不同覆膜处理对黄土高原半干旱区农田生态系统中硝化和反硝化微生物群落结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于氮的可利用性往往会成为限制生态系统初级生产的因素,因此氮循环-直是整个生态学研究的热点。随着近年来分子生物学的发展,微生物生态学家研究发现氮循环与微生物有着非常密切的关系。氨氧化菌和反硝化菌所参与的硝化和反硝化作用是全球氮循环的重要步奏,因此受到了广泛关注。覆膜技术能有效地提高我国半干旱区的作物产量而被大面积推广。然而长期覆膜会改变农田生态系统表层土壤的含水量、温度以及土壤养分,特别是土壤中的N素;有可能直接影响生产的可持续性。本文采用构建克隆文库和实时荧光定量PCR的方法,研究了长期覆膜处理的黄土高原半干旱区农田生态系统中的氨氧化微生物和反硝化微生物的群落结构多样性、组成及丰度变化。实验设置3个处理:对照不覆膜处理(non-mulching, CK)、半覆膜处理(half-mulching, HM)和全膜处理(full-mulching, FM)。地膜于播种时覆盖,待来年播种时更换。得到以下结果:
     一、不同覆膜处理氨氧化微生物群落结构多样性
     1、构建amoA基因文库结果显示,不同覆膜处理的氨氧化细菌(AOB)的群落结构有较大差异。1)AOB群落由β-Proteobacteria的Nitrosomonas-like序列和Nitrosospira-Like序列组成。6个Cluster,分别为Cluster3a.1、Cluster3a.2、 Cluster3b、Cluster6、Cluster2-related和Cluster11/12;其中Cluster3a.2和Cluster3b为优势类群。2)不同覆膜处理AOB的群落组成有差异,Cluster6随着不同覆膜处理(FM, HM到CK)有增加的趋势,并且CK中所占的比例显著地高于其他两个处理。而Cluster3却随着覆膜处理(FM、HM到CK)有明显减少的趋势。3)不同处理样品中AOB的群落组成在OTUs水平上也有较大变化。AOB-CK1-101在FM中未能检测到,在HM中占较低比例,而在CK中占比例较高,达到12.31%;AOB-CK3-78在FM中有较高的丰度(5.51%)而在HM(0)和CK(0.77%)中几乎检测不到。
     2、不同覆膜处理下氨氧化古菌(AOA)的群落结构没有显著变化。1)442条古菌amoA基因序列均属于soil and sediment,分为Soil and Sediment1和Soil and Sediment2两个Cluster,其中Soil and Sediment1所占比例在30%-58%之间。
     2)在OTUs水平上AOA的群落结构没有显著性的变化。AOA-FM2-8, AOA-HM1-19和AOA-FM3-16为优势的OTU。
     3、不同覆膜处理的AOB和AOA amoA基因荧光定量结果PCR显示,AOB amoA基因的拷贝数高于AOA, AOA的拷贝数在1.16×107~3.12×107copies之间,AOB拷贝数在5.66×107-1.64×108copies之间。除10月份外,不同覆膜处理下(FM, HM到CK) AOB amoA基因拷贝数呈逐渐增加的趋势,且6月份,CK处理AOB拷贝数显著的高于FM处理。在不同季节AOA的拷贝数不同,处理间变化不明显。
     4、群落结构和环境因子相关性分析结果显示:NO3-和TIN与AOA和AOB群落结构的变化有相关性,NH4+与AOB的群落结构有相关性,但与AOA的群落结构影响不大。AOA和AOB amoA基因拷贝数与环境因子相关性分析,得到,AOB的丰度与土壤中的NO3-和TIN有显著的相关性。
     二、不同覆膜处理反硝化细菌的变化
     1、nirK基因文库结果显示不同覆膜处理下nirK基因的多样性较低,631个克隆子共得到10个OTUs;其中nirK-6为优势OTU,占97.7%。
     2、nirK基因荧光定量PCR的结果显示,在不同覆膜处理下,反硝化细菌nirK基因拷贝数变化不明显,但有明显的季节变化。nirK基因拷贝数与环境因子相关性分析结果显示,反硝化细菌nirK基因的丰度与土壤含水量有显著的相关性。
     综上所述,不同覆膜处理影响土壤样品中氨氧化微生物的群落结构和丰度;而对反硝化细菌nirK基因的群落结构没有明显地影响,但其丰度具有明显地季节性变化。
Nitrogen (N) cycling is a major question in ecology, because the availability of N often limits the primary production of plants in many ecosystems. With the rapid development of culture-independent techniques, microbial ecologists have discovered the there are close relationship between N cycling and microbial communities. The nitrification and denitrification which are driven by ammonia oxidizers and denitrifying bacteria, play important roles in the global nitrogen cycle, and therefore receive widespread interest. Mulch technology, can effectively improve crop production in semi-arid Loess Plateau of China. However, long-term mulch treatment changes water content, temperature, and soil nutrients, especially N concentrations, which may-be direct impacts on the sustainability of production. We assessed abundance of functional genes affiliated with nitrification (amoA) and denitrification(nirK) using clone library and real time PCR. The effects of mulch on the community structure of ammonia oxidizers and denitrifying bacteria were investigated in a4-year mulch experiment site in the Loess Plateau of China. Three treatments were tested, non-mulching (CK), half-mulching (HM) and full-mulching (FM). The plastic film was mulched at sowing and reserved in field till the next sowing time. Some main results were obtained:
     The community structure of ammonia oxidizers in different mulch treatments
