小颗粒ZSM-5沸石团聚体。高温预晶化(190℃)是为了加快反应液的成核,而低温晶化(150℃)是为了获得小的分子筛晶体。采用X射线衍射(XRD),扫描电镜(SEM), NH3程序升温脱附(NH3-TPD)和N2吸附-脱附等技术对合成的ZSM-5沸石进行了表征。与一步法合成的微米级颗粒相比较,两步法合成的小颗粒团聚体ZSM-5沸石具有较高比表面积和相同酸量。得到的沸石的质子酸位占主要部分,路易斯酸位很少,也说明A1基本进入沸石骨架中。
     (2)预晶化液添加法合成ZSM-5沸石:主要研究了旋转烘箱中无模板剂条件下预晶化液添加法中预晶化液添加量等因素对合成ZSM-5沸石的影响以及预晶化液和母液组成中Na2O:SiO2比对ZSM-5沸石与MOR沸石转晶的影响。预晶化液由高温(190℃)短时间处理而得,系统研究了预晶化液处理时间和加入量对合成分子筛晶化速率及颗粒大小的影响。采用XRD、SEM、N2吸附-脱附和激光粒度分布(LLS)等分析方法对合成的ZSM-5沸石样品的物化性能进行了表征。研究表明,预晶化液的添加可以明显加快分子筛的晶化速率,预晶化液添加量为33.3wt%时达到最大结晶度的合成时间由未添加时的48h减少到24h。添加预晶化液的母液在150℃晶化24h时所得ZSM-5沸石分子筛团聚体的颗粒大小随着预晶化液加入量的增大而增大,由5.5μM增大到26.3μM。团聚体颗粒的比表面积比未添加预晶化液得到的分子筛(292m2/g)有了不同程度的提高,如添加量为33.3wt%时为394m2/g。对预晶化液添加法合成ZSM-5沸石分子筛团聚体颗粒的生长机理进行了讨论。
     (3)ZSM-5与丝光沸石之间的可控转晶:在无模板剂存在下,由于合成ZSM-5沸石的操作范围变窄,晶体很容易发生转晶和共生。本文主要研究在无模板剂的条件下ZSM-5与丝光沸石之间的转晶规律,考察了高温预晶化液的Na2O:SiO2比和预晶化时间以及低温晶化母液的Na2O:SiO2比对于ZSM-5与丝光沸石之间转晶的影响。采用XRD和SEM对合成的产物进行了表征。研究发现,通过改变整体合成液的Na2O:SiO2比,可以有效控制ZSM-5沸石与丝光沸石之间的转晶。当整体反应液的组成为100SiO2:2.5Al2O3:4000H2O时,Na2O:SiO2=0.18是ZSM-5沸石和丝光沸石的一个分界线。通过调节母液的Na2O:SiO2比,使Na2O:SiO2>0.18时,可以使高温预晶化过程中产生的MFI结构的晶体在低温晶化时向丝光沸石发生转晶;使Na2O:SiO2<0.18时,具有MFI和丝光沸石结构共生的晶体在低温晶化时向MFI结构的ZSM-5沸石发生转晶。ZSM-5与丝光沸石之间转晶的前提条件是高温预晶化所形成的晶体的结晶度不能太高(≤30%)。
     (4)分步加碱法合成高分散亚微米ZSM-5沸石:报道了在无模板剂存在下,采用分步加碱法合成高分散亚微米ZSM-5沸石。采用XRD、SEM、N2吸附-脱附、固体NMR和粒度分布(DLS)等分析方法对合成的ZSM-5沸石样品的结构性能进行了表征。考察了碱加入量和双氧水加入量等对形成的沸石颗粒的影响。研究表明,采用两次加碱可以得到高分散亚微米ZSM-5沸石。该沸石颗粒大小主要集中在400-500nm之间,具有较高的结晶度。比表面积达到396m2/g。A1基本进入分子筛骨架。
     (5)合成ZSM-5沸石环己烯水合催化反应性能研究:考察了自制纳米团簇ZSM-5催化剂与市售催化剂(CBV8014, Zeolyst和NH4-ZSM-5,上海石化研究院)的环己烯水合催化活性。将ZSM-5沸石经过不同后处理条件(酸处理和水热处理)后,考察了其环己烯水合反应的催化性能。研究发现质子酸量与催化活性有关。
Due to unique pore structure, good thermal stability and hydrothermal stability, ZSM-5zeolites were widely used in catalytic materials and adsorption materials. As a catalyst, the gas synthesized by ZSM-5zeolites with methanol as raw materials had caused a highly evaluation of the world scientific research. Moreover as a catalyst, the hydration of cyclohexene catalyzed by ZSM-5zeolites also showed good performance. Although the conversion was low, the selectivity of cyclohexanol was above99%, basically without by-products. However, for synthesis of ZSM-5zeolites, the traditional synthesis methods are to make use of the expensive structure directing agent (SDA). Despite the excellent template effect of TPA+cations, it causes many adverse problems such as high production cost, organic species contained in channel system due to incomplete decomposition and environment problems from thermal decomposition of organic species. Unfortunately, SDA removal to open the zeolite micropores, commonly done through high temperature calcination, has proved unsuitable for colloidal nanocrystals because it leads to significant irreversible aggregation. Since the synthesis of ZSM-5zeolites with the SDA was reported by Flanigen in1980s, the synthesis of ZSM-5zeolites in the absence of SDA for industrial application has been implemented and this method has been reported. From the point of industrial application and environment benign, the synthesis method of ZSM-5zeolite in the absence of SDA still has the important practical significance.
