BAI-1在膀胱癌中的表达及对肿瘤血管抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分BAI-1在人膀胱移行上皮细胞癌组织中的表达及与P53、MVD、VEGF的相关性研究
     目的探讨BAI-1在不同分期膀胱移行上皮细胞癌(bladder transitional cell carcinoma、BTCC)中的表达差异以及BAI-1抑制肿瘤血管内皮增殖的机制。
     方法取人BTCC石蜡切片标本131例,正常膀胱粘膜组织石蜡切片标本28例。正常膀胱粘膜组织切片标本为对照组,人BTCC组织切片标本为研究组。采用免疫组织化学SP法分别检测BAI-1、VEGF、MVD、P53,进行半定量统计学分析。取临床新鲜BTCC组织标本21例,正常膀胱粘膜组织9例。应用Western blot方法分析BAI-1在BTCC组织及正常膀胱粘膜组织中的表达差异。
     结果免疫组化统计分析及western blot条带显示正常膀胱粘膜组织中BAI-1表达明显高于BTCC组织,并且与临床分期相关,T1局限期BTCC组织中BAI-1表达远高于T2-4进展期BTCC组织(P<0.05)。同时可以看到BAI-1表达与VEGF且有反相关性(r=-0.661,P=0.000);BAI-1与MVD表达具有反相关性(r=-0.406,P=0.002);BAI-1与P53表达具有反相关性(r=-0.675,P=0.000)。
     结论在BTCC组织中BAI-1含量较正常膀胱粘膜组织明显降低且与BTCC临床分期相关;BAI-1表达与VEGF、MVD成负相关,与突变型P53成负相关性。表明BAI-1可能参与了肿瘤微血管增殖的负调节,而其BAI-1的表达减少也可能与P53的突变相关。
     第二部分重组质粒载体pReceiver-M61-BAI1转染T24与HUVEC细胞株的效应研究
     目的构建并鉴定含有BAI-1基因的脂质体质粒载体pReceiver-M61-BAI1,并感染人膀胱癌细胞T24及人脐静脉血管内皮细胞HUVEC,研究其对T24和HUVEC生物学影响。
     方法将携有BAI-1基因的重组真核表达质粒pReceiver-M61-BAI1转化大肠杆菌DH5a并扩增,抽提纯化质粒并进行酶切鉴定,pReceiver-M61-BAI1体外转染T24和HUVEC细胞,筛选稳定转染的细胞并扩增培养,以转染了空质粒的T24和HUVEC细胞为对照,用Q-qPCR及Western blot检测基因mRNA及蛋白表达水平。应用流式细胞仪分别检测BAI1基因转染前后T24细胞和HUVEC细胞凋亡情况的变化,MTT法检测BAI-1基因转染前后T24细胞和HUVEC细胞的增殖情况。
     结果pReceiver-M61-BAI1的酶切鉴定证实含有目的基因BAI-1;T24和HUVEC细胞株在转染pReceiver-M61-BAI1为研究组,转染pReceiver-M61为对照组,利用Q-PCR技术检测,发现Q-PCR产物经凝胶电泳有明显的阳性条带,而对照组则无明显阳性条带;Western blot检测证实转染pReceiver-M61-BAI1的T24细胞和HUVEC细胞的BAI-1蛋白表达呈阳性;MTT检测发现HUVEC细胞在转染pReceiver-M61-BAI1后12、48、72h的吸光度值明显低于转染pReceiver-M61的对照组以及转染了pReceiver-M61-BAI1的T24细胞组。流式细胞学检测证实转染BAI-1的HUVEC凋亡率明显高于对照组和转染pReceiver-M61-BAI1的T24组。
     结论BAI-1具有明显的血管内皮细胞抑制作用,而在体外实验中未发现对膀胱癌T24细胞具有直接抑制作用。
Part I The expression of BAI-1in the bladder transitional cell carcinoma tissues and the correlation between BAI-1and p53、MVDand VEGF
     Objective:To investigate the different expression of different stages of BTCC. To investigate the mechanism of BAI-1the inhibits the proliferation of tumor endothelial cell.