     1. amoA gene clone librarys showed that there are highly difference on the AOB community structure among different mulch treatments.1) The community structure of AOB consisted of Nitrosomonas-like sequences and Nitrosospira-Like sequences, attached to β-Proteobacteria. All AOB sequences fell within six clusters, Cluster3a.1、Cluster3a.2、Cluster3b、Cluster6、Cluster2-related and Cluster11/12。AOB communities were dominated by representatives of clusters3b and3a.2.2) The communities of AOB shifted in different mulch treatments, from a Nitrosomona-cluster6hardly any in FM soils, and increased in CK soil. Moreover, the percentage of cluster6in CK is significantly higher than mulch treatments (FM and HM).3) The Communities of AOB shifted in different mulch treatments at OTUs levels. AOB-CK1-101was absent in FM soil, and with lower proportion in HM soil. However, it accounted for12.31%in CK soil. AOB-CK-78had highly percengage in FM soil(5.51%). However, it was hardly detected in HM and CK soil smples.
     2. There was no significantly change in AOA community structure.1)442AOB sequences fell within soil and sediment1and soil and sediment2, Soil and sediment1accounted for30%-58%in each clone library.2) There was no significant shift at OTUs level in AOA community structure. AOA-FM2-8, AOA-HM1-19and AOA-FM3-16was dominance in AOA community structure.
     3. Differences were also seen in the relative abundances of archaeal and bacterial amoA genes, bacterial amoA abundance (5.66×107~1.64×108copies/g) was significantly higher than Archaeal amoA abundance in all soils (1.16×107~3.12×107copies/g). Except October, the bacterial amoA gene abundances increased with FM, HM and CK. The abundance of bacterial amoA in June of CK was significant higher than FM. The abundance of archaeal amoA gene was no significant change in different treatments.
     4. Correlation analyses among community structure and environmental factor demonstrate that NO3-and TIN had a huge influence on the community structure of AOB and AOA, NH4+had an influence on the community struture of AOB instead of AOA. Correlation analyses among the abundance of AOA/AOB and environmental factor showed that there were significantly negative correlations between the abundance of AOB and the concentrations of NO3-and TIN
     The community structure of nirK gene in different mulch treatment
     1. nirK gene clone library results showed that the diversity of nirK gene was extremely lower, and only10OTUs was obtained from631clones. The dominate OTU was nirK-6, accountting for97.7%.
     2. Real time PCR results revealed abundance of denitrifying bacteria nirK gene did not change significantly, but had a significant seasonal variation. Correlation analyses among the abundance of nirK gene and environmental factor showed soil moisture should be the influencing factor.
     In general, the community structure of ammonia oxidizers changed in different plastic-film mulching methods; but no shift in denitrifying bacteria community structure.
引文
Acton, D. and L. Gregorich.1995. The health of our soils-towards sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ont. xiv+138 pp. Each chapter can be cited as follows:[Name (s) of chapter author (s)].1995.[Chapter heading]. Pages [...]-[...]. The health of our soils-toward sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ont:3.
