伯氏嗜线虫致病杆菌蛋白酶抑制剂在烟草中的表达及抗蚜功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酶抑制剂能够抑制昆虫肠道中蛋白酶活性影响昆虫的生长和发育,因而可以应用于农业害虫防治。研究发现来自伯氏嗜线虫致病杆菌(Xenorhabdus bovienii strain BJFS526)的蛋白酶抑制剂(Xbpi-1)对蚜虫有良好的防治效果。为探讨Xbpi-1在植物中的抗蚜功能,本研究将Xbpi-1基因导入烟草,检测了该基因在烟草中的整合、转录和表达,检验了转基因烟草对烟蚜的抗虫效果并分析了转基因烟草的农艺性状与生理指标。
     本研究获得的主要结果如下:
     (1)构建了伯氏嗜线虫致病杆菌蛋白酶抑制剂基因(Xbpi-1)与绿色荧光蛋白(Greenfluorescent protein, gfp)基因的植物融合表达载体pCAMBIA2300-35S-Xbpigfp-Ocs和对照载体pCAMBIA2300-35S-gfp-Ocs。对载体进行了酶切和测序检验,将检验正确的载体通过冻融法转化到根癌农杆菌EHA105中。通过根癌农杆菌介导转化与抗生素筛选获得了烟草转化子,并将其繁育至T2代。
     (2)通过PCR检测初步确认了阳性转化株,Southern blot分析表明了Xbpigfp基因在烟草基因组中的整合模式,RT-PCR验证了目的基因在烟草中的转录,ELISA,Western blot和荧光蛋白检测证实了目的基因在烟草中的表达。
     (3)转基因和野生型烟草的农艺性状与生理指标研究表明,转基因烟草的PPO活性和5184株系的叶片重显著增加,其他农艺性状没有显著变化。
     (4)鉴定了转基因烟草对烟蚜的抗性,与取食表达gfp烟草的烟蚜相比,取食表达Xbpigfp烟草的烟蚜存活率没有显著变化,但成虫体重降低了33.7%,繁殖量降低了36.2%;通过分析取食表达Xbpigfp基因烟草后烟蚜体内蛋白酶活性,发现与取食表达gfp基因烟草的烟蚜相比,取食表达Xbpigfp基因烟草的烟蚜体内总蛋白酶活性和氨肽酶活性都显著下降。
Protease inhibitor can reduce the damage of pest by inhibiting the activty of insect protease.Study demonstrates the Xbpi-1(protease inhibitor from Xenorhabdus bovienii) had adverse effects onaphids, such as green peach aphid (Myzus persicae). To study the resistantance of Xbpi-1againstaphids, the gene of Xbpi-1was transferred into tobacco. The transgene’s integration, teanscription andexpression were identified. Insect-resistance and agronomic traits of transgenic plants were alsostudied.
     Key results:
     (1) Plant expression vectors, pCAMBIA2300-35S-Xbpigfp-Ocs with Xbpigfp gene andpCAMBIA2300-35S-gfp-Ocs with gfp gene, were constructed, which are harboring CaMV35Spromoter and OCS terminator. The vectors were verified by restriction analysis and sequencing,and introduced into Agrobacterium tumefaciens strain EHA105by freeze-thaw method.
     (2) The Xbpigfp gene integration was confirmed by PCR and Southern blot. The transcription wasverified by RT-PCR. The expression of Xbpigfp in tobacco was detected by ELISA and greenfluorescence protein (GFP) signal.
     (3) The PPO activity of transgenic tobacco and the leaf weights in transgenic line5184weredramatically increased, however other changes in agronomic traits of transgenic tobacco have notbeen observed.
     (4) The resistance of transgenic tobacco against aphids (M. persicae), and effects on the proteaseactivity in aphids were studied. The results showed that the mean adult weights and biomassproduced were reduced about33.7%and36.2%, respectively, when aphids fed on line PI3transgenic plants compared to those fed on control plants (wild type and plants expressed GFPonly) after two weeks and the protease activity of aphids were significantly reduced.
