氮肥运筹对转基因棉Bt蛋白表达与降解的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以转单价基因抗虫杂交棉中棉72为实验材料,采用不同的施氮量和施氮方式处理,系统研究了氮肥运筹对转基因棉叶片和棉铃中Bt蛋白的表达与降解的调控作用及其初步机理,氮肥运筹对棉蕾中Bt含量、叶片中氮代谢生理活性及衰老的影响,主要研究结果如下:
     1氮肥运筹对抗虫棉叶片中Bt蛋白表达与降解的调控
     随着棉花叶片的生长发育,Bt蛋白的含量呈现先上升后下降的趋势,至功能期时达到高峰,衰老期和脱落期时含量明显下降。不同的施氮量处理和施氮方式处理对抗虫棉叶片中Bt蛋白的表达与降解均具有明显的调控作用。就施氮量处理而言,随着氮肥施入量的加大,叶片中Bt蛋白的含量整体呈现增大趋势,但当氮肥施入量过大时,叶片中Bt蛋白含量反而会下降。前期表达量较多的处理后期残留量也较多。对施氮方式处理来说,不施底肥会严重影响前期叶片中Bt蛋白的表达;施入较多的盖顶肥时,Bt蛋白的降解速度缓慢,后期叶片中残留的Bt蛋白含量较高。
     2氮肥运筹对转基因棉棉铃中Bt蛋白表达与降解的调控
     随着棉铃的发育,铃壳中Bt蛋白含量呈现出先增大后减小的趋势,充实期时含量最高,棉铃吐絮时迅速下降。而棉籽中Bt蛋白含量却逐渐增加,吐絮期时各处理棉籽中含量达到最高峰。不同的施氮量处理对棉铃各器官中Bt蛋白的表达和降解具有一定的调控作用。随着施氮量的加大,铃壳、棉纤维和棉籽中的Bt蛋白含量整体呈增大趋势,前期表达较多的处理后期残留也较多。棉铃各器官中Bt蛋白的表达和降解也受到不同施氮方式的影响。在膨大期和充实期,B3处理棉铃各器官中Bt蛋白的含量总体高于其他处理;在吐絮期时,盖顶肥施入最多的B1处理棉铃各器官中Bt蛋白降解的速度较慢,残留量最高,未施盖顶肥的B4处理棉铃各器官中Bt蛋白的含量最低。
     3氮肥运筹对抗虫棉叶片氮代谢生理活性的影响
     不同的施氮量处理显著影响了抗虫棉叶片中的氮代谢生理活性,随着氮肥施入量的加大,叶片中的游离氨基酸、可溶性蛋白和全氮的含量整体呈增加趋势,提高了谷氨酰胺合成酶(GS)的活性,叶片中的氮代谢生理活性随之增强。抗虫棉叶片中的氮代谢生理活性也受到了不同施氮方式处理的影响,叶片中的游离氨基酸、可溶性蛋白和全氮的含量以及谷氨酰胺合成酶(GS)的活性在展开期时以施入底肥最多的B4处理的含量最高,在衰老期、脱落期时均以施入盖顶肥最多的B1处理含量最高,这说明施入一定量的盖顶肥能够显著增强抗虫棉叶片在后期时的氮代谢的生理活性。
     4氮肥运筹对抗虫棉叶片衰老的影响
     对不同氮肥处理的叶片中的丙二醛(MDA)的含量、超氧化物歧化酶(SOD)的活性以及叶绿素的含量进行了测定,结果表明随着氮肥施入的增多,降低了各个时期的叶片中的丙二醛(MDA)的含量,增强了超氧化物歧化酶(SOD)的活性,提高了叶绿素的含量,进而延缓了叶片的衰老进程。就施氮方式处理而言,底肥和花铃肥施入较多的处理在叶片的展开期和功能期时的丙二醛(MDA)的含量较低,超氧化物歧化酶(SOD)的活性较高,叶绿素的含量也较其他处理高。在叶片的衰老期和脱落期,盖顶肥施入较多的处理丙二醛(MDA)的含量低于其他处理,超氧化物歧化酶(SOD)的活性仍较高,叶绿素的降解速度也低于其他处理,这说明对抗虫棉及时补施盖顶肥能够防止棉株因缺肥而早衰,延缓叶片的衰老。
     5氮肥运筹对抗虫棉叶片中Bt蛋白表达与降解调控的初步机理
     就施氮量处理而言,增施氮肥总体上促进了抗虫棉叶片在展开期、功能期、衰老期和脱落期的谷氨酰胺合成酶(GS)活性的增强,游离氨基酸、可溶性蛋白质的合成和全氮含量增加。同时也促进了棉花叶片中的Bt蛋白合成,导致叶片生育前期Bt蛋白表达量增加,在生育后期残留量也较大。对施氮方式处理来说,底肥和花铃肥施入较多的B4处理,促进了抗虫棉叶片在展开期时谷氨酰胺合成酶(GS)活性的增强,游离氨基酸、可溶性蛋白质的合成和全氮含量增加,其合成的Bt蛋白量也增加。盖顶肥施入较多的B1处理在衰老期、脱落期时谷氨酰胺合成酶(GS)活性仍较高,游离氨基酸、可溶性蛋白质和全氮含量也比其他处理高,叶片中残留的Bt蛋白含量最高。
In this paper,transfer gene unit hybrid cotton zhongmian72 was used as experimental material, using different nitrogen fertilizer rates and patterns treatments, the effects of nitrogen management practices on expression and degradation of Bt-protein in leaves and bolls and its preliminary mechanism、the effects of nitrogen management practices on the content of Bt-protein in squares、the effects of nitrogen management practices on the activities of nitrogen metabolism and senescence in the leaves were studied. The results as follows:
     1 The effects of nitrogen management practices on expression and degradation of Bt-protein in leaves