     In this paper, the synthesis of ZSM-5zeolites in the absence of SDA with different methods was reported. The factors such as crystallized temperature and time were studied with two-step method. The various factors with nucleation solution method were mainly reported. The crystal transformation between ZSM-5and MOR was studied also. The dispersive and sub-micro ZSM-5zeolites were captured by base source step-feeding method. The physical and chemical properties of ZSM-5zeolites were characterized by various methods. The acquired ZSM-5zeolites were used as catalysts for catalytic reation. This paper is focused on the following several aspects:
     (1) Zeolite ZSM-5small particle aggregates were synthesized with two-step method:The factors such as crystallized temperature and time with two-step method were discussed. Zeolite ZSM-5small particle aggregates were synthesized in the absence of template using sodium silicate as silica source by controlling nucleation time at high temperature with a simple two-step method by rotating autoclaves. The first stage at higher temperature is to accelerate the nucleation and the second stage at lower temperature is to obtain the small crystal size the absence of template. The resulting zeolites were characterized by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), ammonia temperature-programmed desorption (NH3-TPD) and N2adsorption. Compared with micron-sized zeolite crystals synthesized by a one-step method, zeolite ZSM-5small particle aggregates prepared by the two-step method had higher specific surface area and equivalent acid amount. It is clear that the sample synthesized with the two-step method mainly had Br(?)nsted acid sites and less Lewis acid sites, indicating that the Al atom was incorporated into the framework of zeolite essentially.
     (2) ZSM-5zeolite synthesized with nucleation solution method:The effect of adding nucleation solution on the preparation of aggregate ZSM-5zeolite was studied by rotating autoclaves, completely without organic structure-directing agent. The influence on the crystallization rate and particle size was systematically investigated. Physicochemical characteristics derived from XRD, SEM, and N2adsorption. It is indicated that the crystallization rate of the ZSM-5zeolite was increased by the addition of nucleation solution. The crystallization time with adding33.3wt%nucleation solution is24h while without adding nucleation solution is48h. Adding33.3wt%nucleation solution, after crystallization at150℃for24h, the average size of aggregate was increased from5.5μm to26.3μm, the specific surface from292m2/g to394m2/g. The mechanism of the crystal growth of aggregate zeolite ZSM-5 without organic template by nucleation solution method was also discussed in this work.
     (3) The crystal transformation of zeolite ZSM-5and mordenite in the absence of organic structure-directing agent was studied in this paper. Zeolite crystals were synthesized at the lower temperature (150℃) by adding nucleation solution prepared at the higher temperature (190℃) into the mother solution. The effects of the ratio and the nucleation time of the nucleation solution, and the ratio of the mother solution on crystal transformation between ZSM-5and mordenite were investigated. By changing the overall SiO2:Al2O3ratio of the whole synthesis solution, the transformation between zeolite ZSM-5and mordenite could be controlled effectively. The Na2O:SiO2ratio of0.18was a boundary between the ZSM-5phase and mordenite phase when the composition of the whole synthesis solution was100SiO2:2.5Al2O3:4000H2O. Let Na2O:SiO2>0.18by altering the composition of the mother solution, the ZSM-5product formed at the higher temperature nucleation stage could be transformed into mordenite crystals at the lower temperature (150℃) crystallization stage; Let Na2O:SiO2<0.18, co-crystalline of ZSM-5and mordenite product obtained at the higher temperature nucleation stage could be transformed into ZSM-5crystals at the lower temperature crystallization stage. The precondition of crystal transformation between ZSM-5and mordenite was that the crystallinity of crystals formed at the higher temperature nucleation stage must be<30%. The crystal morphology of products changed with increasing the Na2O:SiO2ratio in the whole solution.
     (4) Dispersive and sub-micro ZSM-5zeolites were prepared with a new base source step-feeding method. It was reported a new base source step-feeding method for obtaining dispersive and sub-micro ZSM-5zeolites. Physicochemical characteristics derived from XRD, NMR, SEM/TEM, DLS and N2adsorption. The effects of addition of H2O2and NaOH during the synthesis process were studied. It indicated that highly dispersed ZSM-5zeolites with400-500run and high crystallinity were aqcuired with alkalinity control method. The specific surface is396m2/g. The Al atom was incorporated into the framework of zeolite essentially.
     (5) Hydration of cyclohexene catalyzed by ZSM-5zeolites:The effect of acid properties and acid amount on catalytic activity for hydration of cyclohexene were also investigated. It is found that hydration of cyclohexene was mainly depended on the Bronsted acid sites.
引文
[1]刘伯元.沸石及其开发应用,地质与勘探,1994.30:21
    [2]IUPAC Manual of Symbols and Terminoaogy, Appendix2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem.,1972,31:578.
    [3]中科院大连化学物理研究所分子筛组.沸石分子筛,北京科学出版社,1978.
    [4]佘振宝,宋乃忠.沸石加工与应用,北京:化学工业出版社,2005.
    [5]M. A. Camblor, A. Corma, S. Valencia. Synthesis in fluoride media and characterisation of aluminosilicate zeolite Beta, J. Mater. Chem.,1998,8:2137
    [6]A. Mosca, J. Hedlund, P. A. Webley, M. Grahn, F. Rezaei. Structured zeolite NaX coatings on ceramic cordierite monolith supports for PSA applications, Micropor. Mesopor. Mater.,2010, 130:38
    [7]Y. Teraoka, Y. Motoi, H. Yamasaki, A. Yasutake, J. Izumi, S. Kagawa. In progress in zeolite and microporous materials, Stud. Surf. Sci. Catal,1997,105:1787.
    [8]K. Cho, H. S. Cho, L. C. de Menorval, R. Ryoo. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application, Chem. Mater., 2009,21:5664
    [9]谢素娟,彭建彪,徐龙伢,吴治华,王清遐.以环己胺为模板剂的ZSM-35分子筛的合成及其催化性能,催化学报,2003,24:531
    [10]S. Y. Sang, F. X. Chang, Z. M. Liu. C. Q. He, Y. L. He. L. Xu. Difference of ZSM-5 zeolites synthesized with various templates, Catal. Today,2004,93:729
    [11]E. M. Flanigen. J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner, J. V. Smith. Silicalite, a new hydrophobic crystalline silica molecular-sieve, Nature,1978,271: 512.
    [12]R. M. Barren Hydrothermal Chemistry of Zeolites. Academic Press, London and New York, 1982.
    [13]J. Robert. A. George, R. Landolt. US 3702886,1972
    [14]徐如人,庞文琴等著.分子筛与多孔材料化学.科学出版社,2004.
