大螟田间种群对不同杀虫剂的敏感性及其抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大螟(Sesamia inferens (Walker))是水稻的重要害虫之一。其寄主范围广,通常在稻田周边零星发生,对水稻的危害总体不及二化螟和三化螟。近年来随着耕作制度的变化,以及作物布局的多样化,致使大螟发生危害逐年加重,在有些地区甚至成为水稻螟虫的优势种。但水稻螟虫的防治习惯于以防治二化螟和三化螟为主,兼治大螟,很少专门考虑或测定药剂对大螟的有效性。本研究根据水稻螟虫防治需求,首先以饲料涂药法建立了杀虫剂对大螟的毒力测定技术,同时利用江苏南京和浙江温岭两地田间大螟为试虫,测定了常用杀虫剂对大螟的毒力差异,并研究了几种抗性水平较高的药剂的抗性机理,以及药剂增效复配最佳配比的筛选,旨在为生产上防治大螟提供合理用药的理论依据。
     1.大螟田间种群对不同杀虫剂的敏感性测定
     连续2年用新建的饲料涂药法测定了十多种常用杀虫剂对江苏南京和浙江温岭地区大螟的毒力状况,通过对比分析发现,除杀虫单和三唑磷等少数药剂外,大螟对多数杀虫剂没有产生明显的抗药性,地区和年度之间敏感性变化不大。不同药剂对大螟的毒力顺序为:甲维盐>>阿维菌素>>稻丰散≈氯虫苯甲酰胺>>氟铃脲≈虫酰肼>茚虫威>醚菊酯>杀螟硫磷≈丙溴磷>三唑磷≈丁烯氟虫腈≈毒死蜱>>杀虫单。与二化螟对比分析发现,大螟对不同药剂的敏感性与二化螟有明显的差异,大螟对稻丰散和丙溴磷的敏感性显著高于二化螟,而对阿维菌素、氯虫苯甲酰胺和毒死蜱的敏感性则显著低于二化螟。讨论认为,近些年大量使用阿维菌素和毒死蜱防治水稻螟虫和飞虱,不利于对大螟的兼治。而针对性的防治大螟,可以利用其敏感性特性,充分发挥稻丰散和丙溴磷等低毒廉价有机磷杀虫剂的作用。
     2.大螟抗药性的生化机制
     分别测定了三种增效剂(PBO、DEM、TPP)在大螟温岭种群、南京种群和室内敏感性恢复种群中对不同杀虫剂的增效作用,同时比较测定了这3个种群大螟幼虫的酯酶、谷胱甘肽S-转移酶和多功能氧化酶的活性。结果显示:3种增效剂对杀虫单均没有明显的增效作用。TPP对甲维盐的增效效果最好,其次是DEM, PBO仅在高耐种群中表现出显著增效。PBO和DEM对醚菊酯都具有很好的增效作用,但TPP没有增效作用。TPP对三唑磷的增效效果最好,其次是DEM,但PBO没有增效作用。PBO对丙溴磷的增效效果最好,TPP略有增效,而DEM则没有明显的增效作用。酶活力测定发现,南京种群、温岭种群和室内敏感性恢复种群间多功能氧化酶活性均存在显著性差异,并与其耐药力水平呈正相关。温岭种群的酯酶活性显著高于南京种群和室内饲养品系,后两者没有显著差异。谷胱甘肽S-转移酶以DCNB为底物时,两田间种群不存在显著的活力差异,但显著高于室内饲养品系。讨论认为大螟的耐药性和抗药性大都与解毒代谢酶有关;不同药剂的耐药性增加或抗药性发生所涉及的代谢酶有明显差异;而对同一种药剂来说,随着害虫抗性的增强,参与的代谢酶也有明显的变化。
     3.稻丰散与甲维盐及氟铃脲复配最佳配比的筛选
     依据毒力测定资料选择甲维盐、稻丰散和氟铃脲为有效单剂,进行增效复配组合的筛选。结果发现甲维盐与稻丰散不同配比的共毒系数顺序为CTC1:2>CTC1:4 >CTC1:1>CTC2:1>CTC4:1,以LC5o按1:2复配时的CTC值最大(200.79),增效明显;1:4时的CTC值为135.27,有增效作用;其他三种配比CTC值均小于100,没有增效作用。氟铃脲和稻丰散不同配比的共毒系数表现为CTC1:1>CTC1:2> CTC2:1>CTC1:4>CTC4:1,其中LC50配比为1:1时,共毒系数为227.99,有明显增效作用,配比为1:2、1:4和2:1时,共毒系数分别为118.01、94.03和99.55,表现为相加作用。配比为4:1时,共毒系数为68.18,表现为拮抗作用。由此表明本研究筛选出了2个不同的杀虫剂增效复配组合,建议进一步研究开发,为大螟防治提供新型有效药剂品种。
     4.大螟不同室内饲养方法比较
     分别用新鲜茭白饲养法、人工饲料饲养法和稻苗饲养法饲养大螟幼虫,分别统计三龄幼虫成活率,化蛹率,蛹重等,以比较几种饲养方法的差异。研究发现:用新鲜茭白饲养法和人工饲料饲养法饲养的大螟,其三龄幼虫成活率没有明显差异,分别为79%和74%,但化蛹率(47%和34%)和平均蛹重(195.04mg和147.21mg)差别较大,新鲜茭白饲养的大螟的化蛹率和蛹重均明显高于人工饲料饲养的大螟。而稻苗饲养法饲养的大螟三龄幼虫成活率很低,不到10%,且无法生长到化蛹。由此认为室内饲养二化螟非常成功的稻苗饲养法不适宜用于大螟饲养,大螟室内繁殖以茭白饲养法为好,人工饲料饲养法还有待进一步改进。
     本研究筛选建立的大螟室内饲养技术和大螟饲料涂药法杀虫剂毒力生测技术,为大螟研究提供了实用技术,调查大螟的抗药性现状、筛选有效杀虫剂和增效复配组合,为大螟防治提供了用药选择依据和开发新型高效药剂的途径,而测定不同增效剂对不同药剂的增效作用,同时分析增效作用与不同种群的耐药性和解毒酶活力的关系,为探索大螟对不同杀虫剂的抗性机理和抗性早期发生机制提供了进一步研究的思路。
