转Bt玉米叶面微生物区系及Bt蛋白表达规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着转基因作物全球化的应用和推广,转Bt基因作物释放后对生态环境产生的潜在影响受到广泛重视。转Bt基因玉米的释放对土壤微生态的影响、与野生近缘种的基因流、对非靶标昆虫的影响和靶标害虫抗性问题是近年研究的热点,然而转Bt基因玉米对叶面微生物的影响鲜有报道,因此研究田间自然条件下转Bt基因玉米对叶面微生物群落及多样性的影响对Bt玉米的生态风险评价具有重要意义。
     2010年和2011年,在农业部转基因植物环境安全监督检验测试中心(济南)专用试验基地内种植转Bt基因玉米和亲本玉米,于苗期、拔节期、喇叭口期、抽雄期、抽丝期、乳熟期和完熟期采样,研究大田自然状态下转Bt基因玉米对叶面微生物群落结构和功能的影响。主要研究方法为Biolog微平板法、传统微生物分离培养法和酶联免疫法。
     利用传统培养法,于2010和2011连续两年测定转Bt基因玉米MON810及其亲本玉米DK647叶面细菌、真菌和放线菌的数量变化,并对细菌生理群的数量和多样性进行分析,结果表明:虽然不同年份和生育期两个玉米品种叶面微生物数量存在差异,但是,年度间和相同的发育时期叶面微生物的数量变化趋势一致,一般由苗期开始增多,到生育后期达到数量高峰。转Bt基因玉米对叶面细菌和真菌影响较大,大部分生育期内Bt玉米叶面真菌和细菌数量与亲本玉米有显著差异,而放线菌数量与亲本相比差异不显著。2010年的抽雄期Bt玉米叶面细菌生理群Shannon-Wiener群落多样性指数、Simpson优势集中性指数、和均匀度指数显著低于亲本,2011年苗期和拔节期Bt玉米细菌生理群的三种群落特征参数显著大于对照。
     利用Biolog微平板法对转Bt基因玉米及其亲本玉米叶面微生物的单一碳源利用水平进行分析,探讨转基因玉米对其叶面微生物群落功能多样性的影响。结果表明:玉米叶面微生物总体活性苗期最低,抽丝期最强,完熟期有所减弱;与非转基因亲本相比,苗期、喇叭口期和完熟期转Bt基因玉米叶面微生物活性大于非转基因玉米;叶面微生物对碳源的利用主要集中在糖类及其衍生物类上,代谢中间产物和次生代谢物类碳源利用程度最低;整个生育期内Bt玉米叶面微生物群落Shannon多样性指数和丰富度指数均高于常规玉米,其中喇叭口期差异显著(P<0.05),均匀度指数和优势度指数在整个生育期无显著差异(P>0.05)。主成分分析表明苗期、喇叭口期和抽丝期,转Bt基因玉米与非转基因玉米叶面微生物群落的碳源利用模式相似,不同生育期分异明显;完熟期转Bt基因与非转基因玉米叶面微生物碳源利用模式在PC2轴上存在显著差异。PC1轴和PC2轴分别对不同生育期和不同基因型玉米叶面微生物碳源利用模式造成主要分异。
     应用Biolog方法研究了转Bt基因玉米粉碎叶对土壤微生物群落结构功能多样性的影响。取腐解10 d、25 d、40 d、55 d的土样分析土壤微生物群落多样性指数及对不同类碳源的利用情况。结果表明:在腐解的第25 d、40 d、55 d,转Bt基因玉米粉碎叶处理土壤微生物群落丰富度指数(H)、优势集中性指数(D)和均匀度指数(E)与常规玉米处理均无明显差异,腐解10d抽雄期转Bt基因玉米粉碎叶处理的土壤微生物群落多样性和均匀度显著高于常规玉米(P<0.05),而乳熟期的优势集中性显著低于常规玉米(P<0.05)。主成分分析表明,转Bt基因玉米粉碎叶对土壤微生物碳源利用模式的影响随腐解时间延长而减小,腐解第10 d影响最大,第55 d已基本无影响。
     利用酶联免疫吸附测定法(ELISA),对转Bt基因玉米不同发育时期和不同组织器官Bt晶体蛋白表达量进行了测定。结果表明,叶、茎、花丝、雌穗轴,雄穗小花和雄穗秆中均可检测到Bt杀虫蛋白,外源Bt蛋白占可溶性蛋白的比例随着作物的生长呈上升的趋势。相关分析表明,Bt蛋白表达量与玉米生长时间呈显著正相关,Bt玉米对叶面微生物群落结构没有显著影响,作物生长时间比玉米基因型对叶面微生物的影响大。
With the large scale release of transgenic crops, their possible ecological risks have beenpaid an increasing attention. Transgenic maize containing gene to produce the insecticidal toxinhas been widely planted. Most research on Bt maize has focus on invasiveness, gene flow toindigenous organisms, development of resistance in target pests, and direct or indirect effects onnon-target organisms and ecosystem. A few studies have been published to evaluate theecological effects of Bt maize on epiphytes. The aerial habitat colonized by these microbes istermed the phyllosphere, and the inhabitants are called epiphytes. While there has been someinvestigation of the colonists of buds and flowers, most work on phyllosphere microbiology hasfocused on leaves, a more dominant aerial plant structure. Bacteria are by far the most numerouscolonists of