    [15]施尔畏,陈之战,元如林等著.水热结晶学.科学出版社,2004
    [16]K. Mae, Rosinski. US 4151189,1979
    [17]Ball et al. US 4376104,1983
    [18]S. P. A. Montedison. GB 2114110,1983
    [19]赵修松,王清遐,李宏愿.沸石合成进展,化工进展,1994,5:32
    [20]李赫亘,项寿鹤,刘述全.CN 85100463,1988
    [21]赵杉林,张扬建,孙桂大,翟玉春.ZSM-5沸石分子筛的微波辐射法合成与表征,石油学报(石油加工),1999,15:89
    [22]Robert W. Grow, Edith M. Flanigen. US 4257885,1981
    [23]V. P. Shiralkar, A. Clearfield. Synthesis of ZSM-5 in clear solution, Zeolites,1989,9:363
    [24]R. Szostak. Molecular sieves:Principles of synthesis and identification. VanNostrand Reinhold,1989
    [25]徐文肠,李文渊,曹景慧.在12NaF-Na2O-.Al2O3-SiO2-H2O体系中合成ZSM-5沸石的研究,石油化工,1983,12:739
    [26]D M Bible, M P Dale. Synthesis of silicate-sodalite from non-aqueous systems, Nature,1985, 11:317
    [27]Chemische Werke Huls. DE 3239054,1984
    [28]S. Mintova, V. Valtchev. Synthesis of zeolite with MFI structures, Zeolites,1993,13:299
    [29]Rollmann, US 4108881,1978
    [30]窦涛,冯芳霞,萧墉壮.ZSM-5沸石的合成及表征.石油学报(石油加工),1997,13:100
    [31]N. Kanno, M. Miyake, M. Sato. Synthesis of ZSM-48 and ZSM-5 in glycerol solvent, Zeolites,1994,14:223
    [32]P. Chu, F.G Dwyer, J.C. Vartuli. Crystallization of zeolites using microwave radiation. Zeolites,1991,11:298
    [33]Ball, et al. US 4346021,1982
    [34]M.M.鸟尔福逊著.中国科学院生物物理研究所晶体结构分析组译.X射线晶体学导论.科学出版社,1981
    [35]王中南,殷行知,薛用芳.小晶粒ZSM-5沸石的合成及其晶型的研究,石油化工,1983,12:123
    [36]A. Nastro, L. B. Sand. Zeolite synthesis in systems containing organic cations, Zeolites,1982, 2:57
    [37]R. Mostowicz, L. B. Sand. Use of natural products for zeolite synthesis, Zeolites,1983,3: 219
    [38]J. Kornatowski. Growth of large crystals of ZSM-5 zeolites, Zeolites,1988,8:77
    [39]M. Williams, P. John, W. Sigal et al. US 4.908,342,1990
    [40]王基铭,袁晴棠主编.石油化工技术进展.中国石化出版社,2002
    [41]孙慧勇,胡津仙,王建国等.小晶粒FeZSM-5分子筛合成过程中晶粒大小和分布的控制,石油化工,2001,3:30
    [42]胡津仙,李永旺,相宏伟等.CN 200109593,2001
    [43]S. Klocke, J. Donald. US 5,240,892,1993
    [44]M. Beck, S. Jeffrey, Kennedy et al. US 6,180,550,2001
    [45]M. Yanmamura Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization, Zeolites,1994,14:643
    [47]W. Zhang, X. Bao, X. Guo, A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catal Lett,1999,69:89
    [48]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究I.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程,石油学报(石油加工),1994,10:38
    [49]S. B. Pu, T. Inui. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylphthalene isomerization, Zeolites,1996,17:334
    [50]W. P. Zhang, X. W. Han, X. M. Liu, et al. The stability of nanosized HZSM-5 zeolite:a high-resolution solid-state NMR study. Micropor. Mesopor. Mater.,2001,50:13
    [51]王岚,孟霜鹤,谭志诚等.纳米分子筛ZSM-5的热稳定性研究,催化学报,2001,22:491
    [52]M. A. Uguina, A. Delucas, F. Ruiz, D. P. Serrano. Synthesis of ZSM-5 from ethanol-containing systems-influence of the gel composition, Ind. Eng. Chem. Res.,1995,34: 451
    [53]S. D. Kim, S. H. Noh, J. W. Park, W. J. Kim. Organic-free synthesis of ZSM-5 with narrow crystal size, distribution using two-step temperature process. Micropor. Mesopor. Mater.,2006, 92:181
    [54]S. D. Kim, S. H. Noh. K. H. Seong. W. J. Kim. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring, Micropor. Mesopor. Mater.,2004,72:185
    [55]V. P. Shiralkar. A. Clearfield. Synthesis of the molecular-sieve ZSM-5 without the aid of templates, Zeolites,1989,9:363
    [56]N. Y. Kang, B. S. Song, C. W. Lee, W. C. Choi, K. B. Yoon, Y. K. Park. The effect of Na2SO4 salt on the synthesis of ZSM-5 by template free crystallization method, Micropor. Mesopor. Mater.,2009,118:361
    [57]Y. Cheng, R. H. Liao. Synthesis research of nanosized ZSM-5 zeolites in the absence of organic template, J. Mater. Process. Technol,2008,206:445
    [58]Y. Cheng, R.H. Liao. Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template, Mater. Lett.,2005,59:3427
    [59]F. J. Machado, C. M. Lopez, M. A. Centeno, C. Urbina. Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites, Appl. Catal. A,1999,181:29
    [60]H. Kalipcilar, A. Culfaz. Influence of nature of silica source on template-free synthesis of ZSM-5, Cryst. Res. Technol.,2001,36:1197