     With the growth of the leaves,the content of Bt-protein showed that first increased and then decreased,it was maximum in leaves of functioning stage, it declined obviously in leaves of senescing stage and shedding stage.The nitrogen can regulate expression and degradation of Bt-protein in leaves. In terms of nitrogen fertilizer rates treatments, with the increasing amount of nitrogen fertilizer,the content of Bt-protein trend to increase,but when the nitrogen fertilizer was excessive, the content of Bt-protein will decrease. The later residues were more when Bt-protein expressed more in prophase. In terms of nitrogen fertilizer patterns treatments, if the base fertilizer is not applied, the expression of Bt-protein will be affected;when using more fertilizer of roofing,the rate of degradation of Bt-protein will be slow,the residual Bt-protein were numerous.
     2 The effects of nitrogen management practices on expression and degradation of Bt-protein in bolls
     With the development of boll,the content of Bt-protein in shell showed that first increased and then decreased,it was maximum in the stage of filling,it rapid declined in the stage opening. The content of Bt-protein in the seed will increase,it was maximum in the stage of opening. With the increasing amount of nitrogen fertilizer, the contents of Bt-protein in shell, fiber and seed of bolls were increasing in the mass, the later residues were more when Bt-protein expressed more in prophase. The expression and degradation of Bt-protein in the boll was affected by different nitrogen fertilizer patterns. The contents of Bt-protein in shell, fiber and seed of bolls of treatment B3 were more than other treatments in the stage of expanding and filling; in the stage of opening, the contents of Bt-protein in the organs of boll of treatment B1 were more than other treatments because of using major fertilizer of roofing, the contents of Bt-protein of treatment B4 were minimal.
     3 The effects of nitrogen management practices on the activities of nitrogen metabolism in leaves
     The activities of nitrogen metabolism in leaves were obviously affected by nitrogen fertilizer rates treatments, the content of amino acids、soluble protein、total nitrogen and Glutamine synthase (GS) activity in leaves increased with the nitrogen fertilizer rates. The activities of nitrogen metabolism in leaves were also obviously affected by nitrogen fertilizer patterns treatments, the content of amino acids、soluble protein、total nitrogen and Glutamine synthase (GS) activity in leaves in treatments B4 were higher than others in the stage of expanding, the activities of nitrogen metabolism in leaves in treatment B1 were stronger than others in the stage of senescing and shedding. This shows that using a certain amount of fertilizer of roofing can evidently improve the activities of nitrogen metabolism in late stages.