    Almstrand, R., P. Lydmark, P. E. Lindgren, F. Sorensson, and M. Hermansson.2012. Dynamics of specific ammonia-oxidizing bacterial populations and nitrification in response to controlled shifts of ammonium concentrations in wastewater. Applied Microbiology and Biotechnology:1-9.
    Amir, J. and T. Sinclair.1991. A model of water limitation on spring wheat growth and yield. Field Crops Research 28:59-69.
    Avrahami, S. and B. J. M. BOHANNAN.2009. N2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria. Global Change Biology 15:643-655.
    Avrahami, S. and R. Conrad.2003. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Applied and environmental microbiology 69:6152-6164.
    Avrahami, S., R. Conrad, and G. Braker.2002. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Applied and environmental microbiology 68:5685-5692.
    Avrahami, S., W. Liesack, and R. Conrad.2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environmental microbiology 5:691-705.
    Barta, J., T. Melichova, D. Vanek, T. Picek, and H. Santruckova.2010. Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil. Biogeochemistry 101:123-132.
    Beman, J. M., B. N. Popp, and C. A. Francis.2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. The ISME journal 2:429-441.
    Braker, G, P. Dorsch, and L. R. Bakken.2012. Genetic characterization of denitrifier communities with contrasting intrinsic functional traits. FEMS Microbiology Ecology.
    Braker, G, A. Fesefeldt, and K. P. Witzel.1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and environmental microbiology 64:3769-3775.
    Braker, G, J. Schwarz, and R. Conrad.2010. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiology Ecology 73:134-148.
    Bru, D., A. Ramette, N. Saby, S. Dequiedt, L. Ranjard, C. Jolivet, D. Arrouays, and L. Philippot.2010. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. The ISME journal 5:532-542.
    Caffrey, J. M, N. Bano, K. Kalanetra, and J. T. Hollibaugh.2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME journal 1:660-662.
    Cavigelli, M. and G Robertson.2001. Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biology and Biochemistry 33:297-310.
    Chakraborty, D., S. Nagarajan, P. Aggarwal, V. Gupta, R. Tomar, R. Garg, R. Sahoo, A. Sarkar, U. Chopra, and K. Sarma.2008. Effect of mulching on soil and plant water status, and the growth and yield of wheat (< i> Triticum aestivum L.) in a semi-arid environment. Agricultural water management 95:1323-1334.
    Chen, X., L. M. Zhang, J. P. Shen, Z. Xu, and J. Z. He.2010. Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soils and Sediments 10:1510-1516.
    Choi, B. H. and K. Y. Chung.1997. Effect of polythene-mulching on flowering and yield of groundnut in Korea.
    Chu, H., T. Fujii, S. Morimoto, X. Lin, and K. Yagi.2008. Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management. Soil Biology and Biochemistry 40:1960-1963.
    Cohen, R., H. Eizenberg, M. Edelstien, C. Horev, T. Lande, A. Porat, G. Achdari, and J. Hershenhorn.2008. Evaluation of herbicides for selective weed control in grafted watermelons. Phytoparasitica 36:66-73.
    Costa, A. L., S. M. Paixao, I. Cacador, and M. Carolino.2007. CLPP and EEA profiles of microbial communities in salt marsh sediments. Journal of Soils and Sediments 7:418-425.
    Dandie, C. E., S. Wertz, C. L. Leclair, C. Goyer, D. L. Burton, C. L. Patten, B. J. Zebarth, and J. T. Trevors.2011. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiology Ecology.
    Dayal, D., P. Naik, and B. Dongre.1991. Effect of mulching on soil temperature and groundnut yield during rabi summer season. Groundnut News 3.
    Di, H., K. Cameron, J. Shen, C. Winefield, M. O'Callaghan, S. Bowatte, and J. He. 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience 2:621-624.
    Di, H. J., K. C. Cameron, J. Shen, J. He, C. Winefield, M. O'Callaghan, and S. Bowatte.2010a. Nitrate leaching and nitrous oxide emissions related to bacteria and not to archaea in nitrogen rich grassland soils. Pages 1-6.
    Di, H. J., K. C. Cameron, J. P. Shen, C. S. Winefield, M. O'Callaghan, S. Bowatte, and J. Z. He.2010b. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology 72:386-394.