    [61]R. Gilles, M. Torsten. Comparing synthesis routes to nano-crystalline zeolite ZSM-5, Micropor. Mesopor. Mater.,2003,57:83
    [62]G. Majano, A. Darwiche, S. Mintova,V. Valtchev. Seed-induced crystallization of nanosized Na-ZSM-5 crystals, Ind. Eng. Chem. Res.,2009,48:7084
    [63]N. Ren, Z.J. Yang, X.C. Lv, J. Shi, Y.H. Zhang, Y. Tang. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology, Micropor. Mesopor. Mater.,2010,131:103
    [64]N. Ren, Z.J. Yang, X.C. Lv, J. Shi, Y.H. Zhang, Y. Tang. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1:Influence of alkalinity on the structural, particulate and chemical properties of the products, Micropor. Mesopor. Mater. 2010,131:103
    [65]Y. Hu, C. Liu, Y. Zhang, N. Ren, Y. Tang. Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size, Micropor. Mesopor. Mater.,2009,119:306
    [66]A.纪尼叶著.施士元译.X射线晶体学,科学出版社,1959
    [67]苏克曼,潘铁英,张玉兰.波谱解析法,华东理工大学出版社,2002
    [68]W. Held, A. Kpnig, T. Richter, L. Pupper. Rearrangement of cationic sites in CuH-ZSM-5 and reactivity loss upon high-temperature calcination and steam aging, SAE Paper.1990,90:496
    [69]M. Shelef. Selective catalytic reduction of nox with n-free reductants, Chem. Rev.1995,95: 209
    [70]M. Iwamoto, H. Yahiro. Recent progress in novel catalytic removal of nitrogen monoxide-preface, Catal. Today.1994,22:5
    [71]Y. Traa, B. Burger, J.Weitkamp. Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons, Micropor. Mesopor. Mater.1999,30:3
    [72]T. Miyadera. Reactions of methylcyclohexane on bifunctional zeolite catalysts, Appl. Catal. B, 1993,2:199
    [73]Z. Li, M. Flytzani-Sterhanopoulos. Silica-included heteropoly compounds as solid acid catalysts, Appl. Catal. A,1997,165:15
    [74]Z. Li, M. Flytzani-Sterhanopoulos. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy, J. Catal.,1999,182:313
    [75]K.Masuda, K. Tsujimura, K. Shinoda, T. Kato. Time stability of liquid xenon photoionization detectors, Appl. Catal. B,1996,8:33
    [76]K. Masuda, K. Shinoda, T. Kato, K. Tsujimura, Template-free secondary growth synthesis of MFI type zeolite membranes, Appl. Catal. B,1998,15:29
    [77]A. Shichi, Y. Kawamura, A. Satsuma. T. Hattori. Influence of hydrocarbon molecular size on the selective catalytic reduction of NO by hydrocarbons over Cu-MFl zeolite, Stud. Surf. Sci. Catal.,2001,135:172
    [78]S. Satokawa. Enhancing the NO/C3H8/O2 reaction by using H2 over Ag/AlO3 catalysts under lean-exhaust conditions, Chem. Lett.,2000,3:294.
    [79]S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma, T. Hattori. Promotion effect of hydrogen on surface steps in SCR of NO by propane over alumina-based silver catalyst as examined by transient FT-IR, Appl. Catal. B,2003.42:179.
    [80]J. Shibata, K. Shimizu. S. Satokawa, A. Satsuma, T. Hattori, Removal of sulfur compounds from natural gas by adsorption on Ag-exchanged zeolites for PEFC, Phys.Chem. Chem. Phys., 2003.5:2154.
    [81]陈冠荣.化工百科全书.化学工业出版社,1994,7:413
    [82]H. J. Hepp. Cyclopentol and cyclohexanol. US 2414646,1947
    [83]O. Mitsui, Y. Fukuoka. Cycloalkanols. JP 209150.1983.
    [84]Asahi chemical industry Co.,Ltd. Cyclic alcohols. JP 60104031 A,1985
    [85]F. J. Waller. Hydration of cyclohexene in presence of perfluorosulfonic acid polymer. US 4595786 A,1986
    [86]M. Jojo, Y. Fukuoka. Process for preparation of cycloalkahols. JP 61180735A,1986
    [87]M. Jojo, Y. Fukuoka. Liquid-phase regeneration of olefin hydrataion zeolite catalysts. JP61234945 A,1986
    [88]T. Makot, M. Fujio, N. shuichi, S. Kazuo, I. Sumi. Amorphous niobium oxide-silica catalyst and preparation of cyclohexanol from cyclohexene using the catalyst. JP 63267438,1988
    [89]F. Hiroshi, M. Fujinao, K. Masao. Preparation of cycloalkanols by catalytic hydration of cycloalkenes. JP 02040334,1990
    [90]H. J. Panneman, A. A. C. M. Beeneckers. Solvent effects on the hydration of cyclohexene catalyzed by a strong acid ion-exchange resin.1.Solubility of cyclohexene in aqueous sulolane mixtures, Ind. Eng. Chem. Res.,1992,31:1227
    [91]H. J. Panneman, A. A. C. M. Beeneckers. Solvent effects on the hydration of cyclohexene catalyzed by a strong acid ion-exchange resin.2. Effect of sulolane on the reaction kinetics, Ind. Eng. Chem. Res.,1992,31:1425