Pink stem borer, Sesamia inferens (Walker), is one of the most important insect pests of rice. However, this pest has a broad range of host plants, and usually occurred at out part of paddy field and damaged less serious than Chilo suppressalis (Walker) and Tryporyza incertulas (Walker). In recent years, with the changes in cultivation and diversification of crops, the damage caused by this pest becomes serious year by year. In some areas, pink stem borer even becomes the dominant species of rice borers. But people is still used to controlling rice borers with the insecticides targeting at C. suppressalis and T. incertulas. Little attention has been put on the control methods against S. inferens. In order to select available insecticides against S. inferens and meet the demands for rice pest control in the new situation, this study surveyed on insecticide susceptibility with borers collected from both Nanjing, Jiangsu Province and Wenling, Zhejiang Province in two consecutive years (2009-2010) with a developed bioassay. Resistance mechanisms of S. inferens to several insecticides were also analysized, and the mixtures given best synergism were also selected with Phenthoate and Emamectin benzoate or Hexaflumuron. 1. Susceptibility of S. inferens of field populations to various insecticides
     In this study, S. inferens in Nanjing, Jiangsu Province and Wenling, Zhejiang Province had been collected and tested for their susceptibility to various insecticides in two consecutive years (2009-2010), by using newly developed artificial diet residue bioassay method. Results showed that S. inferens had not developed obvious resistance to most insecticides except for Monosultap, Triazophos and few others which had been used extensively for long time. Little change in sensitivity to various insecticides was found between different geographical population and different years. The toxicity of 14 insecticides to S. inferens was tested and ordered as:Emamectin benzoate>> Abamectin>> Phenthoate≈Chlorantraniliprole>> Hexaflumuron≈Tebufenozide> Indoxacarb> Phenothrin> Fenitrothion≈Profenofos≈Triazophos≈Butene-fipronil≈Chlorpyrifos>> Monosultap. Comparison analysis revealed that S. inferens and C. suppressalis had different sensitivity to various insecticides. S. inferens was found much more sensitive to Phenthoate and Profenofos than C. suppressalis. But to Abamectin, Chlorantraniliprole and Chlorpyrifos, S. inferens was much more tolerant. Finally, it was thought that extensive use of Abamectin and Chlorpyrifos for control of rice borers and planthoppers in recent years was not conducive to the control of S. inferens. For the control targeting at S. inferens, cheap organophosphorus pesticides with low toxic side effect, such as Phenthoate and Profenofos, could play full roles.