leaves, often being found in numbers averaging 106to 107cells/cm2(up to 108cells/g) of leaf. Because of their numerical dominance on leaves, and because more informationis available on the process of bacterial colonization of leaves, we focus on this group of microbesin this review. Therefore, in this study impact of Bt maize on the diversity of epiphytescommunities under field conditions is evaluated for the ecological risk of Bt maize.
     The transgenic Bt maize MON810 and non-transgenic maize were grown in field condition(The Ministry of Agriculture, genetically modified plants Environmental Safety Supervision,Inspection and Testing Center special test base) for two years from 2010 to 2011.The leaves ofmaize seedling stage, jointing stage, trumpet stage, tasseling stage, silking stage, milking stageand full-ripe stage were examined. Epiphytes community diversity and functional diversity undernatural conditions were analyzed to make out whether the maize genotypes affect thephyllosphere microbes. The main research methods were the Biolog micro-plate method and thetraditional isolation culture methods. Enzyme-linked immunosorbent assay (ELISA) was alsoused to detect the Bt protein.
     1 The traditional separation of culture results showed that although there were differencesin the colony-forming unites of culturable bacteria, actinomycetes and fungi of phyllospherebetween Bt maize and non-Bt maize in different growing periods and different years, the trend ofannual differences was basically consistent at the same growth period: the quantity of microbesin seeding stage is fewest and reaches the peak in the late of growing period. Compared with the controls, transgenic Bt maize seemed to stimulate the reproduction of phyllosphere fungi.However, no significant effect on the populations of actinomycete was observed. Significantdifferences were detected for bacteria at jointing stage, trumpet stage, silking stage and milkingstage. In 2010,the Shannon-Wiener index, Simpson index and evenness index of bacteriaphysiological groups were higher at seeding, jointing and full-ripe stage, but lower at trumpetstage, tasseling stage, silking stage and milk stage. In 2011, the population characteristicparameters of the microorganisms of Bt-corn are more than the ones of non-Bt corn in the wholegrowing period except trumpet stage. It may be concluded there was some difference in terms ofimpacts between transgenic maize and non-transgenic maize,while the main impacts onmicrobial community composition were likely due to different years and different growthperiods.