    [92]H. J. Panneman, A. C. M. Beeneckers. Solvent effects on the hydration of cyclohexene catalyzed by a strong acid ion-exchange resin.3. Effect of sulolane on the equilibrium conversion, Ind. Eng. Chem. Res.,1995,27:128
    [93]H. Ishida, Y. Fukuoka, O. Mitsui, M. Kono. Liquid-phase hydration of cyclohexene with highly silicious zeolites, Stud. Surf. Sci.Catal,1994,83:473
    [96]M. Kralik, M. Hronec, M. Kucera, V. Macho. Hydration of olefins and cycloolefins over solid, Petrol. Coal,1995,37:60
    [97]M. Moryasu, T. Setoyama, T. Takewaki, T. Yamaguchi, N. Fujita, T. Maki. Preparation of cycloalkanols by hydration of cycloalkenes. JP 08176041,1996
    [98]M. Tezuka, M. Kujime. Continuous preparation of cyclic alcohols by hydration of cyclic olefins. JP 10218812,1998
    [99]M. Ban, M. Iwasaki. Method for separation of cyclic alkohols after preparation by the contact hydration reaction. JP 11080056,1999
    [100]H. Ogawa, X. Hao. Hydration of cyclohexene by alkyl-immobilized HZSM-5 catalyst in decalin-water system, Catal. Lett.,1998,55:121
    [101]Y. Mori, M. Fayette, K. Takayashiki, T. Matsuoka. Random-walk simulation for deactivated zeolite used in cyclohexene hydration, Stud. Surf. Sci. Catal,1999,121:485
    [102]U. Mueller, T. Hill, J. Henkelmann, A. Boettcher, E. Zeller. Hydration process and zeolite catalysts for the production of an alcohol from an alkene and water, Stud. Surf. Sci.Catal., 2001,12:80
    [103]D. Nuntasri, P. Wu, T. Tatsumi. Highly selective formation of cyclopentanol through liquid-phase cyclopentene hydration over MCM-22 catalysts, Chem. Lett.,2002,33:224
    [104]H. Zhang, S. M. Mahajani, M. M. sharma, T. Sridhar. Hydration of cyclohexene with solid catalysts, Chem. Eng. Sci.,2002,57:315
    [105]F. Steyer, Q. Zhiwen, K. Sundmacher. Synthesis of cyclohexanol by three-phase reactive distillation:influence of kinetics on phase equilibria, Chem. Eng. Sci.,2002,57:1511
    [106]高松义和,金岛节隆.生产环己醇的方法.CN1414933A,2003
    [107]W.佩舍尔,T.阿德里安,H.鲁斯特,A.波特歇尔,T.希尔,U.穆勒尔,R.帕普.由苯制备环己醇的方法,CN1272292C,2006
    [108]王殿中,舒兴田,何鸣元.一种ZSM-5结构沸石其制备和应用.CN1257840C,2006
    [109]王殿中,冯强,舒兴田何鸣元.一种小晶粒ZSM-5沸石的制备方法.CN1257840C.2006
    [110]马丙丽,淳远,周炜,潘剑,须沁华,董家绿.新型两亲性HZSM-5沸石催化剂对环己烯水合相界面反应的催化性能,高等学校化学学报,2005,26:731
    [111]王殿中,舒兴田,何鸣元.环己烯水合制备环己醇的研究I.分子筛结构及晶粒大小的影响,催化学报,2002,23:503
    [112]杨付,陈光文,李恒强,郭新闻,王祥生.带有徽混合器固定床反应器中的环己烯水合反应.催化学报,2006,27:459
    [113]景国耀,于新功,李海涛.环己烯水合催化剂消耗大的原因分析及对策,河南化工,2006.23:37
    [114]吴济民,吴亚萍,吴爱民,苏天宝.环己烯水合催化剂再生的研究和优化,石油与天然气化工,2005,34:245
    [115]马希平,胡延韶,顾书敏,吴建伟.环己烯水合反应工艺研究及参数优化,化工科技,2003,11:35
    [1]C. P. Nicolaides, H. H. Kung, N. P. Makgoba, N. P. Sincadu, M. S. Scurrell. Characterization by ammonia adsorption microcalorimetry of substantially amorphous or partially crystalline ZSM-5 materials and correlation with catalytic activity, Appl. Catal. A,2002,223:29
    [2]Y. G. Adewuyi, D. J. Klocke, J. S. Buchanan. Effect of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) RE-USY catalyst, Appl. Catal. A,1995,131:121
    [3]R. J. Argauer, G. R. Landolt. US 3 702 886.1972
    [4]L. Tosheva, V. P. Valtchev. Nanozeolites:Synthesis, crystallization mechanism, and applications, Chem. Mater.,2005,17:2494
    [5]杨建华,于素霞,胡慧晔,初乃波,鲁金明,殷德宏,王金渠.无第二模板剂法合成多级结构ZSM-5分子筛微球及其在甲烷无氧芳构化反应中的应用,催化学报,2011,32:362
    [6]于素霞,杨建华,初乃波,李刚,鲁金明,王金渠.多级结构ZSM-5沸石分子筛的合成及其Mo基催化剂在甲烷无氧脱氢芳构化中的应用,催化学报,2009,30:1035
    [7]Y. H. Ma, H. L. Zhao, S. J. Tang, J. Hu, H. L. Liu. Thermal Diffusion Synthesis and Characterization of SnO2 Clusters within ZSM-5 Crystals, Acta. Phys. Chim. Sin.,2011,27: 689
    [8]黄少云,葛学贵,石磊.微孔/介孔复合分子筛的合成及其对CO2的吸附性能,物理化学学报,2010,26:1705
    [9]刘百军,曾贤君ZSM-5/ZSM-57复合分子筛催化剂上混合C4烃的催化转化反应,物理化学学报,2009,25:1921
    [10]C. P. Nicolaides, N. P. Sincadu, M. S. Scurrell. NAS (novel aluminosilicates) as catalysts for the aromatisation of propane-Studies of zinc and gallium modified zeolite-based systems having various extents of XRD crystallinity, Catal. Today,2002,71:429
    [11]C. S. Trianta, A. G. Vlessidis, L. Nalbandian, N. P. Evmiridis. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites, Micropor. Mesopor. Mater.,2001,47:369.
