转几丁质酶和葡聚糖酶棉花对黄萎病的抗性及对非靶标生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以中国农业科学院棉花研究所转基因课题组提供的转双价几丁质酶和葡聚糖酶基因棉花品系61217-1(简称转双价基因抗病棉)为研究对象,受体中棉所24和转Bt基因抗虫棉鲁棉研28为对照,于2009-2010年,研究了转双价基因抗病棉花对靶标病害黄萎病的抗性、对非靶标病害、棉田主要害虫、天敌及土壤微生物的发生消长规律,旨在为建立转基因抗病棉花的环境安全评价标准提供依据。
     主要结论如下:
     1.几丁质酶基因和葡聚糖酶基因的导入极显著提高了棉花对靶标病害黄萎病的抗性,且整个生育期的抗性表达稳定。2年结果表明,转基因株系61217-1两年平均病指为13.7,达抗病水平,而受体材料中棉所24和Bt棉鲁棉研28分别为34.7和26.3,为耐病水平。且转基因抗病棉花在整个生育期对黄萎病的抗性均显著的高于对照材料。
     2.几丁质酶基因和葡聚糖酶基因的导入还提高棉花对苗期和铃期病害的抗性。2年试验结果表明,61217-1的苗期死苗率均低于受体材料,且2010年差异达到显著水平;由铃期病害引起的烂铃率2009年、2010年均显著低于受体材料。
     3.几丁质酶基因和葡聚糖酶基因的导入对早衰的影响不明显,但后期叶斑病的发生有加重趋势。61217-1花铃期叶斑病指显著高于受体材料,早衰指数高于受体中棉所24,但差异不显著,推断双价抗病基因的导入可能导致棉花早衰,从而引起叶斑病的严重发生。
     4.双价抗病基因的导入能显著减轻二代棉铃虫和伏蚜和发生危害。推断几丁质酶基因和葡聚糖酶基因的介入可能提高植株体内几丁质酶和葡聚糖酶的活性,由此影响昆虫的生长发育。但转双价基因抗病棉花苗蚜的发生与中棉所24及鲁棉研28没有显著差异,落卵量较受体材料有增加趋势。表明双价基因的介入对同一种害虫的不同形态或同一种害虫的不同发生危害阶段影响不一致,可能与转基因成分在棉株体内的时空表达有关,相关的作用机制有待进一步研究。
     5.61217-1在盲蝽象发生的某些时期数量低于受体棉花中棉所24;红蜘蛛的发生数量与受体比无显著差异,但在红蜘蛛发生危害严重的2010年,转基因抗病棉花红蜘蛛的发生危害有高于受体材料的趋势,由于红蜘蛛的发生与田间棉花受到干旱的危害显著相关,可能会导致红蜘蛛点片发生,该结论仍需要进一步验证。
     6.与中棉所24相比,61217-1上瓢虫成虫数量两年趋势不一致,瓢虫幼虫和草蛉成虫数量减少,但差异均不显著;对小花蝽的发生数量无显著影响。
     7.转双价基因棉花与受体中棉所24和对照抗虫棉鲁棉研28相比,对根际土壤的酸碱度及土壤可培养微生物的影响不大,并没有给土壤微生态带来不利因素。
     综上所述,双价Chi+Glu基因的导入显著提高了受体材料的抗黄萎病性;苗病和铃病的发生减轻;伏蚜和二代棉铃虫幼虫的数量明显减少;对其他病害、虫害、天敌及土壤微生物的影响不明显。
Stable cotton variety61217-1into which was transferred the chitinase and glucanase bivalent geneby the Institute of Cotton Research in Chinese Academy of Agriculture Sciences, was studied. Theacceptor CCRI24and Lumian28, with a transgenic Bt gene, were used as controls. Between2009and2010, the chitinase-glucanase transgenic cotton line with resistance to Verticillium wilt disease wasanalyzed for its response to non-target disease (seedling disease, premature senescence, boll disease andleaf spot), insect damage in the field (aphid, red spider, capsid and cotton bollworm), and its mainnatural enemies (ladybird, floret bug and lacewing). The microbial flora of the soil was also studied.This provided a basis for the safety evaluation of transgenic cotton.