     2. Mechanisms for insecticide resistance in S. inferens
     The synergisms of piperony butoxide (PBO), diethylmeleate (DEM) and triphenyl phosphate (TPP) on Monosultap, Emamectin benzoate, Phenothrin, Triazophos and Profenofos in S. inferens of Jiangsu and Zhejiang populations and a strain reared for one year in laboratory were tested together with the activity of three detoxification enzymes in their body. The results showed that all three synergists had little effects on Monosultap. TPP exited some synergistic effects on Emamectin benzoate and Triazophos, PBO showed some synergistic effects on Profenofos; Both PBO and DEM exhibited some synergistic effects on Phenothrin. Enzyme activity tests showed that the activity of MFO changed significantly among the three populations and was positively related with their insecticide tolerance. Esterase activity is similar between Nanjing population and its recovering laboratory strain, but significantly higher in more tolerant Zhejiang population. The CDNB activity of Glutathione S-transferase was significantly higher in the field populations than in the laboratory recovering strain. Thus, it was though that the enhancement of three detoxification enzymes activity in borers might result in the increase in their resistance level. Resistance mechanisms always varied with insecticides and resistance level. 3. Selection of synergistic insecticide mixtures
     The mixtures of Emamectin benzoate and Phenthoate with different ratios were tested, and their co-toxicity coefficient (CTC) values were found as fellows:CTC1:2>CTC1:4> CTC1:1>CTC2:1>CTC4:1. Obviously, the mixture with the ratio of 1 to 2 showed highest synergism (CTC 200.79). The mixture with the ratio of 1 to 4 was also synergistic (CTC 135.27). But all the other mixtures tested with different ratio were not synergistic with their CTC less than 100. When Hexaflumuron mixed with Phenthoate, the mixtures with different ratios were found with their CTC values as fellows:CTC1:1>CTC1:2>CTC2:1 >CTC1:4>CTC4:1. Of which, the value of CTC1:1 was 227.99, which means the mixture with ratio 1 to 1 had the highest synergism. The values of CTC1:2, CTCl:4 and CTC2:1 were 118.01、94.03 and 99.55 respectively, which indicated additive effects. The value of CTC4:1 was only 68.18, which implied antagonistic effect. These results indicated that two different combinations of insecticides with high synergism had been selected. Further research might develop new and effective insecticides against S. inferens.
     4. Comparison of different indoor methods for rearing S. inferens
     Fresh water-oat, artifical diet, and rice seedlings were, respectively, used for rearing larvae of S. inferens by inoculation of newly hatched neonates, and larval survival rate to 3rd instar, pupation rate and pupa body weight were checked and compared. The results showed that the larval survival rate to 3rd instar was high (79%and 74%) when fed on fresh water-oat or artifical diet, and no significant difference was found between these two rearing methods. However, pupation rate and pupa body weight varied significantly with rearing methods. Feeding on water-oat resulted in significantly higher pupation rate (47%) and heavier pupae (195.04 mg) than rearing with artificial diet (34%and 147.21 mg). When reared with rice seedlings, the larval survival rate to 3rd instar was very low (less than 10%), and no larvae could grow to pupation. These results indicated that rice seedling method, the very successful method for rearing C. suppressalis in laboratory was not appropriate for S. inferens. Fresh water-oat feeding method is the best one while artificial diet feeding method should be further improved.
     The suitable method for rearing S. inferens indoor and insecticide toxicity bioassay with chemical residues on artificial diet have been selected and established in this study, which provides new practical techniques for the study of S. inferens. Survey on insecticide resistance, and selection of efficient insecticides and their combinations with high synergism provide the basis for reasonable use of insecticides and development of new efficient insecticide formulations for control of S. inferens. The paralellel analysis of the synergism of different synergist on different insecticides, resistance and detoxification enzyme activity in different populations provide ideas for further research pursuing mechanisms and the onset mode for the resistance of S. inferens to different insecticides.