    [12]S. T. Kostas, N. Lori, N. T. Pantelis, K. L. Athanasios. Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials, Micropor. Mesopor. Mater.,2004,75:89
    [13]R. W. Grose, E. M. Flanigen. US 4 257 885.1981
    [14]C. J. Plank, E. J. Rosinski. US 5 102 644.1992
    [15]D. J. Klocke. US 5 240 892.1993
    [16]孟祥举,谢彬,肖丰收.晶种导向剂法制备纳米ZSM-5沸石,催化学报,2009,30:965
    [17]N. P. Martinez, J. A. Lujano, N. Alvarez, F. Machado, Lopez C M. US 5 254 327.1993
    [18]N. Y. Kang, B. S. Song, C. W. Lee, W. C. Choi, K. B. Yoon, Y. K. Park. The effect of Na2SO4 salt on the synthesis of ZSM-5 by template free crystallization method, Micropor. Mesopor. Mater.,2009,118:361
    [19]H. Kalipcilar, A. Culfaz. Influence of Nature of Silica Source on Template-Free Synthesis of ZSM-5, Cryst. Res. Technol.,2001,36:1197
    [20]F. J. Machado, C. M. Lopez, M. A. Centeno, C. Urbina. Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites, Appl. Catal. A,1999,181:29
    [21]W. Han, Y. X. Jia, G. X. Xiong, W. S. Yang. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol-gel method, Sci. Technol. Adv. Mater.,2007,8:101
    [22]M. A. Uguina, A. Delucas, F. Ruiz, D. P. Serrano. Synthesis of ZSM-5 from ethanol-containing systems-influence of the gel composition, Ind. Eng. Chem. Res.,1995,34: 451
    [23]V. P. Shiralkar, A. Clearfield. Synthesis of the molecular-sieve ZSM-5 without the aid of templates, Zeolites,1989,9:363
    [24]S. D. Kim, S. H. Noh, K. H. Seong, W. J. Kim. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring, Micropor. Mesopor. Mater.,2004,72:185
    [25]H. Y. Sun, J. G. Wang, J. X. Hu, J. L. Zhou. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol-gel method, Catal. Lett.,2000,69:245
    [26]Y. S. Li, X. F. Zhang, J. Q. Wang. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis, Sep. Purif. Technol.,2001,25:459
    [27]M. Pan, Y. S. Lin. Template-free secondary growth synthesis of MFI type zeolite membranes, Micropor. Mesopor. Mater.,2001,43:319
    [28]马跃龙,陈诵英,彭少逸,张慧宁.分子筛成核和晶体生长动力学研究,石油加工,1997,13:54
    [29]S. D. Kim, S. H. Noh, J. W. Park, W. J. Kim. Organic-free synthesis of ZSM-5 with narrow crystal size, distribution using two-step temperature process, Micropor. Mesopor. Mater.,2006, 92:181
    [1]C.P. Nicolaides, H.H. Kung, N.P. Makgoba, N.P. Sincadu, M.S. Scurrell, Characterization by ammonia adsorption microcalorimetry of substantially amorphous or partially crystalline ZSM-5 materials and correlation with catalytic activity, Appl. Catal. A,2002,223:29.
    [2]Y.G. Adewuyi, D.J. Klocke, J.S. Buchanan, Effect of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) RE-USY catalyst, Appl. Catal. A,1995,131:121.
    [3]R.J.Argauer, G.R.Landolt, US 3 702 886,1972.
    [4]R.W. Grose, E.M.Flanigen, US Pat.4,257,885,1981.
    [5]F.J. Machado, C.M. Lopez, M.A. Centeno, C. Urbina, Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites, Appl. Catal. A,1999,181:29.
    [6]S.D. Kim, S.H. Noh, K.H. Seong, W.J. Kim, Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring, Micropor. Mesopor. Mater.,2004,72:185.
    [7]Y. Cheng, R. H. Liao, J. S. Li, X. Y. Sun, L. J. Wang. J. Mater. Process. Technol,2008,206: 445
    [8]周群,裘式纶,庞文琴.导向剂法合成p沸石的晶化机制研究,高等学校化学学报,2000,21:1
    [9]Y. Kamimura, S. Tanahashi, K. Itabashi, A. Sugawara, T. Wakihara, A. Shimojima, T. Okubo, J. Phys. Chem. C,2011,115:744
    [10]N. P. Evmiridis, S. Y. Yang, Synthesis of zeolite beta in presence of fluorides:Influence of alkali cations, Stud. Surf. Sci. Catal.,1995,94:341
    [11]E.J. Edwin, N.J. Elmer, US Pat 3,492,090,1970
    [12]H. Miyazaki, J. Arika, M. Aimoto, US Pat 4,678,651,1987.
    [13]周群,李宝宗,袭式纶,庞文琴.导向剂法合成低硅铝比β沸石,高等学牧化学学报,1999,20:693
    [14]熊晓云,范峰滔,马军,李彩今,刘淑真,冯兆池,梁德声,李守贵,肖丰收.用高效NaY沸石导向剂快速合成A型沸石,高等学校化学学报,2007,28:21
    [15]G Majano, A. Darwiche, S. Mintova,V. Valtchev, seed-induced crystallization of nanosized Na-ZSM-5 crystals, Ind. Eng. Chem. Res.,2009,48:7084
    [16]王德举,李学礼,刘仲能,谢在库.晶种导向剂法制备纳米ZSM-5沸石,工业催化,2008,16:19
    [17]N. Ren, Z.J. Yang, X.C. Lv, J. Shi, Y.H. Zhang, Y. Tang, Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1:Influence of alkalinity on the structural, particulate and chemical properties of the products, Micropor. Mesopor. Mater., 2010,131:103
    [18]N. Ren, J. Bronic, B. Subotic, X. C. Lv, Z. J. Yang, Y. Tang. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1:Influence of alkalinity on the structural, particulate and chemical properties of the products, Micropor. Mesopor. Mater., 2011,139:197
    [19]N. Ren, J. Bronic, B. Subotic, X. C. Lv, Z. J. Yang, Y. Tang. Micropor. Mesopor. Mater.,2012, 147:229
    [20]X. L. Huang, Z. B. Wang, Synthesis of zeolite ZSM-5 small particle aggregates with a two-step method in the absence of an organic template, Chin. J. Catal.,2011,32:1702
    [1]R. J. Argauer, G. R. Landolt. US 3 702 886,1972