引文
1. Bijv J P, Stie WJ,转基因植物中卡那霉素抗性.生物技术通报,1998,1:29~31.
    2.崔金杰,夏敬源,麦套夏播转Bt基因棉田主要害虫及其天敌的发生规律,棉花学报,1998,10(5):255-262.
    3.丁国华,烟草转基因研究的动态和展望.黑龙江农垦师专学报,2000,2:81-83.
    4.范贤林,石西平,赵建周,转双基因烟草对棉铃虫杀虫活性评价.生物工程学报,1999,15(1):6-10.
    5.郭添福,苏州,李树平等, ELISA间接法检测兔血清中抗牛血清白蛋白抗体.兽药与饲料添加剂,2009,14(6):9-10.
    6.黄大年,高振宇,华志华等,基因枪法在水稻工程育种中的应用植物学通报,2001,18(3):283-287.
    7.贾士荣,转基因植物的环境及食品安全性.生物工程进展,1997,17(6):37-42.
    8.贾士荣,转基因植物的环境及食品安全性.生物工程进展,1997,17(6):37-42.
    9.雷东锋,冯怡,梅建生等,烟草中多酚氧化酶的特征分析及应用展望中国烟草科学.2003,(2):1-4.
    10.雷东锋,马长德,莫晓燕等,烟叶中PPO的抑制效应.西北农林科技大学学报,2002,30(增刊):130-133
    11.雷东锋,冯怡,梅建生等,烟草中多酚氧化酶的特征分析及应用展望.中国烟草学报,2003,(2):1-4.
    12.李付广,崔金杰,刘传亮等,双价基因抗虫棉及其抗虫性研究.中国农业科学,2000,33(1):46-52.
    13.李茜,转基因植物的安全性评价.农业生物技术,2008,1:62-63.
    14.李文凤,季静,王罡等,提高转基因植物标记基因安全性策略的研究进展,中国农业科学2010,43(9):1761-1770.
    15.李永山,范巧兰,陈耕等,转Bt基因棉花对土壤微生物的影响.农业环境科学学报.2007,26(增刊):533-536.
    16.吕爱枝,赵和,王天宇等,转基因小麦目标基因通过花粉漂流的可能性研究.华北农学报.2002,17(3):1-6.
    17.毛建军,稻瘟菌激活蛋白基因(pemG1)在水稻和烟草中的表达及功能研究[博士学位论文].北京:中国农业科学院,2008.
    18.阮妙鸿,许燕,郑瑶等,转ScMV-CP基因甘蔗对土壤微生物的影响.热带作物学报.2008,29(2):187-191.
    19.沈法富,于元杰,张学坤等,转基因棉花的Bt基因流.遗传学报.2001,28(6):562-567.
    20.汪恒英,周守标,常志州等,绿色荧光蛋白(GFP)研究进展.生物技术,2004,14(3):70-73.
    21.王关林,方宏筠,植物基因工程(第二版).北京:科学出版社,2002,527~528.
    22.王国英,转基因植物的安全性评价.农业生物技术学报.2001,9(3):205-207.
    23.王天宇,赵治海,闫洪波等,谷子抗除草剂基因从栽培种向其近缘野生种漂移的研究,作物学报,2001,27(6):681-687.
    24.王武刚,吴孔明,梁革梅等, Bt棉对主要棉虫发生的影响及防治对策.植物保护,1999,25(1):3-5.
    25.文才艺,吴元华,张艳红,烟草感染马铃薯Y病毒脉坏死株系后PPO活性及其同工酶变化的研究.华中农业大学学报,2000,19(4):328-330.
    26.吴瑞,张树珍,绿色荧光蛋白及其在植物分子生物学中的应用.分子植物育,2005,3(2):240-244.
    27.夏敬源,崔金杰,马丽华等,转Bt基因抗虫棉在害虫综合治理中的作用研究.棉花学报.1999,11(2):57-64.