    Doran, J., T. Parkin, and A. Jones.1996. Quantitative indicators of soil quality:a minimum data set. Methods for assessing soil quality.:25-37.
    Enwall, K., L. Philippot, and S. Hallin.2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and environmental microbiology 71:8335-8343.
    Erguder, T. H., N. Boon, L. Wittebolle, M. Marzorati, and W. Verstraete.2009. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS microbiology reviews 33:855-869.
    Falkowski, P. G., T. Fenchel, and E. F. Delong.2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034-1039.
    Fierer, N., K. M. Carney, M. C. Horner-Devine, and J. P. Megonigal.2009. The biogeography of ammonia-oxidizing bacterial communities in soil. Microbial ecology 58:435-445.
    Fierer, N. and R. B. Jackson.2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103:626-631.
    Francis, C. A., K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley.2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America 102:14683.
    Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton.2008. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions. Science 320:889-892.
    Gan, Y., J. Niu, Q. Yang, and J. Zhang.1998. Postanthesis dry matter accumulation and redistribution in spring wheat mulched with plastic film. Crop science 38:1562-1568.
    Ghosh, P., D. Dayal, K. Bandyopadhyay, and M. Mohanty.2006. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field crops research 99:76-86.
    Glaser, K., E. Hackl, E. Inselsbacher, J. Strauss, W. Wanek, S. Zechmeister-Boltenstern, and A. Sessitsch.2010. Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment. FEMS Microbiology Ecology 74:575-591.
    Gubry-Rangin, C., G. W. Nicol, and J. I. Prosser.2010. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiology Ecology 74:566-574.
    Han, Y. and X. Wan.1995. A preliminary analysis on agricultural effects of cotton field mulched with plastic film. Gansu Agricultural Science Technology 8:14-16.
    Hanada, T. and C. A. E. Stn.1991. The effect of mulching and row covers on vegetable production. ASPAC, Food & Fertilizer Technology.
    Haraguchi, T, A. Marui, K. Yuge, Y. Nakano, and K. Mori.2004. Effect of plastic-film mulching on leaching of nitrate nitrogen in an upland field converted from paddy. Paddy and Water Environment 2:67-72.
    Hatzenpichler, R., E. V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims, and M. Wagner.2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences 105:2134.
    Haynes, R. and P. Williams.1993. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in agronomy 49:19-199.
    He, J., J. Shen, L. Zhang, Y. Zhu, Y. Zheng, M. Xu, and H. Di.2007. Quantitative analyses of the abundance and composition of ammonia - oxidizing bacteria and ammonia - oxidizing archaea of a Chinese upland red soil under long - term fertilization practices. Environmental microbiology 9:2364-2374.
    He, J. Z., Y. Zheng, C. R. Chen, Y. Q. He, and L. M. Zhang.2008. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments 8:349-358.
    Hermansson, A. and P. E. Lindgren.2001. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmental Microbiology 67:972-976.
    Jia, Z. and R. Conrad.2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental microbiology 11:1658-1671.
    Jung, J., J. Yeom, J. Kim, J. Han, H. S. Lim, H. Park, S. Hyun, and W. Park.2011. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Research in microbiology.
    Konneke, M., A. E. Bernhard, R. Jose, C. B. Walker, J. B. Waterbury, and D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543-546.
    Kelly, J. J., K. Policht, T. Grancharova, and L. S. Hundal.2011. Distinct Responses in Ammonia-Oxidizing Archaea and Bacteria after Addition of Biosolids to an Agricultural Soil. Applied and environmental microbiology 77:6551-6558.
    Kesik, M., S. Blagodatsky, H. Papen, and K. Butterbach-Bahl.2006. Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis p. Journal of applied microbiology 101:655-667.
    Koops, H. P., U. Purkhold, A. Pommerening-Roser, G. Timmermann, and M. Wagner. 2006. The lithoautotrophic ammonia-oxidizing bacteria. The prokaryotes 5:778-811.
    Kowalchuk, G. A., A. W. Stienstra, J. R. Stephen, and J. W. Woldendorp.2000. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environmental microbiology 2:99-110.
    Lam, P., M. M. Jensen, G. Lavik, D. F. McGinnis, B. Muller, C. J. Schubert, R. Amann, B. Thamdrup, and M. M. M. Kuypers.2007. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences 104:7104.