    [2]M. A. Uguina, A. Delucas, F. Ruiz, D. P. Serrano. Synthesis of ZSM-5 from ethanol-containing systems:Influence of the gel composition. Ind. Eng. Chem. Res.,1995,34:451
    [3]S. D. Kim, S. H. Noh, J. W. Park, W. J. Kim. Organic-free synthesis of ZSM-5 with narrow crystal size, distribution using two-step temperature process, Micropor. Mesopor. Mater.,2006, 92:181
    [4]王德举,李学礼,刘仲能,谢在库.晶种导向剂法制备纳米ZSM-5沸石,工业催化,2008,16:19
    [5]H. H. Pan, Q. X. Pan, Y. S. Zhao, Y. B. Luo, X. T. Shu, M. Y. He. A green and efficient synthesis of ZSM-5 using NaY as seed with mother liquid recycling and in the absence of organic template, Ind. Eng. Chem. Res.,2010,49:7294
    [6]N. Ren, J. Bronic, B. Subotic, X. C. Lv, Z. J. Yang, Y. Tang. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1:Influence of alkalinity on the structural, particulate and chemical properties of the products, Micropor. Mesopor. Mater., 2011,139:197
    [7]C. S. Trianta, A. G. Vlessidis, L. Nalbandian, N. P. Evmiridis. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites, Micropor. Mesopor. Mater.,2001,47:369
    [8]M. A. Ali, B. Brisdon, W. J. Thomas. Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios, Appl. Catal. A,2003,252:149
    [9]L. Tosheva, V. P. Valtchev. Nanozeolites:Synthesis, crystallization mechanism, and applications. Chem. Mater.,2005,17:2494
    [10]K. Kordatos, S. Gavela, A. Ntziouni, K. N. Pistiolas, A. Kyritsi, V. Kasselouri-Rigopoulou, Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash, Micropor. Mesopor. Mater.,2008,115:189
    [11]J. Wu, Y. Wang, F. Huang, Y. Yang, C. G. Meng. Thermal Diffusion Synthesis and Characterization of SnO2 Clusters within ZSM-5 Crystals, Acta. Phys. Chim. Sin.,2010,26: 1705
    [12]A. A. Rownaghi, J. Hedlund. Methanol to Gasoline-Range Hydrocarbons:Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5, Ind. Eng. Chem. Res.,2011,50:11872
    [13]刘百军,曾贤君ZSM-5/ZSM-57复合分子筛催化剂上混合C4烃的催化转化反应,物理化学学报,2009,25:1921
    [14]于素霞,杨建华,初乃波,李刚,鲁金明,王金渠.多级结构ZSM-5沸石分子筛的合成及其Mo基催化剂在甲烷无氧脱氢芳构化中的应用,催化学报,2009,30:1035
    [15]杨建华,于素霞,胡慧晔,初乃波,鲁金明,殷德宏,王金渠.无第二模板剂法合成多级结构ZSM-5分子筛微球及其在甲烷无氧芳构化反应中的应用,催化学报,2011,32:362
    [16]R. W. Grose, E. M. Flanigen. US 4 257 885.1981
    [17]V. P. Shiralkar, A. Clearfield. Synthesis of the molecular-sieve zsm-5 without the aid of templates, Zeolites,1989,9:363
    [18]A. R. Pradhan, N. Viswanadham, S. Suresh, O. P. Gupta, N. Ray, G. Muralidhar, U. Shanker, T. Rao, Aromatisation of n-heptane over ZSM-5 prepared without the aid of a template, Catal Lett.,1994,28:231
    [19]F. J. Machado, C. M. Lopez, M. A. Centen, C. Urbina. Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites, Appl. Catal. A,1999,181:29
    [20]S. D. Kim, S. H. Noh, K. H. Seong, W. J. Kim. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring, Micropor. Mesopor. Mater.,2004,72:185
    [21]W. Han, Y. X. Jia, G. X. Xiong, W. S. Yang. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol-gel method, Sci. Technol. Adv. Mater.,2007,8:101
    [22]Y. Cheng, R. H. Liao, J. S Li, X. Y. Sun, L. J. Wang. Synthesis research of nanosized ZSM-5 zeolites in the absence of organic template, J. Mater. Process. Technol.,2008,206:445
    [23]X. L. Huang, Z. B. Wang, Synthesis of zeolite ZSM-5 small particle aggregates with a two-step method in the absence of an organic template. Chin. J. Catal.,2011,32:1702
    [24]N. Ren, J. Bronic, B. Subotic, Y. M. Song, X. C. Lv, Y. Tang. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 2:Influence of sodium ions and ageing of the reaction mixture on the chemical composition, crystallinity and particulate properties of the products, Micropor. Mesopor. Mater.,2012,147:229
    [25]刘百军,曾贤君,王辉ZSM-5/ZSM-57复合分子筛催化剂上混合C4烃的催化转化反应, 物理化学学报,2007,23:503
    [26]彭建彪,谢素娟,王清遐,徐龙伢.几种分子筛转晶和混晶的控制及单一晶体的优化合成,催化学报,2002,23:363
    [1]P. A. Jacobs, E. G. Derouane, J. Weitkamp. Evidence for X-ray-amorphous zeolites, J. Chem. Soc. Chem.,1981,12:591
    [2]C. J. H. Jacobsen, C. Madsen, T. V. W. Janssens, H.J. Jakobsen, J. Skibsted. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si MAS NMR spectroscopy, Micropor. Mesopor. Mater.,2000,39:393
    [3]L. Tosheva, V. P. Valtchev. Nanozeolites:Synthesis, crystallization mechanism and applications, Chem. Mater.,2005,17:2494
    [4]C. P. Nicolaides, N. P. Sincadu, M. S. Scurrell. NAS (novel aluminosilicates) as catalysts for the aromatisation of propane Studies of zinc and gallium modified zeolite-based systems having various extents of XRD crystallinity, Catal. Today,2002,71:429
    [5]C. S. Trianta.llidis, A. G. Vlessidis, L. Nalbandian, N. P. Evmiridis. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites, Micropor. Mesopor. Mater.,2001,47:369
    [6]S. T. Kostas, N. Lori, N. T. Pantelis, K. L. Athanasios. Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials, Micropor. Mesopor. Mater.,2004,75:89
    [7]X. M. Yang, M. Y. He, X. T. Shu. CN 1081425A,1994.