     Main conclusions:
     1. Resistance to Verticillium wilt disease was significantly enhanced in cotton strain61217-1.Compared with receptor CCRI24, the incidence and average disease index of line61217-1decreasedby53.5%and61.6%, respectively. The incidence and average disease index of line61217-1declined by39.1%and47.9%, compared with Lumian28carrying the Bt gene. Thus, it provided good resistance towilt disease in the field. The chitinase-glucanase transgenic cotton line was much more resistant toVerticillium wilt than the receptor material during the whole growth period, implying that thechitinase-glucanase gene was expressed stably during the whole growth period.
     2. The rate of seedling death of the transgenic disease-resistant cotton was3.7–6.8percentage points lower than the receptor material, and0.6–8.2percentage points lower thanLumian28. In addition, it had a significantly lower rotten bell rate:9.8–16.6percentagepoints lower than the receptor material. Thus, the transgenic cotton not only had improved resistance toVerticillium wilt, but also showed improved resistance to seedling and boll disease.
     3. At the blossoming and boll forming stage, the leaf spot disease index of cotton61217-1wassignificantly higher than receptor CCRI24and Lumian28. Moreover, the index of Premature Senilitywas slightly higher than receptor CCRI24and Lumian28. Thus, transformation of cotton with thedisease resistant bivalent gene might lead to early aging and increased susceptibility to leaf spot disease.
     4. During the two years of this study, the number of summer ecotype and the second generationbollworm observed on the bivalent transgenic disease-resisting cotton was significantly lower than onCCRI24. This indicated that the presence of the bivalent transgene could significantly reduce thedamage caused by summer ecotype and second generation bollworm. There was no significantdifference between CCRI24and Lumian28in the occurrence of seedling aphids. The occurrence ofthree generations of larvae was not consistent. The number of H. armigera eggs on61217-1increasedcompared with CRI24and Lumian28. The introduction of the bivalent transgene had different effectson the various morphological stages of the same pest and the mechanism of action requires furtherstudy.
     5. There were fewer capsids in the chitinase-glucanase transgenic cotton line and Lumian28thanin receptor CCRI24. The number of red spiders was not significantly different among the three strains.The damage caused by red spiders was much more severe in2010and the transgenic cotton had a tendency towards more damage compared with CCRI24. The occurrence of red spider had a significantcorrelation with cotton that was damaged by drought. Red spider might have occurred as a spot film, butthis conclusion requires further verification.
     6. Compared with receptor CCRI24, the occurrence of adult ladybirds on the chitinase-glucanasetransgenic cotton line was not consistent over the two-year study period. The number of larval ladybirdsand lacewings was reduced, but not significantly. There was no effect on the presence of the Floret bugon the chitinase-glucanase transgenic cotton.
     7. Compared with receptor CRRI24and Lumian28, the cotton carrying the bivalent gene had aslight, but not unfavorable, effect on soil microorganisms. During the different growth stages of cotton,the rhizosphere soil pH was nearly constant. Furthermore, the soil pH of cotton61217-1was lower thanthat of receptor CCRI24, i.e., the rhizosphere soil pH of the transgenic cotton tended towards acidity.
     As mentioned above,recipient variety resistant to Verticilliumwillt was promoted significantly withreducing seeding disease and boll rot because of double gene(Chi+Glu) mediation. Besides, the numberof summer ecotype and the second generation of cotton bollworm larvae decreased obviously. While theeffects on other diseases, pest,natural enemies and soil microorganism were not obvious.
引文
1.陈法军,等.转基因作物对害虫和天敌影响的研究概况[J].安徽农业科学,2009,37(28):13778-13781.
    2.程红梅,简桂良,等.转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性[J].中国农业科学,2005,38(6):1160-1166.
    3.崔百明,祝建波.转β-1,3-葡聚糖酶基因和几丁质酶基因棉花[J].生物技术,2002,12(4):1-2.
    4.崔金杰,马奇祥,等.棉花病虫害及防治原色图册[M].北京:金盾出版社,2007.
    5.崔金杰,夏敬源,等.转Bt基因棉对天敌种群动态的影响[J].棉花学报,1999,11(2):84-91.