    Laverman, A., H. Zoomer, H. Van Verseveld, and H. Verhoef.2000. Temporal and spatial variation of nitrogen transformations in a coniferous forest soil. Soil Biology and Biochemistry 32:1661-1670.
    Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Qi, G. Nicol, J. Prosser, S. Schuster, and C. Schleper.2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-809.
    Li, F., J. Xu, and G. Sun.2003. Restoration of degraded ecosystem and development of water-harvesting ecological agriculture in the semi-arid Loess Plateau of China. Acta Ecol. Sin 23:1901-1909.
    Li, F. M., A. H. Guo, and H. Wei.1999. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Research 63:79-86.
    Li, J., B. Li, Y. Zhou, J. Xu, and J. Zhao.2011. A rapid DNA extraction method for PCR amplification from wetland soils. Letters in applied microbiology.
    Li, S., S. Kang, F. Li, and L. Zhang.2008. Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China. Agricultural Water Management 95:1214-1222.
    Li, S. and L. Xiao.1992. Distribution and management of drylands in the People's Republic of China. Advances in soil sciences 18.
    Li, X. Y. and J. D. Gong.2002. Compacted microcatchments with local earth materials for rainwater harvesting in the semiarid region of China. Journal of Hydrology 257:134-144.
    Li, X. Y, J. D. Gong, Q. Z. Gao, and F. R. Li.2001. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions. Agricultural water management 50:173-183.
    Li, X. Y., J. D. Gong, and X. H. Wei.2000. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. Journal of arid environments 46:371-382.
    Lin, X., X. Yan, L. Lu, Y. Wu, J. Zhu, Z. Cai, B. Wang, and Z. Jia.2011. Long-Term Field Fertilization Significantly Alters Community Structure of Ammonia-Oxidizing Bacteria rather than Archaea in a Paddy Soil. Soil Science Society of America Journal 75:1431-1439.
    Liu, C, S. Jin, L. Zhou, Y. Jia, F. Li, Y. Xiong, and X. Li.2009. Effects of plastic film mulch and tillage on maize productivity and soil parameters. European Journal of Agronomy 31:241-249.
    Liu, Y, L. Mao, X. He, G. Cheng, X. Ma, L. An, and H. Feng.2012. Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice. Mycorrhiza:1-9.
    Malchair, S., H. De Boeck, C. Lemmens, R. Ceulemans, R. Merckx, I. Nijs, and M. Carnol.2010. Diversity-function relationship of ammonia-oxidizing bacteria in soils among functional groups of grassland species under climate warming. Applied Soil Ecology 44:15-23.
    Martens-Habbena, W., P. M. Berube, H. Urakawa, J. R. de La Torre, and D. A. Stahl. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976-979.
    Mergel, A., K. Kloos, and H. Bothe.2001a. Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest. Plant and soil 230:145-160.
    Mergel, V., R. Dorner, K. Khayyat, M. Achler, T. Weber, O. Jagutzki, H. Ludde, C. Cocke, and H. Schmidt-Bocking.2001b. Strong correlations in the He ground state momentum wave function observed in the fully differential momentum distributions for the p+He transfer ionization process. Physical review letters 86:2257-2260.
    Mertens, J., K. Broos, S. A. Wakelin, G. A. Kowalchuk, D. Springael, and E. Smolders.2009. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. The ISME journal 3:916-923.
    Mincer, T. J., M. J. Church, L. T. Taylor, C. Preston, D. M. Karl, and E. F. DeLong. 2007. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environmental microbiology 9:1162-1175.
    Mosier, A. C. and C. A. Francis.2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental microbiology 10:3002-3016.
    Nicol, G. W., S. Leininger, C. Schleper, and J. I. Prosser.2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental microbiology 10:2966-2978.
    Nicolaisen, M. H. and N. B. Ramsing.2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal of microbiological methods 50:189-203.
    Offre, P., J. I. Prosser, and G. W. Nicol.2009. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiology Ecology 70:99-108.
    Olsson, P. A., M. C. Hansson, and S. H. Burleigh.2006. Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Applied and environmental microbiology 72:4115-4120.
    Oved, T., A. Shaviv, T. Goldrath, R. T. Mandelbaum, and D. Minz.2001. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Applied and environmental microbiology 67:3426-3433.