    [8]V. P.Shiralkar, P. N. Joshi, M. J. Eapen. Synthesis of ZSM-5 with variable crystallite size and its influence on physicochemical properties, Zeolites,1991,11:511
    [9]C. Madsen., J. Cacobsen. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis, Chem. Commun.,1999,8:673
    [10]H. T. Wang, Z. B. Wang, Y. S. Yan. Colloidal suspensions of template-removed zeolite nanocrystals, Chem. Commun.2000,122:2333
    [11]Z. An, W. Tang, C. J. Hawker, G. D. Stucky. One-step microwave preparation of well-defined and functionalized polymeric nanoparticles, J. Am. Chem. Soc.,2006,128:15054
    [12]M. Pohl, S. Hogekamp, N. Q. Hoffmann, H. P. Schuchmann. Dispersion and deagglomeration of nanoparticles with ultrasound, Chem. Ing. Tech.,2004,76:392
    [13]W. D. Pandolfe. Development of the new gaulin micro-gap homogenizing valve, J. Dairy. Sci.,1982,65:2035
    [14]A. Kwade. Wet comminution in stirred media mills-research and its practical application, Powder Technol.,1999,105:14
    [15]S. Mende, F. Stenger, W. Peukert, J. Schwedes. Mechanical production and stabilization of submicron particles in stirred media mills, Powder Technol.,2003,132:64
    [16]M. Mebtoul, J. F. Large. P. Guigon. High velocity impact of particles on a target-An experimental study, Int. J. Miner. Process.,1996,44:77
    [17]T. Tatic, H. Ott, D. Stalke. Deaggregation of trimethylsilylmethyllithium, Eur. J. Inorg. Chem. 2008,23:3765
    [18]R. W. Grose, E. M. Flanigen. US 4 257 885,1981
    [19]C. J. Plank, E. J. Rosinski. US 5 102 644,1992
    [20]D. J. Klocke. US 5 240 892,1993
    [21]N. P. Martinez, J. A. Lujano, N. Alvarez, F. Machado, C. M Lopez. US 5254327,1993
    [22]N. Y. Kang, B. S. Song, C. W. Lee, W. C. Choi. The effect of Na2SO4 salt on the synthesis of ZSM-5 by template free crystallization method, Micropor. Mesopor. Mater.,2009,118:361
    [23]H. Kalipcilar, A. Culfaz. Influence of nature of silica source on template-free synthesis of ZSM-5. Cryst. Res. Technol.,2001,36:1197
    [24]F. J. Machado, C. M. Lopez, M. A. Centeno, C. Urbina. Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites, Appl. Catal. A,1999,181:29
    [25]W. Han, Y. X. Jia, G. X. Xiong, W. S. Yang. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol-gel method, Sci. Technol. Adv. Mater.,2007,8:101
    [26]S. D. Kim, S. H. Noh, K. H. Seong, W. J. Kim. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring. Micropor. Mesopor. Mater.,2004,72:185
    [27]Huang Xianliang, Wang Zhengbao. Synthesis of zeolite ZSM-5 small particle aggregates with a two-step method in the absence of an organic template. Chin. J. Catal.2011.32:1702
    [28]J. Brian. Mesoporous and mesostructured materials for optical applications, Zeolite,1995,12: 213
    [29]R. Ryoo, J. M. Kim. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium, J. Chem. Soc., Chem. Commun.,1995,711
    [30]李志良,支建平,张威,胡青霞,张玉林.分段投碱法合成低硅X型沸石分子筛,硅酸盐学报,2008,36:246
    [31]W. Schmidt, U. Wilczok. Preparation and morphology of pyramidal MFI single-crystal segments. J. Phys. Chem. B,2007,111:13538
    [32]C. Claudiu, W. Schmidt. Generation of hierarchical pore systems in the titanosilicate ETS-10 by hydrogen peroxide treatment under microwave irradiation. Chem. Commun.,2006,32:882
    [33]S. D. Kim, S. H. Noh, K. H. Seong, W.J. Kim. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring, Micropor. Mesopor. Mater.,2004,72:185
    [34]M. Torsten, P. Steffen. Reactions of methylcyclohexane on bifunctional zeolite catalysts, Ind. Eng. Chem. Res.2001,40:2573
    [1]S. Namba, N. Hosonuma, T. Yashima. Catalytic application of hydrophobic properties high-silica zeolites:Hydrolysis of ethyl-acetate in aqueous solution, Catal.Today,1981,72: 16
    [2]K. Segawa, M. Sakaguchi, S. Nakata, S. Asaoka. Acidic and hydrophobic properties of mordenite and ZSM-5 as a function of Si/Al ration, Nippon Kagaku Kaishi,1989,3:528
    [3]F. Fajura, R. Ibarra, F. Figueras, C. Gueguen. Hydration of normal-butenes using zeolite catalysis, Catal.Today,1984,89:60
    [4]T. Hanaoka, K. Takeuchi, T. Matsuzaki, Y. Sugi. Hydrogenation of carbon monoxide over highly dispersed cobalt catalysts derived from cobalt (Ⅱ) acetate, Catal. Today,1994,28:251
    [5]Y. Izumi, M. Ono, M. Ogawa, K. Urabe. Acidic cesium salts of keggin-type heteropolytungstic acids as insoluble solid acid catalysis for esterification and hydrolysis reactions, Chem. Lett., 1993,5:825
    [6]Y. Izumi, M. Ono, M. Kitagawa, M. Yoshida, K. Urabe. Silica-included heteropoly compounds as solid acid catalysts, Micropor. Mater.,1995,5:255
    [7]Y. Izumi. Hydration/hydrolysis by solid acids, Catal. Today,1997,33:371
    [8]H. Ogawa, T. Fujigaki, J. Takahashi, T. Chihara. Catalysis at the toluene/water interface: Shape-selective hydrolysis of esters having some rings, lactones promoted by octadecyl immobilized H-ZSM-5 catalyst, Catal. Lett.,1996,41:177
    [9]H. Ogawa, T. Koh, K. Taya, T. Chihara. Catalysis at the toluene water interface-octadecyl immobilized H-ZSM-5 catalyst promoted hydrolysis of water-insoluble esters, J. Catal.,1994, 148:493
    [10]H. Ogawa, Y. Miyamoto, T. Fujigaki, T. Chihara. Ring-opening of 1,2-epoxyalkane with alcohols over H-ZSM-5 in liquid phase, Catal. Lett.,1996,40:253
    [11]H. Ogawa, K. Sawamura, T. Chihara. Influece of solvents on hydration of 1,2-epoxyhexane over H-ZSM-5-C18 catalyst, Catal. Lett.,1993,18:367
    [12]H. Ishida. New catalytic technologies in Japan, Petrotech.,1996,19:1030
    [13]H. Zhang, S.M. Mahajani, M.M. Sharma, T. Sridhar. Hydration of cyclohexene with solid acid catalysts, Chem. Eng. Sci.,2002,57:315
    [14]H. Ishida. Liquid-phase hydration process of cyclohexene with zeolites, Catalysis Surveys of Japan,1997,1:241
    [15]M. Sawa, M. Niwa, Y. Murakami. Solvent effects on the hydration of cyclohexene catalyzed by a strong acid ion-exchange resin.3. Effect of sulfolane on the equilibrium conversion, Zeolites,1990,10:307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700