     Methods:Paraffin section preparation of131cases of BTCC and28cases of normal bladder mucosal tissue were taken. Normal bladder mucosal tissue section was set as control group and BTCC tissue section was set as observe group. Immunohistochemical SP method was used to detect the expression of BAI-1, VEGF, MVD and p53, and semi-quantitative statistically analysis was use.21cases of BTCC and28cases of normal bladder mucosal tissue of fresh tissue samples were taken and western blot was used to detect the different expression of BAI-1between them.
     Result:The result of Immunohistochemical staining and western blot showed that the expression of BAI-1in normal bladder mucosal tissue was higher than that in BTCC tissue and the expression of BAI-1was correlated to clinical stages. The expression of BAI-1in BTCC tissue of T1stage was much higher than that of T2-4(P <0.05). The expression of BAI-1had negative relationship to the expression of VEGF (r=-0.661, P=0.000). The expression of BAI-1had negative relationship to the expression of MVD (r=-0.406, P=0.002). The expression of BAI-1had negative relationship to the expression of mutant type P53(r=-0.675,P=0.000)
     Conclusion:The content of BAI-1in BTCC tissue is much lower than that in normal bladder mucosal tissue. The content of BAI-1is related to the clinical stage of BTCC. The expression of BAI-1had negative relationship to the expression of VEGF, MVD and mutant type P53, which shows that BAI-1may participate in the negative regulation of proliferation of tumor micrangium. The reduction of the expression of BAI-1may relate to the mutant of P53.
     Part II the study of recombinant plasmid vector pReceiver-M61-BAI1transfect T24and HUVEC
     Objective:To construct and identify recombinant plasmid vector pReceiver-M61-BAI1that includes the gene of BAI-1for studying its role in human carcinoma cells of urinary bladder (T24) and human vascular endothelial cell of umbilical vein (HUVEC).
     Methods:Recombinant eukaryotic expression vector pReceiver-M61-BAI1was transformed and indentified. pReceiver-M61-BAI1was used to transfect T24and HUVEC and stable transfected cells were cultured. Null vector transfection was used as the control. RT-qPCR and Western blot were used to detect the expression of gene and protein. Flow cytometry was used to study the apoptosis of the T24and HUVEC before and after gene transfection. MTT was used to study the proliferation of the T24and HUVEC before and after gene transfection.
     Result:pReceiver-M61-BAI1identified by restriction enzyme cleave was verified including BAI-1gene. The RT-PCR product of pReceiver-M61-BAI1-T24cell and pReceiver-M61-BAI1-HUVEC cell showed obvious positive stripe by gel electrophoresis,which was not observed in the control group. The result of Western blot showed that the positive cells rate of BAI-1in pReceiver-M61-BAI1-T24cell and pReceiver-M61-BAI1-HUVEC cell were much higher than that of the control group. The result of MTT showed that the absorbance value A of the pReceiver-M61-BAI1-HUVEC cell at the second day, the third day and forth day were much lower than that of the control group and pReceiver-M61-BAI1-T24cell group. The result of flow cytometry showed that the apoptosis rate of HUVEC transfected BAI-1was much higher than that of the control group and the pReceiver-M61-BAI1-T24cell group.
     Conclusion:BAI-1has obviously inhibited effect on the vascular endothelial cells. While directed inhibited effect of BAI-1on T24cells is not found in vitro.
引文
[1]陈美霓,郭巍.VEGF在膀胱癌中的研究进展[J].延安大学学报,2010,8(1):13-14.
    [2]Nishimori H, Shiratsuchi T, Urano T, et al. A novel brain-specific p53-target gene, BAI-1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis[J]. Oncogene,1997,15(18):2145-2150.
    [3]蒋晶,李佩玲.脑特异性新生血管抑制因子1(BAI-1)与肿瘤的研究现状[J].中国优生与遗传杂志2007,15(2):113-117.
    [4]Fukushima Y, Oshika Y, Tsuchida T, et al. Brain-specific angiogenesis inhibitor 1 expression is inversely correlated with vascularity and distant metastasis of colorectal cancer[J]. Int J Oncol.1998,13(5):967-70.