     4 The effects of nitrogen management practices on the characteristic of senescence in leaves
     The content of the malondialdehyde(MDA) and chlorophyll、the activity of superoxide dismutase (SOD) in leaves under different nitrogenous fertilizer treatments were assayed, the results showed that the content of the malondialdehyde(MDA) reduced、the activity of superoxide dismutase (SOD) enhanced、the content of chlorophyll increased in leaves with the increasing of nitrogenous fertilizer,the process of the senescence of leaves was delayed.In terms of nitrogen fertilizer patterns treatments, the content of the malondialdehyde(MDA)was lower、the activity of superoxide dismutase (SOD) and the content of chlorophyll were hinger than other treatments in the stages of expanding and functioning inleaves withmore base and boll fertilizer. the content of the malondialdehyde(MDA) was lower、the activity of superoxide dismutase (SOD) and the content of chlorophyll were hinger than other treatments in the stages of senescing and shedding in leaves with more roofing fertilizer.These show that applying fertilizer in time for transgenic cotton can prevent the premature senescence because of lack of fertilizer,and then the process of the senescence of leaves was delayed.
     5 The preliminary mechanism of the effects of nitrogen management practices on expression and degradation of Bt-protein in leaves
     In terms of nitrogen fertilizer rates treatments, the content of amino acids、soluble protein、total nitrogen and Glutamine synthase (GS) activity in leaves increased with the nitrogen fertilizer rates in expanding stage﹑functioning stage、senescing stage and shedding stage.At the same time, the synthesis of Bt-protein was promoted, led to the expression of Bt-protein increased in the early growth stage,the residues in the late growth stage were large. For nitrogen fertilizer patterns treatments, the treatment B4 because of base fertilizer and boll fertilizer applied more, the content of amino acids、soluble protein、total nitrogen and Glutamine synthase (GS) activity were promoted in the stage of expanding, the expression of Bt-protein also increased. The activities of nitrogen metabolism in leaves of treatment B1 were stronger than others in senescing stage and shedding stage, the residues were more than others.
引文
1.夏敬源.棉花抗虫性的研究与利用[J].棉花学报,1996,8(2):57-64.
    2.Sachs E.S., Benedict J.H., Stelly D.M., et al. Expression and segregation of genes encoding CryIA insecticidal proteins in cotton[J].Crop Science,1998,38(1): 11-20.
    3.谢道昕,范云六,倪万潮,等.苏云金芽孢杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株[J].中国科学(B), 1991,4:367-373.
    4.郭三堆,范云六.苏云金芽孢杆菌和大肠杆菌穿梭质粒的构建和特性研究[J].遗传学报, 1992,19(6):549-557.
    5.郭三堆,洪朝阳,徐琼芳,等.苏云金芽孢杆菌aizawai7-29δ-内毒素基因改造后的杀虫活性研究[J].中国农业科学,1993, 26(5): 77-81.
    6.李付广,刘传亮.生物技术在棉花育种中的应用[J].棉花学报,2007,19 (5):362-368.
    7.李付广,崔金杰.生物技术在棉花育种中的应用[R].中国科技成果,(出版地不详)2004.
    8李卫华,张天真.棉花转基因抗虫研究的进展、问题与展望[C]//中国棉花学会2008年年会论文汇编.安阳:中国棉花杂志社,2008:33-35.
    9.李珍. Bt蛋白在土壤中降解的影响因素研究[D].华中农业大学硕士学位论文,2009.
    10.黄大昉,林敏.农业微生物基因工程[M].北京:科学出版社,2001.
    11.Schnepf E.,Crickmore N.,Van Rie J.,et al. Bacillus thuringiensis and Its Pesticidal Crystal Proteins[J].Microbiol.Mol.Biol.Rev.,1998,62:775-806.
    12.Cummings C E,Armstrong G,Hodgman TC,et a1.Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensisδ-endotoxin[J].Mo1.Memb.Bio1.,1994,11:87-92.
    13.Ferre J,Escriche B,Bel Y,et a1.Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal protein[J].FEMS Microbiology Letters,1995,132:l-7.
    14.Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis[J].Microbiol Rev.,1989,53:241-255.
    15.Van R J,McGaughey W H,Jonhson D E,et a1.Mechanism of insect resistance to the microbial insecticide of Bacillus thuringiensis[J].sci.,l990,247:72-74.
    16.夏兰芹,徐琼芳,郭三堆.抗虫棉生长发育过程中Bt杀虫基因及其表达的变化[J].作物学报, 2005,31(2):197-202.