     2 Biolog method was used to find the difference of carbon used by non-Bt maize and Btmaize, and to study the microbial differences of the metabolic functions of microbial activity inresponse to whether the influence by the Bt maize or not. The results showed that the activity ofPhyllosphere microorganism was weakest at seeding stage, highest at silking stage, and declinedat full-ripe stage. The carbon sources utilization ability of microorganisms on the Bt maizeleaves higher than that on the non-Bt maize leaves. The main carbon sources of epiphytes werecarbohydrate and its derivatives, while intermediate and secondary metabolites were used least.In the whole growth period, the Shannon functional diversity index and richness index of Btmaize were higher than non-Bt maize: compared with non-transgenic maize, transgenic maizehad less effects on Shannon functional diversity index, and richness index of Phyllospheremicrobes at seedling, silking and full-ripe stages, but had significant influence (P<0.05)ondiversity and richness index at trumpet stage. There were no significant difference been found inShannon evenness index and Simpson index during the whole growth stages. Principalcomponent analysis (PCA) indicated that there existed greater differentiation in the carbonsource utilization by the microbes on leaf surface of non-transgenic and transgenic maize atfull-ripe stage, suggesting the significant difference in the carbon source utilization pattern of themicrobes at this stage.
     3 The diversity of soil microbial community and utilization pattern of different carbonsources were assessed via Biolog method on the 10th, 25th, 40th and 55th day of transgenic Bt maize leaves decomposition. The results showed that there were no differences in soil microbialcommunity with ground leaves evennness, diversity, and concentration index between transgenicBt maize and no transgenic Bt maize on the 25th, 40th and 55th. Compared with non-transgenicmaize, transgenic maize had a higher influence (P<0.05) on soil microbial community ondiversity and evenness index at tasseling stage, but a lower influence (P<0.05) on simpsonconcentration index at milking stage. Principal component analysis indicated that transgenic Btmaize ground leaves had a obviously effects on indigenous soil microbial community structureand function on the 10th. It, however, had no effects on soil microbial community on the 55th.
     4 Temporal and spatial dynamic of Bt gene expression in Bt transgenic maize was studiedby testing the Bt crystal toxin protein in different growing stages and tissues of plant. The resultsshowed that with the growth of Bt maize, the proportion of Bt protein to total soluble proteins inleaves, stalk, filament, tassel stalk, tassel florets and female corncobs continuously increased.Ingeneral, the contents and proportion were lower in the young tissues or organs, but higher in themature. The correlation analysis showed that, the content of Bt protein was positively related toBt maize growth periods. The insecticidal crystal proteins has no significant infuence onepiphytes, and it has a lower infuence on epiphytes compared with growing stages.