    [5]Toshikazu Izutsu, Ryuichiro Konda, et al. Brain-Specific Angiogenesis Inhibitor 1 is a Putative Factor forInhibition of Neovascular Formation in Renal Cell Carcinoma[J]. J Urol.2011,185(6):2353-2358.
    [6]Mori K, Kanemura Y, Fujikawa H, et al. Brain-specific angiogenesis inhibitor 1 (BAI-1) is expressed in human cerebral neuronal cells [J]. Neurosci Res,2002,43(1): 69-74.
    [7]El Moustaine D, Granier S, Doumazane E, et al. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling[J]. Proc Natl Acad Sci USA,2012,109(40):16342-16347.
    [8]Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors[J]. Nature,2009,459(7245):356-363.
    [9]Haitina T, OlssonF, Stephansson O et al. Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat[J]. BMC Neurosci,2008, 9:43.
    [10]Yona S, Lin HH, SIu WO et al. Adhesion-GPCRs:emerging roles for novel receptors[J]. Trends Biochem Sci,2008,33(10):491-500.
    [11]姜娟,杨世进,赵恩宇等.整合素受体介导的siRNA和多柔比星靶向耐药肿瘤的研究[J].中国药学杂志,2010,45(20):1556-1561.
    [12]Ochoa CD, Yu L, Al-Ansari E, Hales CA, Quinn DA. Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension[J]. Journal of Cardiothoracic Surgery,2010,5:32.
    [13]Zhang X, Kazerounian S, Duquette M, et al. Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level[J]. FASEB J,2009, 23(10):3368-3376.
    [14]Bjarnadottir TK, Fredriksson R, Hoglund PJ et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors[J]. Genomics,2004, 84(1):23-33.
    [15]Yona S, Lin HH, Siu WO et al. Adhesion-GPCRs:emerging roles for novel receptors[J]. Trends Biochem Sci,2008,33(10):491-500.
    [16]Kaur B, Cork SM, Sandberg EM et al. Vasculostatin inhibits intracranial glioma growth and negativelyregulates in vivo angiogenesis through a CD36-dependent mechanism[J]. Cancer Res,2009,69(3):1212-1220.
    [17]Kaur B, Brat DJ, Devi NS et al. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor[J]. Oncogene,2005,24(22):3632-3642.
    [18]Lawler J, Hynes RO. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins[J]. J Cell Biol.1986,103(5):1635-1648.
    [19]Shiratsuchi T, Futamura M, Oda K et al. Cloning and characterization of BAI-associated protein 1:a PDZ domain-containing protein that interacts with BAI1[J]. Biochem Biophys Res Commun,1998,247(3):597-604.
    [20]Dawson DW, Pearce SF, Zhong R, et al. CD36 mediates the in vitro inhibitory effects of thrombospodin-1 on endothelial cell[J]. J Cell Biol,1997,138(3):707-717.
    [21]Ho Lam Tang, Ho Man Tang, Keng Hou Mak, el al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response[J]. Mol Biol Cell.2012,23(12):2240-52.
    [22]Nguyen KC, Willmore WG, Tayabali AF. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells[J]. Toxicology.2013,306C:114-123.
    [23]Camus SM, Gausseres B, Bonnin P, et al. Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease[J]. Blood,2012, 120(25):5050-5058.
    [24]Park D, Ravichandran KS. Emerging roles of brain-specific angiogenesis inhibitor 1[J]. Adv Exp Med Biol.2010,706:167-178.
    [25]Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. CA Cancer J Clin,2008, 58(2):71-96.
    [26]Rubben H, Lutzeyer W, Fischer N, et al. Natural history and treatment of low and high risk superficial bladder tumors [J]. J Urol,1988,139(2):283-285.
    [27]Cordon-Cardo C. Molecular alterations associated with bladder cancer initiation and progression [J]. Scand J Urol Nephrol Suppl,2008, (218):154-165.
    [28]Reuter VE. The pathology of bladder cancer [J]. Urology,2006,67(1):11-17.
    [29]Sylvester RJ, van der MEIJDEN AP, Lamm DL. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer:a meta-analysis of the published results of randomized clinical trials [J]. J Urol,2002,168:1964-1970.