    17.崔金杰,夏敬源,马丽华,等.转双价基因抗虫棉对棉铃虫的抗虫性及时空动态[J].棉花学报,2002,14(6):323-329.
    18.袁小玲,唐灿明,张天真.转Bt+CpTI双价抗虫棉的遗传稳定性及生育后期对棉铃虫抗性表现[J].作物学报,2002,28(2):179-184.
    19.邢朝柱,靖深蓉,崔学芬,等.转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗性的影响[J].棉花学报,2001,13(1):l1-15.
    20.陈松,吴敬音,周宝良,等.转Bt基因棉Bt毒蛋白表达量的时空变化[J].棉花学报,2000,12(4):189-193.
    21.Zhang T-Z,Tang C-M.Utilization and management of Bt transgenic cotton plants and their insecticidal activity[J]. Chinese Science Bulletin,2000,45(2):119-127.
    22.Zhao J-Z, Zhao K-J,Lu G-M. The interaction of Bt toxin gene with the bollworm in the northern part of central China[J].Scientia Agricultura Sinica,1998,31:(5),1-6(in Chinese with English abstract).
    23.Fitt G P,Mares C L,Lewellyn D J.Field evaluation and potential ecological impact of transgenic cotton in Australia[J].Biocontrol Science and Technology,1994,4:535-548.
    24.Stewart A.Ingard analysis for 1997-98[J].Australian Cotton Grower cotton YearBook,1998:26-27.
    25.Tony L.The Bt report:Ingard performance in the 1996-97 cotton season[J].Australian Cotton Grower,1997,1:62-63.
    26.束春娥,孙洪武.转基因棉Bt毒性表达的时空动态及对棉铃虫生存、繁殖的影响[J].棉花学报,10(3):131-135.
    27.Sachs E S.Benedict J H.Pyramiding CrylA(b)insecticidal protein and terpenoids in cotton to resist tobacco budworm[J].Environmental Entomology,1999,25(6):1257-1266.
    28.周桂生,封超年,周青,张网定,陈后庆.高温胁迫对Bt转基因棉叶片毒蛋白含量的影响.扬州大学学报(农业与生命科学版),2003,24(4):75-77.
    29.Dehua Chen, Guoyou Ye, Changqin Yang, et al.The effect of high temperature on the insecticidal properties of Bt Cotton[J].Environmental and Experimental Botany ,2005,53(3): 333-342.
    30.夏兰芹,郭三堆.高温对转基因抗虫棉中Bt杀虫基因表达的影响[J].中国农业科学,2004,37(11):1733-1737.
    31.王留明,王家宝,沈法富,等.渍涝与干旱对不同转Bt基因抗虫棉的影响[J].棉花学报,2001,13(2):87-90.
    32.周冬生,吴振廷,王学林,等.土壤胁迫与温度对转Bt基因棉抗虫性的影响[J].棉花学报,2001,13(4):290-292.
    33.郑亚丽,凌远云.农户采用转基因抗虫棉逆转行为及认知评价调查分析[J].中国农学通报,2007,23(4):509-512.
    34.王保民,李召虎,李斌,等.转Bt抗虫棉各器官毒蛋白的含量及表达[J].农业生物技术学报,2002,10(3):215-219.
    35.王进友.Bt棉棉铃发育与杀虫蛋白表达的关系及其生长物质调节的研究[D].扬州大学硕士学位论文,2007.
    36.Morra M J.Assessing the impact of transgenic plant products on soil organisms[J]. Mo1.Eco1.,1994,3:53-55.
    37.Palm C J,Schaller D L,Donegan K K,et a1.Persistence in soil of transgenic plant produced Bacillus thuringienis var kurstaki delta-en-dotoxin[J].Can .J.Microbial,1996,42(12):l258-l262.
    38.Saxena D,Flores S,Stotzky G.Insecticidal toxin in root exudates from Bt corn[J].Nature,1999,402(12):480.
    39.孙彩霞,陈利军,武志杰.Bt杀虫晶体蛋白的土壤残留及其对土壤磷酸酶活性的影响[J].土壤学报,2004,41(5):761~765.
    40.芮玉奎.Bt棉与常规棉根际土壤Bt毒蛋白和植物激素变化动态[J].生物技术通讯,2005,16(5):515~517.