    6.崔金杰、雒珺瑜,等.转双价基因棉田主要害虫及其天敌的种群动态[J].棉花学报,2004,16(2):94-101.
    7.崔金杰,雒珺瑜,等.转双价基因(B t+CpTI)棉对棉田主要捕食性天敌捕食功能反应的影响[J].南京农业大学学报,2005,28(1):48-51.
    8.崔金杰,雒珺瑜,等.转双价基因棉田节肢动物群落的稳定性研究[J].西南农业大学学报,2006,28(1):8-12.
    9.崔金杰,夏敬源.转Bt基因棉田昆虫群落多样性及其影响因素研究[J].生态学报,2000,20(5):824-829.
    10.但汉鸿,吴纯仁.植物几丁质酶与病害防治研究进展[J].生物技术通报,1995(2):1-3.
    11.杜珍媛.转基因生物技术的生态风险及对策研究[J].安徽农业科学,2010,38(19):9961-
    9964.
    12.冯道荣,卫剑文.转多个抗真菌蛋白基因水稻植株的获得及其抗稻瘟病菌的初步研究[J].中山大学学报(自然科学版),1999,38(4):62-66.
    13.冯道荣,徐新萍,等.使用双抗真菌蛋白基因提高水稻抗病性的研究[J].植物学报,1999,41(11):1187-1191.
    14.郭文文,李建勇,等.转基因作物对土壤生态安全的影响[J].山东农业科学,2009,(10):86-90.
    15.简桂良,卢美光,等. Chi基因导入对转Bt棉花抗病虫性的影响[J].农业生物技术学报,2004,12(4):478-479.
    16.姜涛,褚栋,等.转B t+CpTI基因棉对烟粉虱种群动态影响及其几丁质酶和β-1,3葡聚糖酶活性变化[J].山东农业科学,2009,(9):42-47.
    17.乐锦华,祝建波.利用目的基因转化技术培育棉花抗病新品种[J].石河子大学学报(自然科学版),2006,6(3):173-178.
    18.李保平,万方浩,等.转基因抗虫植物对天敌昆虫的影响[J].中国生物防治,2002,18(3):97-105.
    19.李孝刚,刘标,等.转基因植物对土壤生态系统的影响[J].安徽农业科学,2008,36(5):1957-1960.
    20.李永山,范巧兰,等.利用PLFA方法研究转Bt基因棉花对土壤微生物群落结构变化的影响[J].棉花学报,2009,21(6):503-507.
    21.刘丰静,陈文滨,等.转基因抗虫杂交稻对非靶标害虫稻飞虱田间种群动态的影响[J].华东昆虫学,2007,16(1):8-12.
    22.刘慧君,卢美光,等.转GO基因棉花体内葡萄糖氧化酶的表达及其抗病性研究[J].植物保护与现代农业,2007,(3):134-141.
    23.刘志诚,叶恭银,等. Bt水稻对主要非靶标害虫和蜘蛛优势种田间种群动态的影响[J].植物保护学报,2002,29(2):138-143.
    24.马存,简桂良,孙文姬.我国棉花抗黄萎病育种现状、问题及对策[J].中国农业科学,1997,30(2):58-64.
    25.马存,简桂良,孙文姬.我国棉花品种抗黄萎病鉴定存在的问题及对策[J].棉花学报,1999,11(3):163-166.
    26.马存.棉花枯萎病和黄萎病研究[M].北京:中国农业出版社,2007.
    27.沈法富,韩秀兰,等.转Bt基因水稻秸秆降解对土壤微生物可培养类群的影响[J].生态学报,2004,24(3):432-437.
    28.王洪兴,陈欣,等.转Bt基因水稻秸秆降解对土壤微生物可培养类群的影响[J].生态学报,2002,22(1):89-94.
    29.王锦达,刘沛菡,等.转基因抗虫作物对寄生性天敌的影响综述[J].江苏农业科学,2010,(2):361-364.
    30.王敏,陆兴波,等.转Bt基因玉米根际微生物和细菌生理群多样性[J].生态学杂志,2010,29(3):511-516.