    [30]Lamm DL, Blumenstein BA, Crissman JD, et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder:a randomized Southwest Oncology Group Study [J]. J Urol,2000,163:1124-1129.
    [31]Davis JW, Sheth SI, Doviak MJ, et al. Superficial bladder carcinoma treated with bacillus Calmette-Guerin:progression-free and disease specific survival with minimum 10-year followup [J]. J Urol,2002,167:494-500.
    [32]McGavin MK, Badour K, Hardy LA, et al. The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)-mediated actin polymerization to T cell antigen receptor endocytosis [J]. J Exp Med,2001,94(12):1777-1787.
    [33]Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth [J]. Nature,2006,441(7092):424-430.
    [34]牟成金,汪静,张倩等.FGF-1在乳腺癌中的表达与微血管生成的关系及临床意义[J].四川大学学报,2011,42(2):280-228.
    [35]Kagan VE, Kisin ER, Kawai K, et al. Toward mechanism-based antioxidant interventions:lessons from natural antioxidants[J]. Ann Acad Sci,2002,959: 188-198.
    [36]陈宝,李惠萍,范峰等.三氧化二砷对博莱霉素致大鼠肺纤维化的影响及其作用机制[J].中国病理生理杂志.2010,26(5):858-864.
    [37]KIM E, DEPPERT W. The versatile interactions of p53 with DNA:when flexibility serves specificity[J]. Cell Death Differ,2006,13:885-889
    [38]PIATON E, FAYNEL J. p53 immunodetection of liquid based processed urinary samples helps to identify bladder tumours with a higher risk of progression [J]. Br J Cancer,2005,93 (2):242-247.
    [39]WEI M, WANIBUCHI H, MOFIMURA K, et al. Carcinogenicity of dimethylarsinic acid in male F334rats and genetic alterations in induced urinary bladder tumors [J]. Carcinogenesis,2002,23(8):1387-1397.
    [40]Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer [J]. N Engl J Med,1994,331(19):1259-1264.
    [41]Anderson JC, McFarland BC, Gladson CL. New molecular targets in angiogenic vessels of glioblastoma tumours [J]. Expert Rev Mol Med,2008,10:e23.
    [42]Baenziger NL, Brodie GN, Majerus PW. A thrombin-sensitive protein of human platelet membranes[J]. Proc Natl Acad Sci USA.1971,68(1):240-243.
    [43]Naumov GN, Bender E, Zurakowski D et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype[J]. J Natl Cancer Inst.2006, 98(5):316-325.
    [44]Okada K, Hirabayashi K, Imaizumi T et al. Stromal thrombospondin-1 expression is a prognostic indicator and a new marker of invasiveness in intraductal papillary-mucinous neoplasm of the pancreas[J]. Biomed Res.2010,31(1):13-19.
    [45]Greenaway J, Lawler J, Moorehead R et al. Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1)[J]. J Cell Physiol.2007,210(3): 807-818.
    [46]Dawson DW, Pearce SF, Zhong R et al. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells[J]. J Cell Biol.1997,138(3): 707-717.
    [47]Dawson DW, Volpert OV, Pearce SF et al. Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat[J]. Mol Pharmacol.1999,55(2):332-338.
    [48]Kang SY, Watnick RS. Regulation of tumor dormancy as a function of tumor-mediated paracrine regulation of stromal Tsp-1 and VEGF expression[J]. APMIS.2008,116(7-8):638-647.
    [49]Folkman J. What is the evidence that tumors are angiogenesis dependent[J]. J Natl Cancer Inst,1990,82(1):4-6.
    [50]Kato T, Steers Q Campo L, et al. Prognostic significance of microvessel density and other variables in Japanese and British patients with primary invasive breast cancer[J]. Br J Cancer,2007,97(9):1277-1286.
    [51]Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch[J]. Nat Rev Cancer,2003,3 (6):401-410.
    [52]吴建盛,马听,周童等.G蛋白偶联受体及其类型的预测[J].生物物理学报.2010,16(2):138-148.