引文
1.毕富春,徐凤波.甲胺基阿维菌素苯甲酸盐研究概述[J].农药科学与管理,2002,23(3):31-33
    2.薄仙萍.防治白背飞虱的高毒农药替代药剂室内筛选及对噻嗪酮的抗性风险评估.南京农业大学硕十学位论文,2008
    3.曹明章,沈晋良,张金振,吕梅,刘晓宇,周威君.二化螟抗药性监测和对三唑磷抗性的遗传分析[J].中国水稻科学,2004,18(1):73-79
    4.陈凤菊,高希武.昆虫谷胱甘肽S-转移酶的基因结构及其表达调控[J].昆虫学报,2005,48(4):600-608
    5.陈文明,胡君,何月平,刘叙杆,周威君,沈晋良,王彦华.2007年江浙地区二化螟抗药性检测[J].中国农业科学,2009,42(3):1100-1107
    6.程英,金剑雪,李忠英,李风良等.杀虫剂复配对斜纹夜蛾幼虫的生物活性分析[J].贵州农业科学,2009,37(9):92-94
    7.邓业成,王萌长,谭福杰.褐飞虱对马拉硫磷的抗性与酷酶的关系[J].西南农业学报,1995,8(4):74-78
    8.丁锦华,苏建亚等.农业昆虫学(南方本)[M].中国农业出版社.
    9.高鹏,李庆.二化螟对儿种杀虫剂的抗药性研究.四川农业大学硕十学位论文,2010
    10.关瑞峰,姚文辉,王茂明,孔丽萍,潘初昕,徐金汉.福建省水稻螟虫种群发生变化及原因初探[J].华东昆虫学报,2008,17(1):63-70
    11.韩召军,王荫长,尤子平等.棉蚜对拟除虫菊酯类杀虫剂的抗性机理[J]..南京农业大学学报,1995,18(3):54-59
    12.何月平,邵振润,陈文明,梁桂梅,李永平,周威君,沈晋良.防治水稻二化螟的高毒农药替代药剂的室内筛选[J].中国水稻利学,2008,22(3):313-320
    13.黄诚华,姚洪渭,叶恭银,程家安.氟虫腈亚致死剂量处理对二化螟和大螟幼虫体内解毒酶系活力的影响[J].中国水稻科学,2006,20(4):447-450
    14.黄诚华,姚洪渭,叶恭银,蒋学辉,胡萃,程家安.浙江省二化螟不同种群和大螟对三唑磷的敏感性研究[J].农药学学报,2005,7(4):323-328
    15.姜卫华,韩召军,郝鸣丽.二化螟对氟虫腈抗性初探[J].中国水稻科学,2005,19(6):577-579.
    16.蒋学辉,章强华,胡仕孟,谢十杰,徐喜刚.浙江省水稻二化螟抗药性现状与法理对策[J].植保技术与推广,2001,21(3):27-29
    17.冷欣夫,邱星辉.棉铃虫幼虫加单氧酶活性的组织分布[J].生态学报,2000,2(2):299-303
    18.李匕,韩召军,吴智锋,王荫长.我国棉蚜抗药性研究现状[J].棉花学报,2001,13(2):121-124
    19.李凤良,程英,金剑雪,李忠英,王燕,王止章,梁道正,杨俊.杀虫剂复配对水稻大螟幼虫的室内活性测定[J].农药,2008,47(3):219-221
    20.李凤良,李忠英,韩召久,陈之浩.小菜蛾对溴氰菊酯的抗性消退与抗性恢复动态[J].植物保护学报,2004,31(1):79-86
    21.李显春,王荫长,韩召军.昆虫细胞色素P450基因的克隆及其策略[J].华东昆虫学报,1999,8(2):103-111
    22.李秀峰,韩召军,陈长琨,李国清,王荫长.二化螟对杀虫单等4种杀虫剂的抗药性[J].南京农业大学学报,2001,24(1):43-46
    23.李应金,陈惠明等.农药混剂对烟草蚜虫的联合毒力测定[J].烟草科学,2003(07):41-43
    24.李应金.烟草农药复配剂筛选与应用技术研究.浙江大学硕士论文,2005
    25.梁军,沈建华,林国芳.淡色库蚊中抗性相关羧酸酯酶的纯化及其生化性质[J].昆虫学报,2001,44(2):161-168
    26.林建国,张传溪,唐振华.与昆虫抗药性相关的乙酰胆碱酯酶基因突变研究进展[J].农药学学报,2005,7(1):01-06
    27.刘贤进,孙以文.褐飞虱对甲胺磷和噻嗪酮代谢抗性的生化分析[J].植物保护学报,1998,25(3):263-266
    28.刘永杰,沈晋良,杨田堂,肖鹏,贺金等.氯氟氰菊酯对斜纹夜蛾抗性和敏感种群表皮穿透比较[J]..中国农业科学,2009,42(7):2386-2391
    29.刘卓荣,傅强.大螟天然庇护所及人工饲料的研究.硕士学位论文,2007
    30.孟香清,赵建周,李富根.棉铃虫对不同类型杀虫剂抗性衰退比较[J].PESTICIDES,2000,39(4):20-21
    31.慕立义.植物化学保护研究方法[M].北京:中国农业出版社,1994:75-99.