    41.Rui Y K. Dynamics of Bt toxin and plant hormones in rhizosphere system of transgenic insecticidal cotton[J]. Letters in Biotechnology,2005, 16(5): 515-517.
    42.陈愫惋.转基因棉花的Bt毒素在土壤中的分布及对土壤酶活性的影响[D].华中农业大学,2008年硕士毕业论文.
    43.万小羽,梁永超,李忠佩,等.种植转Bt基因抗虫棉对土壤生物学活性的影响[J].生态学报,2007,27(12):5144-5150.
    44.Heckel D G.The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects[J].Biocontrol Science & Technology.1994,4:405-417.
    45.Koskella J,Stotzky G.Microbial utilization of free and clay-bound insecticidal toxins from and their retention of insecticidal activity after incubation with microbes[J].Applied and Enviromental Microbiogy,1997,63:356l-3568.
    46.McGaughey W H,Whalon M E.Managing insect resistance to Bacillus thuringiensis toxin[J].Science,1992,258:l451-l455.
    47.SiIIls S R.Ream J E.Soil inactivation of their Lsecticidal protein with in transgenic cotton tissue:Laboratory microcosms and field studies[J].Journal of Agricultural an d Food Chemistry,1997,45:1502- 1505.
    48.崔金杰,雒澹瑜,李树红,等.转基因抗虫棉对土壤微生物影响的初步研究[J].河北农业大学学报,2005,28(6):73-75.
    49.李永山,范巧兰,陈耕,等.转Bt基因棉花对土壤微生物的影响[J].农业环境科学学报,2007,26 (增刊): 533-536.
    50.沈平,张永军,陈洋,等. Bt棉不同种植年限土壤中Bt基因及其蛋白的残留测定[J].棉花学报,2008,20(1):79-封三.
    51.张美俊,杨武德,李燕娥.不同生育期转Bt基因棉种植对根际土壤微生物的影响[J].植物生态学报,2008 , 32(1)197-203.
    52.Yu-Kui Rui,Guo-Xiang Yi,Jing Zhao,et al.Changes of Bt Toxin in the Rhizosphere of Transgenic Bt Cotton and its Influence on Soil Functional Bacteria[J]. World Journal of Microbiology and Biotechnology,2005,21(6-7):1279-1284.
    53.孙彩霞,陈利军,武志杰.Bt毒素在转基因棉花与土壤系统中的分布[J].应用生态学报,2005,16(9):1765-1768.
    54.Masood E. Europe and US in confrontation over GM food labeling criteria[J]. Nature , 1999,398 (6729) : 641.
    55. Saegusa A. Japan tightens rules on GM crops to protect the environment[J] .Nature , 1999,399(6738) : 719.
    56. Poppy G. GM crops : environmental risks and non-target effects[J].Trends in Plant Science , 2000,5 (1) : 4 - 6.
    57.Dogan EB,Berry RE,Reed GL,et al. Biological parameters of convergent lady beetle (Coleoptera:Coccinellidae) feeding on aphids (Homoptera : Aphididae) on transgenic potato[J]. J . Econ. Entomol . ,1996,89 (5):1105 -1108.
    58.Lozzia G, Furlanis C,Manachini B,et al. Effects of Bt corn on Rhopalosiphum padiL. (Homoptera:Aphididae) and on its predator Chrysoperla carnea Stephen (Neuroptera: Chrysopidae) [J]. Bollettino di Zoologia agraria e di Bachicoltura,1998,30(2) :153-164.
    59.Armer CA , Berry RE , Kogan M. Longevity of phytophagous heteropteran predators feeding on transgenic Bt-potato plants[J]. Entomol .Exp. Appl . , 2000,95 : 329 - 333.
    60.Riddick EW, Barbosa P.Cry3A-intoxicated Leptinotarsa decemlineata (Say) are palatable prey for Lebia grandis Hentz[J]. J . Entomol . Sci . ,2000,35 :342-346.
    61.Zwahlen C,Nentwig W, Bigler F,et al.Tri-trophic interactions of transgenic Bacillus thuri-ngiensis corn .Anaphothrips obscurus (Thysanoptera :Thripidae ) , and the predator Orius majusculus (Heteroptera : Anthocoridae) [J]. Environ. Entomol . , 2000,29 ( 4):846 -850.