    [53]Kudo S, Konda R, Obara W et al. Inhibition of tumor growth through suppression of angiogenesis by brain-specific angiogenesis inhibitor 1 gene transfer in murine renal cell carcinoma[J]. Oncol Rep.2007,18(4):785-791.
    [54]Erickson GR, Northrup DL, Guilak F. Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes[J]. Osteoarthritis Cartilage.2003,11(3):187-197.
    [55]Gill SK, Bhattacharya M, Ferguson SS et al. Identification of a novel nuclear localization signal common to 69-and 82-kDa human choline acetyltransferase[J]. J Biol Chem.2003,278(22):20217-20224.
    [56]Chen T, Li X, Yang Y et al. Localization of lens intrinsic membrane protein MP19 and mutant protein MP19(To3) using fluorescent expression vectors[J]. Mol Vis.2002,8:372-388.
    [57]Li ZH, Zhang XH, Li GY. Study on the fusion expression of FBXO30:a novel member of F-box protein family[J]. Hunan Yi Ke Da Xue Xue Bao.2001,26(6): 495-498.
    [58]Valenzuela M, Relloso M, Esponda P. In vivo transfection of the mouse vas deferens[J]. J Exp Zool.2002,293(5):532-540.
    [59]Burnette WN. Western blotting[J]. Clin Chem.2011,57(1):132-133.
    [60]傅占江.核酸扩增检测技术的研究进展[J].国外医学-临床生物化学与检验学分册.2002,23(1):18-20.
    [61]张华,许叔祥.定量聚合酶链反应的研究进展与临床应用[J].中华检验医学杂志.2000,23(2):12-21.
    [62]蔡霞.定量PCR技术及其应用现状[J].现代诊断与治疗.2005,16(2):10-17.
    [63]欧阳松应,杨冬,欧阳红生等.实时荧光定量PCR技术及其应用[J].生命的化学.2004,24(1):74-76.
    [64]Lu L, Zhang L, Wai MS et al. Exocytosis of MTT formazan could exacerbate cell injury[J]. Toxicol In Vitro.2012,26(4):636-44.
    [65]Stockert JC, Blazquez-Castro A, Canete M et al. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets[J]. Acta Histochem.2012,114(8):785-96.
    [66]Wang S, Yu H, Wickliffe JK. Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2[J]. Toxicol In Vitro.2011,25(8):2147-51.
    [67]1 Parkin DM, Chen VW, Ferlay, et aL. Comparability and quality control in cancer registration[J]. I ARC Tech Rep No 19. Lyon:I ARC,1994,45-49.
    [68]4Berrino F, Sant A, Verdecchia A, et al. Survival of cancer patients in Europe: the EUROCARE Study[J]. IARC Sci Pub No 132. Lyon:IARC,1995,1-463.
    [69]Bentzen SM, Poulsen HS, Kaae S, et al. Prognostic factors in osteosar-comas[J]. Cancer,1988,62:194-202.
    [70]Bentzen SM, Poulsen HS, Kaae S, et al. Prognostic factors in osteosar-comas[J]. Cancer,1988,62:194-202.
    [71]苏亦斌,吴伟岗,陈国宝.微血管密度在结直肠癌中的表达及意义[J].临床肿瘤学杂志2011,(3)16:236-238.
    [72]Crew JP. Vascular endothelial growth factor:an important angiogenic mediator in bladder cancer[J]. Eur Urol,1999,35(1):2-8.
    [73]Inoue K, Slaton JW, Karashima T, et al. The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy[J]. Clin Cancer Res,2000,6(12):4 866-4873.
    [74]Zendman AJ, Cornelissen IM, Weidle UH et al. TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential [J]. FEBS Lett.1999,446(2-3): 292-298.
    [75]Stefan CJ, Blumer KJ. The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization [J]. Mol Cell Biol,1994,14:3339-3349.
    [76]Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors[J]. EMBO J,1993,12(4):1693-1703.
    [77]Shiratsuchi T, Futamura M, Oda K, et al. Cloning and characterization of BAI-associated protein 1:a PDZ domain-containing protein that interacts with BAI1[J]. Biochem Biophys Res Commun.1998,247(3):597-604.