引文
[1]徐征.农业转基因生物对土壤生态系统功能影响的研究进展[J].中国农学通报, 2004, 20(8): 47–49
    [2]郑宇,李玥仁,胡奇勇,等.转基因作物和工程菌对土壤微生物群落影响的浅析[J].江西农业大学学报, 2003, 25(10): 67
    [3]王延锋,郎志宏,赵奎军,黄大昉.转基因作物的生态安全性问题及其对策[J].生物技术通报,2010,(7): 1–6
    [4]郭建英,万方浩,韩召军.转基因植物的生态安全性风险[J].中国生态农业学报, 2008, 16(2):515–522
    [5]赵凯,朱宏,赵星海,李鹏,唐雪明.转基因植物环境安全性研究进展[J].生物学通报, 2009,44(4):8–11
    [6]樊龙江,周雪平,胡秉民,石春海,吴建国.转基因植物的基因漂流风险[J].应用生态学报, 2001,12(4): 630–632
    [7]浦惠明,戚存扣,张洁夫,傅寿仲,等.转基因抗除草剂油菜对近缘作物的基因漂移[J].生态学报,2005, 25(3): 581–588
    [8]浦惠明,戚存扣,张洁夫,傅寿仲等.转基因抗除草剂油菜对十字花科杂草的基因漂移[J].生态学报,2005, 25(4): 910–916
    [9]姜大刚,姚涓,陈伟庭,潘志文,等.转基因水稻外源基因向稗草的漂移研究[J].安徽农业科学,2011, 39(12): 6963–6964, 6990
    [10]王元格.转Bt基因抗虫棉叶面微生物多样性变化[D].山东农业大学, 2007
    [11]邸宏,刘昭军.转Bar基因玉米基因漂移的研究[J].中国农学通报, 2008, 24(12): 111–113
    [12]路兴波,孙红炜,杨崇良,刘开启,等.转基因玉米外源基因通过花粉漂移的频率和距离[J].生态学报, 2005, 25(9): 2450–2453
    [13]姜大刚,梁奕涛,黄靖,陈源鑫,等.转基因水稻外源基因的漂移研究[J].生物技术通报, 2010,(6):95–99
    [14]任江萍,李磊,尹钧.转基因小麦向其近缘野生种基因漂移的研究[J].河南农业科学, 2009, (1):28–30
    [15] Losey J J, Raynor L, Cater M E. Transgenic pollen harms monarch larvae[J]. Nature, 1999, 399: 214
    [16] Felke M, Lorenz N, Langenbruch G A. Laboratory studies on the effects of pollen from Bt-maize onlarvae of some butterfly species[J]. Journal of Applied Entomology, 2002, 126: 320–325
    [17] Jesse L C H, Obrycki J J. The occurrence and abundance of Danaus plexippus L. (Lepidoptera:Danaidae)on Asclepias syriaca in corn agroecosystems[J]. Agr. Ecosyst. Environ., 2003, 97: 225–233
    [18] Ramirez-Romero R, Desneux N, Chaufaux J, et al. Bt-maize effects on biological parameters of thenon-target aphid Sitobion avenae (Homoptera:Aphididae) and Cry1Ab toxin detection[J]. Pestic.Biochem. Physiol., 2008, 91: 110–115
    [19] Giles K L, et al. Effects of transgenic Bacillus thuringiensis maize grain on B.thuringiensis susceptiblePlodia interpunctella (Lepidoptera:Pyrabidae)[J]. J. Econ. Entomol., 2000, 93: 1011–1016
    [20] Wu K M, Guo Y Y, Lv N, et al. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae)to Bacillus thuringiensis inseticidal protein in China[J]. Journal of Economic Entomology, 2002, 95:826–831
    [21] Mcgaughey W H, Gould F, Gelernter W. Bt resistance management[J]. Nature Biotechnology, 1998, 16:144–146
    [22] Gould F, Anderson A, Reynolds A, et al. Selection and genetic analysis of a Heliothisvirescens(Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins[J].Journal of Economic Entomology, 1995, 88: 1545–1559
    [23] Blackeman J P. Microbial ecology of the phylloplane (ed.Blackeman ,J.P)[M]. London: Academic Press,1981. 520
    [24]刘仁义,刘南.基于互联网GIS(WebGIS)的环境灾害信息系统研究[J].自然灾害学报, 2002, 11(2):14–19
    [25] Steven E, Lindow, Maria T, Brandl. Microbiology of the Phyllosphere[J]. Applied And EnviromentalMicrobiology, 2003, 69(4): 1875–1883