    Painter, H. A.1977. Microbial transformations of inorganic nitrogen. Progress in Water Technology 8.
    Park, K., S. Kim, S. Lee, H. Kim, and E. Hong.1996. Differences in dry matter accumulation and leaf area in summer soyabeans as affected by polythene film mulching. RDA J. Agric. Sci 38:173-179.
    Philippot, L. and S. Hallin.2005. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Current opinion in microbiology 8:234-239.
    Pratscher, J., M. G Dumont, and R. Conrad.2011. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences 108:4170-4175.
    Prieme, A., G. Braker, and J. M. Tiedje.2002. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Applied and environmental microbiology 68:1893-1900.
    Prosser, J. I. and G. W. Nicol.2008. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology 10:2931-2941.
    Ramakrishna, A., H. M. Tam, S. P. Wani, and T. D. Long.2006. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research 95:115-125.
    Rasche, F., D. Knapp, C. Kaiser, M. Koranda, B. Kitzler, S. Zechmeister-Boltenstern, A. Richter, and A. Sessitsch.2010. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. The ISME journal 5:389-402.
    Reigstad, L. J., A. Richter, H. Daims, T. Urich, L. Schwark, and C. Schleper.2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS microbiology ecology 64:167-174.
    Romic, D., M. Romic, J. Borosic, and M. Poljak.2003. Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation. Agricultural Water Management 60:87-97.
    Rotthauwe, J. H., K. P. Witzel, and W. Liesack.1997. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and environmental microbiology 63:4704-4712.
    Saleh-Lakha, S., K. E. Shannon, S. L. Henderson, C. Goyer, J. T. Trevors, B. J. Zebarth, and D. L. Burton.2009. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Applied and environmental microbiology 75:3903-3911.
    Santoro, A. E., A. B. Boehm, and C. A. Francis.2006. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Applied and environmental microbiology 72:2102-2109.
    Santoro, A. E., C. A. Francis, N. R. De Sieyes, and A. B. Boehm.2008. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental microbiology 10:1068-1079.
    Schimel, J., T. C. Balser, and M. Wallenstein.2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386-1394.
    Schleper, C.2010. Ammonia oxidation:different niches for bacteria and archaea&quest. The ISME journal 4:1092-1094.
    Shen, J., L. Zhang, Y. Zhu, J. Zhang, and J. He.2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental microbiology 10:1601-1611.
    Song, Q., F. Li, J. Wang, H. Liu, and S. Li.2002. Effect of various mulching durations with plastic film on soil microbial quantity and plant nutrients of spring wheat field in semi-arid loess plateau of China. Acta Ecologica Sinica 22:2125-2132.
    Szukics, U., G. C. J. Abell, V. Hodl, B. Mitter, A. Sessitsch, E. Hackl, and S. Zechmeister-Boltenstern.2010. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiology Ecology 72:395-406.
    Tamura, K., J. Dudley, M. Nei, and S. Kumar.2007. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution 24:1596-1599.
    Tian, Y., D. Su, F. Li, and X. Li.2003. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Research 84:385-391.
    Tourna, M., T. E. Freitag, G. W. Nicol, and J. I. Prosser.2008. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental microbiology 10:1357-1364.
    Usmani, S. and A. Ghaffar.1982. Polyethylene mulching of soil to reduce viability of sclerotia of Sclerotium oryzae. Soil Biology and Biochemistry 14:203-206.
    Verhamme, D. T., J. I. Prosser, and G W. Nicol.2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. The ISME journal 5:1067-1071.
    Wallenstein, M. D., D. D. Myrold, M. Firestone, and M. Voytek.2006. Environmental controls on denitrifying communities and denitrification rates:insights from molecular methods. Ecological Applications 16:2143-2152.
    Wang, J., F. Li, Q. Song, and S. Li.2003. Effects of plastic film mulching on soil temperature and moisture and on yield formation of spring wheat]. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban 14:205.
    Wang, X. L., F. M. Li, Y. Jia, and W. Q. Shi.2005. Increasing potato yields with additional water and increased soil temperature. Agricultural water management 78:181-194.
    Wang, Y, Z. Xie, S. S. Malhi, C. L. Vera, Y. Zhang, and J. Wang.2009. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agricultural water management 96:374-382.