    [78]Shiratsuchi T, Oda K, Nishimori H, et al. Cloning and characterization of BAP3 (BAI-associated protein 3), a C2 domain-containing protein that interacts with BA11[J]. Biochem Biophys Res Commun.1998,251(1):158-165.
    [79]Oda K, Shiratsuchi T, Nishimori H, et al. Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BA11[J]. Cytogenet Cell Genet. 1999,84(1-2):75-82.
    [80]Nam DH, Park K, Suh YL, et al. Expression of VEGF and brain specific angiogenesis inhibitor-1 in glioblastoma:prognostic significance [J]. Oncol Rep.2004, 11(4):863-869.
    [81]Yoshida Y, Oshika Y, Fukushima Y et al. Expression of angiostatic factors in colorectal cancer[J]. Int J Oncol.1999,15(6):1221-1225.
    [82]Hatanaka H, Oshika Y, Abe Y et al. Vascularization is decreased in pulmonary adenocarcinoma expressing brain-specific angiogenesis inhibitor 1 (BA11)[J]. Int J Mol Med.2000,5(2):181-183.
    [83]Lee JH, Koh JT, Shin BA, et al. Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer[J]. Int J Oncol. 200,18(2):355-361.
    [84]Yoon KC, Ahn KY, Lee JH, et al. Lipid-mediated delivery of brain-specific angiogenesis inhibitor 1 gene reduces corneal neovascularization in an in vivo rabbit model.[J]. Gene Ther.2005,12(7):617-624.
    [85]Koh JT, Kook H, Kee HJ, et al. Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 integrin[J]. Exp Cell Res.2004,294(1):172-84.
    [86]Friedlander M, Brooks PC, Shaffer RW et al. Definition of two angiogenic pathways by distinct alpha v integrins[J]. Science.1995,270(5241):1500-1502.
    [87]Ichioka S, Sekiya N, Shibata M et al. AlphaV beta3 (alphavbeta3) integrin inhibition reduces leukocyte-endothelium interaction in a pressure-induced reperfusion model[J]. Wound Repair Regen.2007,15(4):572-576.
    [88]Eliceiri BP, Cheresh DA. Role of alpha v integrins during angiogenesis[J]. Cancer J.2000,3:S245-249.
    [89]Jemal A, Siegel R, Ward E, et al. Cancer statistics [J]. CA Cancer J Clin,2008, 58(2):71-96.
    [90]曹正国,田超,吴奎等.miR-126在膀胱移行细胞癌中的表达及其与VEGF的相关性[J].现代泌尿外科,2012,1(17):17-20.
    [1]Kee Hj, Ahn KY, Choi Kc et al. Expression of brain-specific angiog-enesis inhibitor3 in normal brain and implications for BAD in ischemia-induced brain angiogenesis and malignant glioma[J]. FEBS Lett 2004,569 (1-3):307-316.
    [2]Kaur B, Brat DJ, Calkins CC et al. Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression[J]. Am J Pathol 2003,162(1):19-27.
    [3]Mori K, Kanemura Y, Fujikawa H et al. Brain-specific angiogenesis inhibitor 1(BAI1) is expressed in human cerebral neuronal cells[J]. Neurosci Res 2002,43(1): 69-74.
    [4]Yoshida Y, Oshika Y, Fukushima Y et al. Expression of angiostatic factors in colorectal cancer[J]. Int J ONcol 1999; 15(6):1221-1225.
    [5]Fukushima Y, Oshika Y, Tsuchida T et al. Brain-specific angiogenesis inhibitor 1 expression is inversely correlated with vascularity and distant metastasis of colorectal cancer[J]. Int J Oncol 1998,13(5):967-970.
    [6]Nishimori H, Shiratsuchi T, Urano T et al. A novel brain-specific p53-target gene, BAH, containing thrombospondin type 1 repeats inhibitis experimental angiogenesis[J]. Oncogene 1997,15(18):2145-50.
    [7]Shiratsuchi T, Nishimori H, Ichise H et al. Cloning and characterization of BAI2 and BA13, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1)[J]. Cytogent Cell Genet 1997; 79(1-2):103-108.
    [8]Kaur B, Cork SM, Sandberg EM et al. Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism[J]. Cancer Res2009;69(3):1212-1220.