    [26]施雯,张汉波.叶面微环境和微生物群落微生物学通报[J]. 2007, 34(4): 761–764
    [27] Katherine K, Donegan, Deborah L, et al. Microbial population, fungal species diversity and plantpathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionisendotoxin[J]. Transgenic Research, 1996, 5: 25–35
    [28] Lottmann J H, Heuer K, Smalla and Berg G. Influence of transgenic T4-lysozyme producing potato plantson potentially beneficial plant-associated bacteria[J]. FEMS Microbiology Ecology, 1999, 29: 365–377
    [29]赵廷昌,孙福在,张永军,洪玉梅等.转基因棉花叶面细菌数量消长的初步研究[J].中国植物病理学会, 2004,年学术年会论文集
    [30]郭文文,李建勇,诸葛玉平,宗晓庆.转基因作物对土壤生态安全的影响[J].山东农业科学, 2009,10: 86–90
    [31]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境, 2002, 11(1):85–89
    [32]王忠华.转Bt基因水稻对土壤微生态系统的潜在影响[J].应用生态学报, 2005, 16(12): 2469–2472
    [33]沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化[J].生态学报, 2004, 24(3): 432–437
    [34] Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensisand of bacterial DNA bound on clays and humic acids[J]. J.Environ.Qual., 2000, 29: 691–705
    [35] Saxend D, Stotzky G. Bacillus thuringiensis (Bt) toxin released from root exudatesand biomass of Bt-cornhas no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil[J]. Soil Biology &Biochemistry, 2001, 33: 1225–1230
    [36] Manachini B, Lozzia G C. First investigations into the effects if Bt-corn crop on Nematofauna[J]. BollZool Agr Bachic Ser II, 2002, 34: 85–96
    [37] Kotilaninen T, Setal H, Alatalo. Impacts of chitinasetrans formed silver birch on leaf decomposition andsoil organisms[J]. European Journal of Soil Biology, 2005, 40: 155–161
    [38] Vercesi M L, Krogh P H, Holmstrup M. Can Bacillus thuringiensis (Bt) corn residues and Bt-corn plantsaffect life history traits in the earthworm Aporrectodea caliginosa[J]. AppliedSoil Ecology, 2006, 32(2):180–187
    [39] Zwahlen N C, Hilbeck A, Howald R, et al. Effects of transgenic Bt-corn litter on the earthwormLumbricus terrestris[J]. Molecular Ecology, 2003, 12: 1077–108
    [40] Ahmad A, Wilde G E, Zhu K Y. Evaluation of effects of coleopteran-specific Cry3Bb1 protein onearthworms exposed to soil containing corn roots or biomass[J]. Environmental Entomology, 2006, 35(4):976–985
    [41] Sims S R, Martin J W. Effects of the Bacillus thuringiensis insecticidal proteins CryⅠA(b), CryⅠA(c),CryIIA, and CryIIIA on Folsomia candida and Xenylla grisea(Insecta: Collembola). Pedobiologia, 1997,41(5): 412–416
    [42] Griffiths B S, Geoghegan I E, RobertsonW M. Testing genetically engineered potato,producing the lectinsGNA and Con A,on non - target soil organisms and processes[J]. Journal of Applied Ecology, 2000, 37(1):159–170
    [43] Donegan K K, Palm C J, Fieland V J, et al. Changes in levels,species and DNA fingerprints of soilmicroorganisms associated with cotton expressing the Bacillus thuringiensis subsp kurstaki endotoxin[J].Applied Soil Ecology, 1995, 2(2): 111–124