    62.Dutton A , Klein H , Romeis J , et al. Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea[J]. Ecol . Entomol . , 2002,27 : 441 - 447.
    63.董亮,万方浩,张桂芬,等.转Bt基因抗虫棉对中华草蛉发育及繁殖的影响[J].中国生态农业学报,2003,11 (3) : 16 -18.
    64.Hilbeck A,Baumgartner M, Fried PM,et al.Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera : Chrysopidae ) [J] . Environ.Entomol . , 1998,27 (2):480-487.
    65.Birch ANE,Geoghegan IE,Majerus MEN,et al.Tri-trophic interactions involving pestaphids , predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance [J]. Molecular Breeding , 1999,5(1):75-83.
    66.张桂芬,万方浩,郭建英,等.Bt毒蛋白在转Bt基因棉中的表达及其在害虫-天敌间的转移[J].昆虫学报,2004,47(3):334-341.
    67.陈洋,张永军,吴孔明,等.转基因植物重组DNA和表达蛋白的环境分子行为[J].植物保护,2008,34(1):9-13.
    68.Torres J B,Ruberson J R,Adang M J.Expression of Bacillus Thuringiensis CrylAc protein in cotton plants,acquisition by pests and predators:a tritrophic analysis[J].Agricultural and Forest Entomology,2006,8:l9l-202.
    69.方昌源,张宣达.中国生物防治[M].太原:山西科学技术出版社,189-202.
    70.Pilcher CD,Obrycki JJ,Rice ME ,et al. Preimaginal development, survival ,and field abu-ndance of insect predators on transgenic Bacillus thuringiensis corn[J]. Environ. Entomol .,1997,26(2):446-454.
    71.Jorge B,Torres,Ruberson J R. Interactions of Bt-cotton and the omnivoreous big-eyed bug Geocoris puncti pes (Say),a key predator in cotton fields[J].Biolo-gical Control,2006,39:47-57.
    72.雒珺瑜.不同类型抗虫棉棉子壳/粕对平菇生长的影响及平菇中Bt杀虫蛋白检测[J].中国棉花,2010,1:9-11.
    73.余梦瑶,郑林用,许晓燕,等.转基因棉籽壳栽培毛木耳的安全性评价初报[J].西南农业学报,2010,23(3),644-649.
    74.Linjian Jiang,Xiaoli Tian,Liusheng Duan,et al.The fate of CrylAc Bt toxin during oyster mushroom (Pleurotus ostreatus) cultivation on transgenic Bt cottonseed hulls[J].Journal of the Science of Food and Agriculture,2008,88(2):214-217.
    75.Singhal K K,Senthil Kumar,Tyagi A K,et al.Evaluation of Bt cottonseed as a protein supplement in the ration of lactating dairy ows[J].The Indian journal of animal sciences.2006,76(7):532-537.
    76.董志强,何钟佩,翟学军.转Bt基因棉新棉33B叶片氮素代谢特征及其化学调控潜力[J].棉花学报,2000,12(3):113-117.
    77.董志强.Bt棉抗虫性表达的化学调控.中国农业科学院博士后研究报告,2002.
    78.徐立华,杨长琴,张培通,等.缩节安对转基因Bt基因棉Bt蛋白表达与氮代谢特性的影响[J].江苏农业科学,2006年第6期:59-61.
    79.陈德华,聂安全,杨长琴,等.Bt棉毒蛋白表达特征与氮代谢关系及其化学调节的研究[J].中国棉花,2003,30(7):10-12.
    80.张永军,郭予元,吴孔明,等.化学调节剂诱导转Bt基因棉花Bt毒蛋白和主要抗虫次生物的变化[J].棉花学报,2002,14(5):131-133.
    81.杨长琴,徐立华,杨德银.氮肥对转Bt基因棉Bt蛋白表达的影响及其氮代谢机理的研究[J].棉花学报,2005,17(4):227-231.
    82.H. Arnold Bruns,Craig A. Abel. Nitrogen fertility effects on Btδ-Endotoxin and nitrogen concentrations of maize during early growth[J]. Agronomy Journal,2003,95(1):207-211.