    32.倪珏萍,侯华民,曾霞,黄春霞.甲氨基阿维菌素苯甲酸盐与阿维菌素生物活性比较[J].现代农药,2003,2(3):38-40.
    33.欧晓明,黄明智,王晓光,樊德方.昆虫抗性靶标部位及其在杀虫剂创制中的作用[J].现代农药,2003,2(5):11-15
    34.曲明静,韩召军,许新军,邵晓玲,田学志,符明龙.二化螟对三唑磷的抗性发生动态与风险评估[J].南京农业大学学报,2005,28(3):38-42
    35.曲明静,许新军,韩召军,姜晓静.二化螟抗药性研究现状[J].江西农业学报,2006,18(6):109-111
    36.尚稚珍,王银淑,邹永华.二化螟饲养方法的研究[J].昆虫学报,1979,22(2):164-170
    37.沈厚芬,王云川,刘金波,徐福海,吴长勤.水稻大螟的流行规律及及综合防治技术[J].经验交流
    38.沈晋良,吴益东.棉铃虫抗药性及其治理[M].北京:中国农业出版社,1995
    39.盛承发,宣维健,焦晓国,苏建伟,邵庆春,宋凤斌.我国稻螟暴发成灾的原因、趋势及对策[J].自然灾害学报,2002,11(3):103-109
    40.唐振华,1993.昆虫抗药性及其治理[M].农业出版社,72-79.
    41.唐振华,毕强.杀虫剂作用的分子行为[M].上海:上海远东出版社,2003.
    42.唐振华,胡刚.细胞色素P450基因的命名及基因表达的调控[J].昆虫知识,1993,30(5):311-314
    43.唐振华,陶黎明,李忠.烟碱乙酰胆碱受体及其与新烟碱类相互作用的研究进展[J].农药学学报,2007,9(4):309-316
    44.唐振华,袁建忠,庄佩君,陶黎明.昆虫钠离子通道的结构和与击倒抗性有关的基因突变[J].昆虫学报,2004,47(6):830-836
    45.唐振华.昆虫抗药性及基治理[M]..北京:农业出版社,1993,160
    46.陶岭梅,刘学,顾宝根,沈晋良,王晓军,宋玉泉.拟除虫菊酯类杀虫剂对二化螟的生物活性研究[J].中国农学通报,2006,22(11):291-295
    47.田学志,高保宗,石家胜,尤子平等.安庆地区水稻二化螟抗药性研究[J].安徽农业科学,1991,1:61-66.
    48.王建军,董红刚.新型高效杀虫剂茚虫威毒理学研究进展[J].植物保护,2009,35(3):20-22
    49.王兰,冯宏祖等.阿维菌素类杀虫剂的研究及应用前景[J]..中国植保导刊,2008年4月,28(4):13-14
    50.王信远,王炳太,刘永杰,刘辉,贺金,肖鹏.甜菜夜蛾田间种群抗药性及其解毒代谢酶活性变化[J].山东科学,2010,23(2):42-47
    51.王彦华,吴长兴,赵学平,陈丽萍,俞瑞鲜,苍涛,吴声敢,王强.害虫对氟虫腈的抗性研究进展[J].昆虫知识,2009,46(6):846-855
    52.魏明峰,张丽萍,刘珍,范巧兰,张贵云,罗山等.6种复配杀虫剂对棉田烟粉虱的防治效果[J].江苏农业科学,2010(6):171-173
    53.吴益东,沈晋良,谭福杰,尤子平等.棉铃虫对氰戊菊酯抗性机理研究[J]..南京农业大学学报,1995,18(2):63-68
    54.熊满辉.马铃薯甲虫对拟除虫菊酯类杀虫剂和硫丹的抗性及基机理.南京农业大学硕十学位论文,2010
    55.徐伟松,周利娟,胡美英.沙蚕毒素类杀虫剂作用机制及其抗性的研究进展[J].农药科学与管理,2001,22(2):30-32
    56.徐修龙,王国田,王广兰,葛霞.水稻大螟发生情况与防治措施[J].植物保护,《现代农业科技》2009年第5期
    57.杨廉伟,杨坚伟,陈将赞,丁灵伟,戴以太,张彩绯等.单季稻大螟防治问题及氯虫苯甲酰 胺对大螟白穗防效试验[J].中国稻米,2010,16(1):69-70.