    [44]孙彩霞,陈利军,武志杰,等.种植转Bt基因水稻对土壤酶活性的影响[J].应用生态学报, 2003,14(12): 2261–2264
    [45]颜世磊,赵蕾,孙红炜,田晓燕,李凡,路兴波.大田环境下转Bt基因玉米对土壤酶活性的影响[J].生态学报, 2011, 31(15): 4244–4250
    [46]李孝刚,刘标,韩正敏,郑央萍.转基因植物对土壤生态系统的影响[J].安徽农业科学, 2008, 36(5):1957–1960
    [47]贾士荣.转基因植物的环境及食品安全性[J].生物工程进展, 1997, 17(6): 14-19
    [48]赵和,王海波.转基因作物对生态环境的影响分析[J].河北农业科学, 2003, 7(3): 30–37
    [49]王国英.转基因植物的安全性评价[J].农业生物技术学报, 2001, 9(3): 205–207
    [50]陈敏玲,李伟华,陈章和.不同层面上微生物多样性研究方法[J].生态学报, 2008, 28(12):6264–6271
    [51]张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展[J].土壤, 2004, 36(5): 476–480
    [52] Lechevalier M P. Lipids in bacterial taxonomy-a taxonomist’s view[J]. Critic Rev. Microbiol., 1977, 5:109–210
    [53]李永山,范巧兰,陈耕,柴永峰,张冬梅,李燕娥.利用PLFA方法研究转Bt基因棉花对土壤微生物群落结构变化的影响[J].棉花学报, 2009, 21(6): 503–507
    [54]于树,汪景宽,李双异.应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J].生态学报, 2008, 28(9): 4221–4227
    [55]蔡燕飞,廖宗文. FAME法分析施肥对番茄青枯病抑制和土壤健康恢复的效果[J].中国农业科学,2003, 36(8): 922–927
    [56]钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报, 2004, 15(5): 899–904
    [57] Gland J L, Mills A L. Classification and characterization of heterotrophic microbial community-levelsole-carbon-source utilization[J]. Appl. Environ. Microbial., 1991, 57: 2351–2359
    [58]郑华,欧阳志云,方治国,赵同谦. BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报, 2004, 41(3): 456–461
    [59]陈晓雯,林胜,尤民生,杨广,王锋.转基因水稻对土壤微生物群落结构及功能的影响[J].生物安全学报, 2011, 20(2): 151–159
    [60]魏锋,朱荷琴,肖蕊,杨家荣.转Chi+Glu双价基因棉对土壤微生物群落功能多样性的影响[J].农业环境科学学报, 2011, 30(10): 2081–2090
    [61]崔红娟,束长龙,宋福平,高继国,张杰.转cry1Ah基因玉米对根际土壤微生物群落结构的影响[J].东北农业大学学报, 2011, 42(7): 30–38
    [62]叶飞,宋存江,陶剑,李长林.转基因棉花种植对根际土壤微生物群落功能多样性的影响[J].应用生态学报, 2010, 21(2): 386–390
    [63] Lee D H, Zo Y G, Kim S J. Nonradioactive method to study genetic profiles of natural bacterialcommunities by PCR-single-strand-conform at ion polymorphism[J]. Appl. Environ Microb, 1996, 62(9):3112–3120
    [64] Schmalenberger A, Tebbe C C. Bacterial diversity in maize rhizospheres:conclusions on the use ofgenetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies[J]. MolEcol, 2003, 12(1): 251–262
    [65]韩雪梅,郭卫华,周娟,张淑萍,王仁卿.土壤微生物生态学研究中的非培养方法[J].生态科学,2006, 25(1): 87-90
    [66]王海舟,张小波.分子生物学在微生物生态学中的应用[J].萍乡高等专科学校学报, 2009, 26(3):72–75
    [67] Dunbar J, Takala S, Barns S M. Levels of bacterialcommunity diversity in four arid soils compared bycultivation and 16S rRNA gene cloning[J]. Appl.Environ. Microbiol., 1999, 5(4): 1662–1669
    [68] Liu W T, Marsh T L, Cheng H, et a1. Characterization of microbial diversity by determining terminalrestriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Applied and EnvironmentalMicrobiology, 1997, 63: 4516–4522
    [69]钟文辉,王薇,林先贵,尹睿,申卫收.核酸分析方法在土壤微生物多样性研究中的应用[J].土壤学报, 2009, 46(2): 334–341
    [70] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995, 23(21): 4407–4414
    [71] Gerra M M, Bernardo F, Mclauchlin J. Amplified fragment length polymorphism (AFLP) analysis ofListeria monocytogenes[J]. Syst Appl Microbiol, 2002, 25(3): 456–461