    83.徐立华,杨长琴,张培通,等.栽培措施对转基因抗虫棉Bt毒蛋白表达的影响及氮代谢特征.中国棉花学会2006年年会暨第七次代表大会论文汇编[C],2006年.
    84.王保民,何钟佩,赵继勋.抗虫棉Bt杀虫晶体蛋白免疫检测方法的研究[J].棉花学报,1998,10(4):220-221.
    85.邹琦.植物生理学实验指导[M],北京:中国农业出版社, 2000
    86.Zhang C F,Peng S B,Peng X X,et a1.Response of Glutamine Synthetase Isoforms to Nitrogen Sources in Rice(Oryza sativa L .)Roots[J].Plant Sci,1997,125:163-170.
    87.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000
    88.刘胜群,宋凤斌.玉米生殖生长期根系主要游离氨基酸含量分析[J].华北农学报,2007,22(1):35-39.
    89.Lea PJ,Irel RJ.Nitrogen metabolism in higher plants[C]//Singh B K.Plant Amino Acids,Biochemistry and Biotechnology[C].Marcel Dekker,New York,1999:1-47.
    90.Lain H M,Coschigano K T,Oliveira I C,et a1.The molecular genetics of nitrogen assimilation into amino acids in higher plants[J].Annual Review Plant Physiology Plant Molecular Biology ,1996,47:569-593.
    91.Igor C O,Brears T,Thomas J,et a1.0verexpressi0n of cytosolic glutamine synthetase relation to nitrogen,light,and photorespiration[J].Plant Physiology,2002,129:1170-1180.
    92.Cren M,Hirel B.Glutamine synthetase in higher plants:regulation of gene and protein expression from the organ to the cell[J].Plant Cell Physiology,1999,40:1187-l193.
    93.Harrison J,Crescenzo M P,Sene O,et a1.Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of lotus japonicus[J].Plant Physiology,2003,I33:253-262.
    94.Martin A,Lee J,Kichey T ,et a1.Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production[J].The Plant Cell,2006,8: 3252- 3274.
    95.Hirel B,Bertin P,Quillere I,et a1.Towards a better understanding of the genetic and physiological basis for nitrogen useefficiency in maize[J].Plant Physiology,2001,125:1258-1270.
    96. Halliwell B.Chlorop last Metabolism,the structure and function of chlorop tasts in green leafcells[M].Oxford:Charenden Press,1981.186.
    97.刘连涛,李存东,孙红春,等.氮素营养水平对棉花不同部位叶片衰老的生理效应[J].植物营养与肥料学报,2007,13(5):910-914.
    98.喻树迅,黄祯茂,姜瑞云,等.几个短季棉品种叶片衰老特征的研究[J].棉花学报,1994,6(增刊):31—35.
    99.杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    100.张海娜,李存东,肖凯.氮素对不同衰老特性棉花品种光合特性和细胞保护酶活性的影响[J].华北农学报.2008,23(5):170-174.
    101.Shen W B,Ye M B,Zhan g R X,et a1.Changes of ability of scavenging active oxygen during natural senescence of wheat flag leaves[J].Acta Botanica Sinica,1997,39(7):634-640.
    102. Wu Z T,Yang D Q.Study on the relation between the destruction of plasma membrane and changes of activity of enzymes during the senescence of detached wheat leaves[J].Journal of Southwest A cultural University,1990,(4):371-374.
    103.章秀福,王丹英,储开富,等.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J].中国水稻科学(Chinese J Rice Sci) , 2006, 20( 2) : 194-198.
    104.李付广.双价基因抗虫棉生理生化特征研究[J].棉花学报,2003,15(3):131-137.
    105. Read S M,Northcote D H.Minimization of variation in the response to different protein of the Coomassic Blue G dye dinding:Assay for protein[J].Ana1.Biochem.,1981,116:53-64.
    106.马宗斌,房卫平,谢德意,等.氮肥基追比对抗虫杂交棉叶片衰老和产量的影响[J].西北植物学报,2008,28(10):2062-2066.
    107.张枫叶.商丘市麦棉两熟发展历程及振兴战略研究[D].河南农业大学农业推广硕士学位论文,2010.
    108.王平,田长彦,陈新平,等.南疆棉花施氮量及氮素平衡分析[J].干旱地区农业研究,2006,24(1):77-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700