    [9]Kudo S, Konda R, Obara W et al. Inhibition of tumor growth through suppression of angiogenesis by brain-specific angiogenesis inhibitor 1 gene transfer in murine renal cell carcinoma[J]. Oncol Rep 2007,18(4):785-791.
    [10]Kang X, Xiao X, Harata M et al. Antiangiogenic activity of BAll in vivo: implications for gene therapy of human glioblastomas[J]. Cancer Gene Ther 2006, 13(4):385-392.
    [11]Kaur B, Brat DJ, Devi NS et al. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor[J]. Oncogene 2005,24(22):3632-3642.
    [12]Yoon KC, Ahn KY, Lee JH et al. Lipid-mediated delivery of brain-specific angiogensis inhibitor 1 gene reduces corneal neovascularization in an in vivo rabbit model[J]. Gene Ther 2005,12(7):617-624.
    [13]Koh JT, Kook H, Kee HJ et al. Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 intergrin[J]. Exp Cell Res 2004,294(1):172-184.
    [14]Hatanaka H, Oshika Y, Abe Y et al. Vascularization is decreased in pulmonary adenocarcinoma expressing brain-specific angiogenesis inhibitor 1 (BAI1)[J]. Int J Mol Med 2000,5(2):181-183
    [15]Park D, Hochreiter-Hufford A, Ravichandran KS. The phosphatidylserine receptor TIM-4 does not mediate direct signaling[J]. CurrBiol 2009,19(4):346-351.
    [16]Park D, Tosello-Trampont AC, Elliott MR et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module[J]. Nature 2007, 450(7168):430-434
    [17]Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors[J]. Nature 2009,459(7245):356-363.
    [18]Fredriksson R, Lagerstrom MC, Lundin LG et al. The G-protein-coupled receptors in the human genome form five main families [J]. Phylogenetic analysis, paralogon groups and fingerprints. Mol Pharmacol 2003,63(6):1256-1272.
    [19]Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors[J]. Chembiochem 2002,3(10):928-944.
    [20]Bjarnadottir TK, Fredriksson R, Hoglund PJ et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors[J]. Genomics 2004, 84(1):23-33.
    [21]Haitina T, Olsson F, Stephansson O et al. Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat[J]. BMC Neurosci 2008, 9:43.
    [22]Yona S, Lin HH, Siu WO et al. Adhesion-GPCRs:emerging roles for novel receptors[J]. Trends Biochem Sci 2008,33(10):491-500
    [23]Bjarnadottir TK, Fredriksson R, Schioth HB. The adhesion GPCRs:a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues[J]. Cell Mol Life Sci 2007,64(16):2104-2119.
    [24]Lawler J, Hynes RO. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins[J]. J Cell Biol 1986,103(5):1635-1648.
    [25]Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1[J]. Matrix Biol 2000,19(7):597-614.
    [26]Silverstein RL. The face of TSR revealed:an extracellular signaling domain is exposed[J]. J Cell Biol 2002,159(2):203-206
    [27]Manodori AB, Barabino GA, Lubin BH et al. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin[J]. Blood 2000,95(4):1293-1300.
    [28]Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development[J]. Dev Dyn 2000,218(2): 280-299.
    [29]Huwiler KG, Vestling MM, Annis DS et al. Biophysical characterization, including disulfide bond assignments, of the anti-angiogenic type 1 domains of human thrombospondin-1[J]. Biochemistry 2002,41(48):14329-14339.
    [30]Smith KF, Nolan KF, Reid KB et al. Neutron and X-ray scattering studies on the human complement protein properdin provide an analysis of the thrombospondin repeat[J]. Biochemistry 1991,30(32):8000-8008.
    [31]Harmar AJ. Family-B G-protein-coupled receptors[J]. Genome Biol 2001,2(12): REVIEWS3013.
    [32]Shiratsuchi T, Futamura M, Oda K et al. Cloning and characterization of BAI-associated protein 1:a PDZ domain-containing protein that interacts with BAI1[J]. Biochem Biophys Res Commun 1998,247(3):597-604.