    [72] Duim B, Vandamme P A, Rigter A, et al. Differentiation of Campylobacter species by AFLPfingerprinting[J]. Microbiology, 2001, 147(10): 2729–2737
    [73] Cuteri V, Marenzoni M L, Mazzoll R,et al. Staphylococcus aureus:study of genomic similarity of strainsisolated in veterinary pathology using amplified fragment length polymorphism(AFLP)[J]. CompImmunol Microbiol Infect Dis, 2004, 27(4): 247–253
    [74] Ganter P F, Debarros Lopes M. The use of anonymous DNA markers in assessing worldwide relatednessin the yeast species Pichia kluyveri Bedford and Kudrjavzev[J]. Can J Microbiol, 2000, 46(11): 967–980
    [75]张小平,陈强,李登煜,等.用AFLP技术研究花生根瘤菌的遗传多样性[J].微生物学报, 1999,39(6): 483–488
    [76]冯瑞华.用AFLP技术和16S rDNA PCR-RFLP分析毛苜蓿根瘤菌的遗传多样性[J].微生物学报,2000, 40(4): 339–345
    [77]王莹,万欢,吴根福.环境微生态研究中的分子生物学新技术[J].环境污染与防治, 2006, 28(6):457–460
    [78] Fischer S G, Lerman L S. DNA Fragments differing by single base-pair substitutions are separated indenaturing gradient gels:Correspondence with melting theory[J]. Proc Nat l Acad Sci USA, 1983, 80:1579–1583
    [79] Muyzer G, Waal E C, Uitterlinden A G.Profiling of complex microbial populations by denaturinggradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16SrRNA[J]. Appl Environ Microblol, 1993, 59: 695–700
    [80]高启禹,徐光翠,李小英.变性梯度凝胶电泳(DGGE)在微生物多样性中的研究[J].生物学杂志,2009, 26(5): 80–82
    [81]邹雨坤,张静妮,杨殿林,陈秀蓉.转Bt基因玉米对根际土壤细菌群落结构的影响[J].生态学杂志,2011, 30(1): 98–105
    [82]赖欣,张永生,赵帅,李刚,杨殿林.转基因大豆对根际固氮细菌群落多样性的影响[J].生态学杂志, 2010, 29(9): 1736–1742
    [83] Sharples G J, Lloyd R G. A novel repeated DNA sequence located in the intergenic regions of bacterialchromosomes[J]. Nucleic Acids Research, 1990, 18(22): 6503–6508
    [84] Hulton C S J, Higginsc F, Sharp P M. ERIC sequences:a novel family of repetitive elements in thegenomes of Escherichia coli, Salmonella typhimurium and other enterobacteria[J]. MolecularMicrobiology, 1991, 5(4): 825–834
    [85]李犹平,倪学勤. ERIC-PCR技术特点及其应用[J].安徽农业科学, 2007, 35(18): 5358–5360
    [86] Versalovic J, Koeutht, Lupski J R. Distribution of repetitive DNA sequences in eubacteria and applicationto fingerprinting of bacterial genomes[J]. Nucleic Acids Research, 1991, 19(24): 6823–6831
    [87]朱红惠,姚青,赵立平.用ERIC-PCR法研究番茄根际细菌群落结构变化微生物学通报[J]. 2003,30(4): 10–14
    [88]邓小宽,张新宜,田敏.现代生物技术在分子微生物生态学中的应用[J].国外医药抗生素分册,2006, 27(4): 164–170
    [89] Hill G T, Mitkowski N A, Aldrich-Wolfe L. Methods for assessing the composition and diversity of soilmicrobial communities[J]. Appl. Soil Ecol., 2000, 15: 25–36
    [90]史晓利,杨益众,蔡建华,张小丽,施敏娟. Bt毒蛋白在转基因抗虫玉米中的表达及在亚洲玉米螟中的转移积累[J].应用生态学报, 2009, 20(11): 2773–2777
    [91]王建武,冯远娇,骆世明. Bt玉米抗虫蛋白表达的时空动态及其土壤降解研究[J].中国农业科学,2003, 36(11): 1279–1286
    [92]李汝忠,沈法富,王宗,王景会,刘承运,申贵芳.转Bt基因抗虫棉Bt基因表达的时空动态[J].山东农业科学, 2002, 2:7–9
    [93]张小四,李松岗,许崇任,赵建周,赵奎军.转Bt棉不同生长期及不同器官杀虫蛋白表达量的免疫学方法测定[J].北京大学学报(自然科学版), 2000, 36(4): 477–484
    [94]李葱葱,刘娜,康岭生,王丹,赵洪锟,张明.转基因抗虫玉米Bt蛋白表达量的研究[J].玉米科学,2006, 14(3): 40–41