    58.杨向黎,林爱军,王军.我国农药混剂的开发与应用现状[J].山东农业大学学报(自然科学版),2001,(04):544-548
    59.姚亮,李建洪.褐飞虱抗药性监测、抗性生化机理和遗传多样性研究.硕士学位论文,2009
    60.郑央萍,杨亦桦,吴益东.棉铃虫抗辛硫磷品系的代谢抗性机理[J].农药学学报,2008,10(4):410-416
    61.周斌芬,唐振华,高菊芳.昆虫代谢抗性的研究进展[J].农药,2008,47(5):313-315
    62.周圻.防治稻螟四十年[J].昆虫知识,1990,27(3):178-181.
    63.祝春强,刘明熙,韦永保,杜桂丽.锐劲特和三唑磷混用防治单季稻主要害虫的效果与技术[J].安徽农业科学,2002,30(1):57-59
    64. Hemingway, J., Hawkes, N.J., McCarroll, L., and Ranson, H. The molecular basis of insecticide resistance in mosquitoes [J]. Insect Biochem Mol Biol,2004,34,653-665
    65. Prapanthadara, L. A., and Ketterman, A. J. Qualitative and quantitative changes in glutathione S-transferases in the mosquito Anopheles gambiae confer DDT-resistance. Biochem Soc Trans,1993, 21,304
    66. Zhu Y C, Dowdy A K, Baker J E. Differential mRNA expression levels and gene sequences of a putative carboxylesterase-like enzyme from two strains of the Parasitoid Anisopteromalus Calandrae (Hymenoptera:Pteromalidae) [J]. Insect Biochem Mol Biol,1999,29:417-425
    67. Bautisa, M.A.M., Tanaka, T., and Miyata, T. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pestic Biochem Physiol,2007,87:85-93
    68. Benting, J., and Nauen, R. Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypii mediates resistance to pirimicarb and omethoate. Pest Manag Sci 2004,60, 1051-1055.
    69. Berge J B, Feyereisen R, Amichot M. Cytochrome P450 monooxygenases and insecticide resistance in insects [J]. Phil Tran R Sco Long B,1998,353(1376):1701-1705
    70. Bossy, B., Ballivet, M., and Spierer, P. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J,1988,7,611-618.
    71. Campbell P M, Newbomb R D, Russell R J, et al. Two different amino acid substitutions in the Ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly Lucilia cuprina [J]. Insect Biochem Mol Biol,1998,28(3):139-150
    72. Catterall WA. From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels. Neuron,2000,26:13-25
    73. Claudianos C, Russell R J, Oakeshott J G. The same amio acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly [J]. Insect Biochem Mol Biol, 1999,29:675-686
    74. Cuany A, Handani J, Berge J. Action of esterase B1 on chlorpyrifos in organophosphate-resistant Cules mosquitoes. Pestic. Biochem. Physio.,1993,45:1-6
    75. Delorme R, Fournier D, Chaufaux J, Cuany A, Bride J M, Auge D. Esterase metabolism and reduced penetration are causes of resistance to deltamethrin in Spodoptera exigua HUB (Noctuidae: Lepidoptera). Pestic. Biochem. Physiol.,1988,32:240-246
    76. Denholm I, Devine GJ, et al. Insecticide Resistance on the Move. Science,2002.297.
    77. Devonshire A L, Moores G D. A carboxylesterase with broad substrate specificity causes organophosphorus, carbarnate and pyrethrinoid resistance in peach-potato aphid, (Myzus persicae) [J]. Pestic Biochem Physiol,1982,18:235-146
    78. Feyereisen R, Koener JF, et al. Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide resistant strain of the house fly, Musca domestica. Proc.Natl. Acad. Sci, USA.1989,86: 1465-1469
    79. Ffrench-constant R H, Anthony N, Aronstein K, et al. Cyclodiene insecticide resistance:From molecular to population genetics [J]. Annu Rev Entomol,2000,48:449-466.
    80. Fournier D, Bride J M, Hoffmann F. Acetylcholinesterase, two types of modification confer resistance to insecticide [J]. Biol. Chem,1992,267:14270-14274.