    31.王全华,王秀峰,等.番茄抗病基因工程育种研究进度[J].山东农业大学学报(自然科学版),2003,34(4):600-604.
    32.王全华,王秀峰,等.外源GO基因导入番茄后对叶霉病的抗性机制[J].中国农业科学2006,39(7):1365-1370.
    33.王新发,王汉中,等.导入双价基因杂交油菜亲本及其对菌核病抗性的研究[J].植物学通报,2005,22(3):292-301.
    34.王延锋,郎志宏,等.转基因作物的生态安全性问题及其对策[J].生物技术通报,2010,7:1-6.
    35.吴家和,张献龙,等.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性[J].遗传学报,2004,31(2):183-188.
    36.徐征,等.农业转基因生物对土壤生态系统功能影响的研究进展[J].中国农学通报,2004,20(8):47-49.
    37.徐梦秋,钟增明,等.几丁质酶在植物病害生物防治中的应用[J].现代农业科技,2010,5:122-123.
    38.叶飞,李长林,等.转基因棉花种植对根际土壤微生物群落功能多样性的影响[J].应用生态学报,2010,21(2):386-390.
    39.叶兴国,程红梅.转几丁质酶和β21,32葡聚糖酶双价基因小麦的获得和鉴定[J].作物学报,2005,31(5):583-586.
    40.张谦,郭芳,等.转基因棉花主要靶标害虫的抗性发展及抗性治理策略研究[J].环境昆虫学报,2010,32(2):256-263.
    41.张少英,王俊斌,等.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系[J].植物生理与分子生物学报,2005,31(3):281-286.
    42.周福才,任顺祥,等.转Bt基因棉和常规棉对烟粉虱生长发育和繁殖的影响[J].植物保护学报,2006,33(3):230-234.
    43.朱荷琴,冯自力,等.转CpTI基因对棉花根际土壤中微生物的影响[J].棉花学报,2009,21(5):366-370.
    44.朱荷琴,冯自力,等.转CpTI基因对棉花主要病害及早衰的影响[J].棉花学报,2009,21(6):488-491.
    45.左玉虎,康振生,等.β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J].植物病理学报,2009,39(6):600-607.
    46.石磊岩.我国棉花黄萎病研究进展[J].棉花学报,1995,7(4):243-245.
    47. BROEKAERT W F, Van Parijs J, Allen A K,et al. Comparison of some molecular,enzymatic and antifungal properties of chitinases from thorn-apple, tobacco andwheat[J]. Physiological and Molecular Plant Pathology,1988,33:319-331.
    48. CHYE Mee-Len, Cheung Ka-Yun. β-1,3-Glucanase is highly-expressed in laticifers ofHevea brasiliensis[J]. Plant molecular biology,2004,29:397-402.
    49. WALDEN K Roberts, Claude P Seliternnikoff. Plant and bacterial chitinases differ inantifungal activity[J]. Journal of General Microbiology,1988,134:169-176.
    50. Mauch Felix, Brigitte Mauch-Mani, Thomas Boller. Antifungal hydrolases in pea tissue:II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase[J].Plant Physiology,1988,88:936-942.
    51. Zhu Q, Maher E A, Masoud S, et al. Enhanced protection against fungal attack byconstitutive coexpression of Chitinasc and Glucanase genes in transgenic tobacco[J].Biotechnology,12(8):807-812.
    52. Broglie K, Chet I, Holliday M, et al. Transgenic plants with enhanced resistance tothefungal pathogen Rhizoctoniz solani[J]. Science,1991,254:1194-1197.
    53. Yoshikawa M, Tsuda M, Takeuchi Y. Resistance to fungal diseases intransgenic tobaccoplants expression the phytodexin elicitor2releasingfactor,β-1,3-endogulcanase, fromsoybean[J].Naturwiss,1993,80:417-420.
    54. Smith G, Fornbardt B, Mundy J, et al. Enhanced quantitative resistance against fungaldisease by combinatorial expression of different barley antifungal proteins intransgenic tobacco[J].Plant J,1995,8:97-109.
    55. Fribank L G, Forcella F. Genetically modified crops and farmland biodiversity[J].Science,2000,289:1481-1482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700