    [95] Stotzky G. Influence of soil mineral collids on metabolic processes, growth, adhesion and ecology ofmicrobes and viruses. In:Huang PM,Schnitzer Meds. Interactions of Soil Minerals with Natural Organicsand Microbes[M]. Madison: Soil Science Society of America,1986, 305–428
    [96]李云河,王桂荣,吴孔明,张永军,原国辉,郭予元. Bt作物杀虫蛋白在农田土壤中残留动态的研究进展应用[J].与环境生物学报, 2005, 11(4): 504–508
    [97] Fischoff D A, Bowdisch K S, Perlak F J, et al. Insect tolerant transgenic tomato plants[J]. Biol.Technol,1978, 5: 807–813
    [98] Tapp H, Stotzky G. Dot blot enzyme-linked immunosorbent assay for monitoring the fate of insecticidaltoxins from Bacillus thuringiensis in soil[J]. Appl Environ Microbiol, 1995, 61: 602–609
    [99] Steven R S, Berberich S A. Cry1A protein levels in raw and processed seed of transgenic cotton:Determination using insect bioassay and ELISA[J]. Econ. Entomol, 1996, 89: 247–251
    [100]贾士荣,郭三维,安道昌,等.转基因棉花[M].北京:科学出版社, 2001, 15–29
    [101] James C. Global status of commercialized biotech/GM crops [M]. ISAAA Breif, 2010: 42
    [102] Morris C E, Kinkel L L. In Lindow S E, Hecht Poinar E I, Elliott V(ed.). phyllosphere microbiology[M].APS Press, St Paul, Minn. 2002, 365–375
    [103]周育,乔雄梧,王静,崔中利,李顺鹏.植物叶际微生物提取方法研究[J].植物研究, 2006, 26(2):233–237
    [104]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社, 2008
    [105]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社, 2006
    [106]崔永三,赵博光,刘云鹏.植物叶围细菌研究进展[J].中国森林病虫, 2007, 26(3): 26–29
    [107]国辉,毛志泉,刘训理.植物与微生物互作的研究进展[J].中国农学通报, 2011, 27(9): 28–33
    [108]王敏.转Bt基因玉米对土壤微生物的影响及土壤中Bt蛋白残留降解规律的研究[D].青岛农业大学硕士学位论文, 2010
    [109] Escher N, Kach B, Nentwig W. Decomposition of transgenic Bacillus thuringiensis maize bymicroorganisms and woodlice Porcellio scaber (Crustacea:Isopoda)[J]. Basic and Applied Ecology, 2000,161–169
    [110] Baumgarte S, Tebbe C C. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced bytransgenic maize (MON810) and its effect on the bacterial communities in the maize rhizosphere[J].Molecular Ecology, 2005, 14: 2539–2551
    [111] Classen A T, Boyle S I, Haskins K E, et al. Community level physiological profiles of bacteria and fungi:plate type and incubation temperature influences on contrasting soils[J]. FEMS Microbiol. Ecol., 2003, 44:319–328
    [112] Yudina T G, Burtsev A L I. Activity of deltaendotoxins of four Bacillus thuringiensis subspecies againstrokaryotes[J]. Microbiol., 1997, 66: 25–31
    [113] Watrud L S, Seidler R J. Nontarget ecological effects of plant, microbial and chemical introductions toterrestrial systems, soil chemistry and ecosystem health[C]. Wisonsin: Special Publication 52. SoilScience Society of America, 1998, 313–340
    [114] Yu K R, Guo X Y. Changes Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soilfunctional bacteria[J]. World Journal of Microbiology & Biotechnology, 2005, 21: 1279–1284
    [115]张美俊,杨武德.转Bt基因棉叶对土壤微生物多样性的影响[J].中国生态农业学报, 2010,18(2):307–311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700