    28.谢为龙,陈其文,喻国泉等,转基因植物快速检测方法的研究.生物技术通报,2002(4):39-46.
    29.徐茂军,转基因植物中卡那霉素抗性(Kanr)标记基因的生物安全性.生物学通报,2001,36(2):18~19.
    30.薛仁风.伯氏嗜线虫致病杆菌蛋白酶抑制因子基因的克隆、表达及生物活性的研究.[硕士学位论文].北京:中国农业科学院,2008.
    31.杨敏生,高宝嘉,王进茂等,转双抗虫基因741杨基本特性分析.林业科学,2005,41(1):91-97.
    32.张智奇,周音,钟维瑾等,慈姑蛋白酶抑制剂基因转化小白菜获抗虫转基因植株.上海农业学报,1999,1(4):4-9.
    33.赵艳,励建荣,转基因稻米与其轮回亲本蛋白质组分的等同性分析.中国粮油学报,2003,18(3):7-9.
    34. Abe K, Emori Y, Kondo H et al., Molecular cloning of a cysteine proteinase inhibitor of rice(oryzacystatin)-Homology with animal cystatins and transient expression in the ripening processof rice seeds. Journal of Biological Chemistry,1987,262(35):16793-16797.
    35. Abe M, Abe K, Kudora M et al., Corn Kernel cysteineproteinase inhibitor as novel cystatinsuperfamily member of plant origin. Europen Journal of Biochemistry,1992,209:933-937.
    36. Aguirre C, Valdes-Rodr′guez S, Mendoza-Herna′ndez G et al., A novel8.7kDa proteaseinhibitor from chan seeds (Hyptis suaveolens L.) inhibits proteases from the larger grain borerProstephanus truncatus (Coleoptera: Bostrichidae). Comparative Biochemistry and Physiology,2004, Part B,138:81–89.
    37. Altpeter F, Diaz I, McAuslane H et al., Increased insect resistance in transgenic wheat stablyexpressing trypsin inhibitor Cme. Molecular Breeding,1999,5(1):53-63.
    38. Amero S A, James T C, Elgin S C R., Production of antibodies using proteins in gel bands,in:J.Walker M.The Protein Protocols Handbook, Humana Press,2nd ed, Part VII, Totowa, NewJersey,2002, pp.941~944.
    39. Angelucci C, Barrett-Wilt G A, Hunt D F et al., Diversity of aminopeptidases, derived from fourlepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera:identification of proteins binding the elta-endotoxin, Cry1Ac of Bacillus thuringiensis. InsectBiochemistry and Molecular Biology,2008,38(7):685–696.
    40. Arruda P, Bright S W J, Kueh J S H et al., Regulation of aspartate kinase isoenzymes in barleymutants resistant to lysine plus threonine. Plant Physiology,1984,76:442-446.
    41. Barrett A J, The Cystatins, a new class of peptidase inhibitors, Trends Biochemistry Science,1987,12:193-196.
    42. Biao M, Mary B, Mayfield, The Green Fluorescent Protein Gene Functions as a Reporter ofGene Expression in Phanerochaete chrysosporium. Applied and Environmental Microbiology,2001,67(2):948~955
    43. Bolter C J, Jongsma M A, Colorado potato beetles (Leptinotarsa decemlineata) adapt toproteinase inhibitors induced in potato leaves by methyl jasmonate. Journal of Insect Physiology,1995,41:1071–1078.
    44. Botella M A, Xu Y, Prabha T N et al., Differential expression of soybean cysteine proteinaseinhibitor genes during development and in response to wounding and methyl jasmonate. PlantPhysiological,1996,112:1201-1210.
    45. Bown D P,Wilkinson H S, Gatehouse J A, Differentially regulated inhibitor-sensitive andinsensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, aremembers of complex multigene families. Insect Biochemistry and Molecular Biology,1997,27:625–638.