    81. Grant, D. F., Dietze, E. C., and Hammock, B. D. Glutathione S-transferase isozymes in Aedes aegypti:purification, characterization, and isozyme specific regulation. Insect Biochem,1991,4, 421-433
    82. Guillemaud, T., Lenormand, T., Bourguet, D., Chevillon, C., Pasteur, N., Raymond, M. Evolution of resistance in Culex pipiens:allele replacement and changing environment [J]. Evolution. Evolution, 1998,52,443-453
    83. Gunning RV, Moores GD, Deveonshire AL. Sterase inhibitors synergise the toxicity of pyrethroids in Australian Hellicoverpa armigea (Hubner) Lepidoptera:Noctuidae. Pestic. Biochem. Physiol, 1999(63):50-62
    84. Hawkes, N. J., and Hemingway, J. Analysis of the promoters for the beta-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus. Biochim Biophys Acta,2002, 1574,51-62
    85. He Y P, Chen W M, Shen J L, Gao C F, Huang L Q, Zhou W J, Liu X G, Zhu Y C. Differential susceptibilities to pyrethroids in field populations of Chilo suppressalis (Lepidoptera:Pyralidae). Pesticide Biochemistry and Physiology,2007,89:12-19.
    86. He Y P, Gao C F, Cao M Z, Chen W M, Huang L Q, Zhou W J, Liu X G, Shen J L, Zhu Y C. Survey of susceptibilities to monosultap, triazophos,fipronil, and abamectin in the striped stem boer, Chilo suppressalis(Lepidoptera:Pyralidae). Journal of Economic Entomology,2007,100(6):1854-1861.
    87. Jeffrey R B. Chloride channels as tools for developing selective insecticides [J]. Arch Insect Biochem Physiol,2003,54:145-156.
    88. Jiang Weihua, Han Zhaojun, Hao Mingli. Preliminary study on resistance of the rice stem borer (Chilo suppressalis) to Fipronil. Rice Science,2005,12(4):295-298
    89. JIANG Xue-hui蒋学辉),ZHANG Qiang-hua(章强华),HU Shi-meng(胡仕孟),et al浙江省水稻二化螟抗药性现状与治理对策[J]. Plang Protec Technol Exten(植保技术与推广),2001,21(3):27-29.
    90. Kasai, S., and Scott, J.G Over expression of cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in housflies from Geogia. Pestic Biochem Physiol. 2000,68:34-41
    91. Knipple DC, Doyle KE, Marsella-Herrick PA, et al. Tight genetic linkage between the kdr insecticide resistance trait and a voltage-sensitive sodium channel gene in the housefly. PNAS,1994,91: 2483-2487.
    92. Laecke V K, Sagghe G D. Detoxifying enzymes in greenhouse and laboratory strain of beet annyworm (Lepidoptera:Noctuidae). J. Econ. Entomol.,1995,88(4):777-781
    93. Liu, Z., Williamson, M. S., Lansdell, S. J., Denholm, I., Han, Z., and Millar, N. S. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA,2005,102,8420-8425.
    94. LUO ZhenGe. Synapse formation and remodeling [J]. Science China,2010,53(3):315-321.
    95. Marion M. Bradford. Microgram quantities of protein utilizing the principle of protein-dye binding [M]. Analytical biochemistry,1976,72:248-254
    96. Miyata T, Saito T, Kassai T, et al. In vitro degradation of malathion by organophosphate resistance and susceptible strains of brown planthoppers, Nilaparvata lugens Stal. J. Pestic. Sci.,1983,8(1): 27-31
    97. Monitoring of insecticide resistance and genetic analysis of triazophos resistance in Chilo suppressalis (Lepidoptera:Pyralidae). Rice Science,2004,11(5-6):297-304
    98. Mutero A, Pralavorio M, Bride I M, et al. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase [J]. Proc Natl Acad Sci USA,1994,91(13):5922-5926.