    Webster, G, T. M. Embley, T. E. Freitag, Z. Smith, and J. I. Prosser.2005. Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. Environmental microbiology 7:676-684.
    Weidler, G W., M. Dornmayr-Pfaffenhuemer, F. W. Gerbl, W. Heinen, and H. Stan-Lotter.2007. Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Applied and Environmental Microbiology 73:259-270.
    Wuchter, C, B. Abbas, M. J. L. Coolen, L. Herfort, J. Van Bleijswijk, P. Timmers, M. Straus, E. Teira, G J. Hemdl, and J. J. Middelburg.2006. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences 103:12317-12322.
    Xia, W., C. Zhang, X. Zeng, Y. Feng, J. Weng, X. Lin, J. Zhu, Z. Xiong, J. Xu, and Z. Cai.2011. Autotrophic growth of nitrifying community in an agricultural soil. The ISME journal 5:1226-1236.
    Zhang, D., W. Li, H. Dong, and W. Tang.2008. Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agronomy Journal 100:1640-1646.
    Zhang, L. M., H. W. Hu, J. P. Shen, and J. Z. He.2011. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME journal.
    Zhang, L. M., M. Wang, J. I. Prosser, Y. M. Zheng, and J. Z. He.2009a. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiology Ecology 70:208-217.
    Zhang, Y., N. Love, and M. Edwards.2009b. Nitrification in drinking water systems. Critical Reviews in Environmental Science and Technology 39:153-208.
    Zhou, L. M., F. M. Li, S. L. Jin, and Y. Song.2009. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Research 113:41-47.
    Zumft, W. G. and H. Komer.1997. Enzyme diversity and mosaic gene organization in denitrification. Antonie van Leeuwenhoek 71:43-58.
    王俊,李凤民,宋秋华,and李世清.2003.地膜覆盖对土壤水温和春小麦产量形成的影响.应用生态学报14:205-210.
    王琦,张恩和,李凤民,and王晓凌.2005.半干旱地区沟垄微型集雨种植马铃薯最优沟垄比的确定.农业工程学报21:38-41.
    王莹and胡春胜.2010.环境中的反硝化微生物种群结构和功能研究进展.中国生态农业学报18.
    李世清,李东方,李凤民,白红英,凌莉,and王俊.2003.半干旱农田生态系统地膜覆盖的土壤生态效应Ξ.西北农林科技大学学报(自然科学版)31.
    李世清,李凤民,宋秋华,and王俊.2001.半干旱地区不同地膜覆盖时期对土壤氮素有效性的影响.生态学报21:1519-1526.
    李永山,吴良欢,路兴花,赵利梅,and范巧兰.2007.丘陵山区覆膜旱作稻田土壤硝态氮和铵态氮动态变化规律探讨.科技通报23:207-210.
    汪景宽,刘顺国,and李双异.2007.长期地膜覆盖及不同施肥处理对棕壤无机氮和氮素矿化率的影响.水土保持学报20:107-110.
    汪景宽,须湘成,张旭东,张继宏,and谷俊武.1994.长期地膜覆盖对土壤磷素状况的影响.沈阳农业大学学报25:311-315.
    侯保俊and王秀琴.1999.大同地区春小麦全生育期地膜覆盖技术的试验与推广.麦类作物19:61-63.
    海龙.2011.黄土高原地膜覆盖栽培玉米的产量与土壤生态效应.兰州大学.
    高真伟 and 闫胜利.2001.水稻膜孔灌节水增产效果的田间试验研究.农业工程学报17:71-73.
    程俊珊.2006.渭源地区早地玉米覆膜种植增温效应及高产增效研究初报.干旱地区农业研究24:39-42.
    廖长见,林建新,纪荣昌,卢和顶,and陈山虎.2009.不同播期与覆膜处理对高山反季节鲜食玉米产量及生长状况影响研究.福建稻麦科技27:34-38.
    吴俊本and张秀丽.2007.极限晚播覆膜麦生育特点及栽培技术.安徽农业科学35:77-77.
    张丽梅.氨氧化微生物生态学与氮循环研究进展.
    赵松岭,李凤民,and王静.1995.半干旱地区集水农业的可行性.西北植物学报15:9-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700