    46. Brinch-Pedersen H, Olsen O, Knudsen S et al., An evaluation of feed-back insensitive aspartatekinase as a selectable marker for barley (Hordeum vulgare L.) transformation. Hereditas,1999,131(3):239-245.
    47. Brown W M, Dziegielewska K M, Friends and relations of the cystatin super family-newmembers and their evolution. Protein Science,1997,6:5-12.
    48. Bruce W B, Christen A H, Klein T, et al., Photoregulation of a phytochrome gene promoter fromoat transferred into rice by particle bombardment. Proceedings of the National Academy ofSciences of the USA,1989,86:9692-9696.
    49. Burton R A, Gibeaut D M, Bacic A et al., Virusinduced silencing of a plant cellulose synthasegene. Plant Cell,2000,12,691-705.
    50. Campos R G, Acosta J A T, Aria L J S et al., The use of cysteine proteinase inhibitors to engineerresistance against potyviruses in transgenic tobacco plants, Nature Biotechnology,1999,17:1223-1226.
    51. Carbonero P, Royo J, Díaz I et al., Cereal inhibitors of insect hydrolases (a-amylases and trypsin):genetic control, transgenic expression and insect pests. In: Workshop on engineering plantsagainst pests and pathogens (1st–13rd January,1993, Madrid, Spain). Instituto Juan March deEstudios Investigaciones, Bruening G J, Garcíaolmedo F, Ponz F J. eds.,1993.
    52. Carlson A, Letarte J, Chen J et al., Visual screening of microspore-derived transgenic barley(Hordeum vulgare L.) with green-fluorescent protein. Plant Cell Reports,2001,20:331-337.
    53. Carrillo L, Martinez M, álvarez-Alfageme F, et al., A barley cysteine-proteinase inhibitorreduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants.Transgenic Research,2011,20:305-319.
    54. Chang M T, Transformation of rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens.Plant Cell Physiology,1992,33(5):577-583.
    55. Chearity J A, Anderson M A, Bittisnich D J et al., Transgenic tobacco and peas expressing aproteinase inhibitor from Nicotiana alata have increased insect resistance. Molecular Breeding,1999,5,4:357-365.
    56. Chen P, Rose J, Love R et al., Reactive sites of an anticarcinogenic Bowman-Birk proteinaseinhibitor are similar to other trypsin inhibitors. Journal Biology Chemistry,1992,267:1990-1994.
    57. Chougule N P, Giri A P, Sainani M N et al., Gene expression patterns of Helicoverpa armigeragut proteases. Insect Biochemistry and Molecular Biology,2005,35:355–367.
    58. Christeller J, Liang W, Plant serine protease inhibitors. Protein and Peptide Letters,2005,12:439-447.
    59. Christou P, Tameria L F, Matt K, Production of transgenic rice(Oryza SativaL.)plant fromagronomicaly important indica and japonica varieties via electric discharge particle accelerationof exogenous DNA into immature zygotic embryos. Research,1991,9:957-962.
    60. Colella R, Sakaguchi Y, Nagase H et al., Chicken egg white cystatin. Journal of BiologyChemistry,1989,264:17164-17117.
    61. Crava C M, Bel Y, Lee S F et al., Study of the aminopeptidase N gene family in the lepidopteransOstrinia nubilalis (Hu¨bner) and Bombyx mori (L.): sequences, mapping and expression. InsectBiochemistry and Molecular Biology,2010,40(7):506–515
    62. Cristofoletti P T, Alberto F R, Deraison C, et al., Midgut adaptation and digestive enzymedistribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. Journal of InsectPhysiology,2003,49:11-24.
    63. Cristofoletti P T, Mendon a de Sousa F A, Rahbé Y, et al., Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells a major binding site fortoxic mannose lectins. Febs Journal,2006,273:5574-5588.