    [33]Ravichandran KS, Lorenz U. Engulfment of apoptotic cells:signals for a good meal[J]. Nat Rev Immunol 2007,7(12):964-074.
    [34]Elliott MR, Ravichandran KS. Clearance of apoptotic cell:implications in health and disease[J]. J Cell Biol 1059,189(7):1059-1070.
    [35]Elliott MR, Zheng S, Park D et al. Unexpected requirement for ELMO1 in apoptotic germ cell clearance in vivo[J]. Nature 2010,16;467(7313):333-7.
    [36]Park D, Tosello-Trampont AC, Elliott MR et al. BAI1 is an engulfment receptor for apoptotic cells upstreamof the ELMO/Dock180/Rac module[J]. Nature 2007,450: 430-434.
    [37]Lu M, Ravichandran KS. Dock-180-ELMO cooperation in Rac activation[J]. Methods Enzymol 2006,406:388-402.
    [38]Lu M, Kinchen JM, Rossman KL et al. A Steric-inhibition model for regulation of nucleotide exchange via the Dock 180 family of GEFs[J]. Curr Biol 2005,15(4): 371-377.
    [39]Lu M. Kinchen JM, Rossman KL et al. PH domain of ELMO functions in trans to regulate Rac activation via Dock180[J]. Nat Struct Mol Biol 2004,11(8):756-762.
    [40]Grimsley CM, Kinchen JM, Tosello-Trampont AC et al. Dock 180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration[J]. J Biol Chem 2004,279(7):6087-6097.
    [41]Brugnera E, Haney L, Grimsley C et al. Unconventional Rac-GEF activity is mediated through the Dock 180-ELMO complex[J]. Nat Cell Biol 2002,4(8): 574-582.
    [42]Gumienny TL, Brugnera E, Tosello-Trampont AC et al. CED-12/ELMO, a novel member of the Crk Ⅱ/Dock180/Rac pathway, is required for phagocytosis and cell migration[J]. Cell 2001,107(1):27-41.
    [43]Anderson JC, McFarland BC, Gladson CL. New molecular targets in angiogenic vessels of glioblastoma tumours[J]. Expert Rev Mol Med 2008,10:e23.
    [44]Duda DG, Sunamura M, Lozonschi L rt al. Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis[J]. Br J Cancer 2002,86(3):490-496.
    [45]Cao Y, Nagesh V, Hamstra D et al. The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas[J]. Cancer Res 2006,66(17): 8912-8917.
    [46]Muccio CF, Esposito G, Bartolini A et al. Cerebral abscesses and necrotic cerebral tumours:differential diagnosis by perfusion-weighted magnetic resonance imaging[J]. Radiol Med 2008,113(5):747-757.
    [47]Ray Sk, Patel SJ, Welsh CT et al. Molecular evidence of apoptotic death in malignant brain tumors including glioblastoma multiforme:upregulation of calpain and caspase-3[J]. J Neurosci Res 2002,69(2):197-206.
    [48]Sinha S, Bastin ME, Whittle IR et al. Diffusion tensor MR imaging of high-grade cerebral gliomas[J]. AJNR Am J Neuroradiol 2002,23(4):520-527.
    [49]Fujiwara T, Mammoto A, Kim Y et al. Rho small G-protein-dependent binding of mDia to an Src homology3 domain-containing IRSp53/BAIAP2[J]. Biochem Biophys Res Commun 2000,271(3):626-629.
    [50]Kim MY,Ahn KY, Lee SM et al. The promoter of brain-specific angiogenesis inhibitor 1-associated protein 4 drives developmentally targeted transgene expression mainly in adult cerebral cortex and hippocampus[J]. FEBS Lett 2004,566(1-3): 87-94.
    [51]Oda K, Shiratsuchi T, Nishimori H et al. Identification of BAIAP2(BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1[J]. Cytogenet Cell Genet 1999,84(1-2):75-82.
    [52]Shiratsuchi T, Oda K, Nishimori H et al. Cloning and characterization of BAP3(BAI-associated protein 3), a C2 domain-containing protein that interacts with BAI1[J]. Biochem Biophys Res Commun 1998,251(1):158-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700