    99. Newcomb R D, Campbell P M, Ollis D L, et al. A single amino acid substitution convers a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance in a blowfly [J]. Proc Natl Acad Sci,1997,94(7):7464-7468
    100. Oppenoorth, F. J., and van, A. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance [J]. Science,1960,132,298-299
    101. Ozaki, K. Developent of insecticide resistance by the brown planthopper, Nilaparvata lugens (Stal), and resistance pattern of field populations. Jap. J. Appl. Ent. Zool,1982,26:249-255
    102. Park HM, Choi SY. Changes in activity and acetylcholinesterase sensitivity of insecticide-selected strains of the brown planthopper Nilaparvata lugens (Stal). Korean Journal of applied Entomology, 1991,30(2):117-123
    103. Pasteur N, Raymond M. Insecticide resistance genes in Mosquitoes:Their mutations, migration and selection in field pupulations [J]. Hered,1996,87:444-449
    104. Paton, M. G., Karunaratne, S. H., Giakoumaki, E., Roberts, N., and Hemingway, J. Quantitative analysis of gene amplification in insecticide-resistant Cluex mosquitoes. Biochem j,2000,346, 17-24
    105. Qu Mingjing, Han Zhaojun, Xu Xinjun, Yue Lina. Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pesticide Biochemistry and Physiology,2003,77:99-105
    106. Ren X, Han Z, Wang Y. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner). Arch Insect Biochem Physiol,2002,51(3):103-110.
    107. Sabourant, C, Guzov,V.M., Koener, J.F., Claudianos, C., Plapp,F.W., Jr., and Feyereisen,R.Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase(MdalphaE7) gene in resistant house flies. Insect Mol Biol.2001,10: 609-618
    108. Scott J G. Investigating mechanisms of insecticide resistance:method, strategies and pitfalls [A]. In Roush R T, Tabashnik B E (eds). Pesticide Resistance in Arthropods[M]. New York& London; Chapman and Hall,1990,39-57
    109. Smagghe G, Dhadialla T S, Derycke S, Tirry L, degheele D. Action of the ecdysteroid agonist tebufenozide in susceptible and artificially selected Beet armyworm. Pestic. Sci.,1998, 54(1):27-34
    110. Soderlund D, Knipple D. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol,2003,33:563-577
    111. Stankovic S, Zabel A, Kostic M, Manojlovic B. Rajkovic. Colorado potato beetle[Leptinotarsa decemlineata (Say)] resistance to organophosphates and carbamates in Ssrbia. J Pest Sci.,2004, (77):11-15.
    112. Sussman J L, Harel M, Frolow F, et al. Atomic structure of acetylcholinesrese from Torpedo californic:a prototypic acetyolcholine-binding protein [J]. Science,1991,253:872-879.
    113. Tomita T. Molecular mechanisms involved in increased expression of a cytochrome P450 responsible for pyrethroid resistance in the house fly [J]. Insect Biochem Molec Biol,1995,25: 275-283
    114. Vais H, Williamson MS, Goodson SJ, et al. Activation of Drosphila sodium channels promotes modification by deltamethrin. Reductions in affinity caused by knock-down resistance mutations [J]. Gen Physiol,2000,115(3):305-318.
    115. Vauhan, A., Hawkes, N., and Hemingway, J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem j,1997,325, 359-365
    116. Villatte, F., and Bachmann, T. T.2002. How many genes encode cholinesterase in arthropods. Pesticide Biochem. Physiol 73,122-129.
    117. Vontas, J. G., Small, G. J., and Hemingway, J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J,2001,357,65-72
    118. Walsh S B, Dolden T A, Moores G D, et al. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J, 2001,359(Pt 1):175-181.
    119. Yue Ping He, Wen Ming Chen, Jin Liang Shen, Cong Fen Gao, Li Qin Huang, Wei Jun Zhou, Xu Gan Liu, Yu Cheng Zhu. Differential susceptibilities to pyrethroids in field populations of Chilo suppressalis (Lepidoptera:Pyralidae). Pesticide Biochemistry and Physiology,2009,89:12-19
    120. Zhang Lan, Gao Xiwu, Liang Pei. Beta-cypermethrin resistance associated with high carboxyleterase activites in a strain of house fly, Musca Doestica (Diptera:Muscidae)[J]. Pesticides Biochemistry and Physiology,2007,89:65-72
    121. ZHU Chun-qiang(), LIUM ing-xi(), WEIYong-bao(韦永保),et al.氟虫腈和三唑磷混用防治单季稻主要害虫的效果与技术[J]AnhuiAgric Sci(安徽农业科学),2002,30(1):57-59.
    122. Zhu K.Y, Clark JM. Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem Molec Biol.1994,24:453-461.
    123. Zhu, F., Li, T., Zhang, L., and Liu, N. Co-up-regulation of three P450 genes in response to permethrin exposure in permthrin resistant house flies, Musca domestica. BMC Physiol.2008,8:18
    124. Zlotkin, E. The insect voltage-gated sodium channel as target of insecticides. Ann. Rev. Entomol, 1999,44:429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700