    64. Daniell H,Muthukumar B,Lee SB, Marker free transgenic plants: engineering the chloroplastgenome without the use of antibiotic selection. Current Genetics,2001,39(2):109~116
    65. Daniell H, Muthukumar B, Lee S B, Marker free transgenic plants: Engineering the chloroplastgenome without the use of antibiotic selection. Current Genetics,2001,39(2):109-116.
    66. Datta S K, Datta K, Soltanifar N et al., Herbicide-resistant indica rice plants from IRRI breedingline IR72after PEG-mediated transformaion of protoplasts.Plant Molecular Biology,1992,20:619-629.
    67. De Vetten N, Wolters A M, Raemakers K et al., A transformation method for obtainingmarker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotechnology,2003,21(4):439-442.
    68. Dekeyser R, Claes B, Marichal M et al., Evalution of selectable markers for rice transformation.Plant Physiology,1989,90:217-233.
    69. Del P O and Lam E, Expression of the baculovirus p35protein in tobacco affects cell deathprogression and compromises N gene-mediated disease resistance response to Tobacco mosaicvirus. Molecular Plant-Microbe Interaction,2003,16:485-494.
    70. Dennis M S, Herzka A, Lazarus R A, Potent and selective Kunitz domain inhibitors of plasmakallikrein designed by phage display. Journal of Biological Chemistry,1994,270:25411-25417.
    71. Deraison C, Darboux I, Duportets L, et al., Cloning and characterization of a gut-specificcathepsin L from the aphid Aphis gossypii. Insect Molecular Biology,2004,13:165-177.
    72. Duan X, Li X, Xue Q et al., Transgenic rice plants harboring an introduced potato proteinaseinhibitor II gene are insect resistant. Nature Biotechnology,1996,14(4):494-498.
    73. Dunaevskii Y E, Gladysheva I P, Pavlukova E B et al., The anionic protease inhibitor BBWI-1from buckwheat seeds. Kinetic properties and possible biological role. Physiologia Plantarum,1997,100:483-488.
    74. Dunse K M, Kaas Q, Guarino R F et al., Molecular basis for the resistance of an insectchymotrypsin toa potato type II proteinase inhibitor. Proceedings of the National Academy ofScience of the USA,2010,107:15016–15021.
    75. Ebinuma H, Sugita K, Matsunaga E et al., Selection of marker-free transgenic plants usingisopentenyl transferase gene. Proceedings of the National Academy of Sciences USA,1997,94:2117-2121.
    76. Ebmeier A, Allison L, Cerutti H, Clemente T, Evaluation of the Escherichia coli threoninedeaminase gene as a selectable marker for plant transformation. Planta,2004,218:751-758.
    77. Elliott A R, Campbell J A, Dugdale B, et al., Green fluorescent facilitates rapid in vivo detectionof genetically transfromed plant cell. Plant Cell Repotrs,1999,18:707~714
    78. Erikson O, Hertzberg M, N sholm T, The dsdA gene from Escherichia coli provides a novelselectable marker for plant transformation. Plant Molecular Biology,2005,57:425-433.
    79. Erikson O, Hertzberg M, N sholm T, The dsdA gene from Escherichia coli provides a novelselectable marker for plant transformation. Plant Molecular Biology,2005,57:425-433.
    80. Falco M C, Silva F M C, Expression of soybean proteinase inhibitors in transgenic sugarcaneplants. Effects on natural defense against Diatraea saccharalis. Plant Physiological Biochemistry,2003,41:761-766.
    81. Fischer U and Droge-Laser W, Overexpression of NtERF5, a new member of the tobaccoethylene response transcription factor family enhances resistance to tobacco mosaic virus.Molecular Plant-Microbe Interaction,2004,17:1162-1171.
    82. Gadaleta A, Giancaspro A, Blechl A et al., Phosphomannose isomerase, pmi, as a selectablemarker gene for durum wheat transformation. Journal of Cereal Science,2006,43(1):31-37.
    83. Gatehouse A M R., Davidson G M, Newell C A et al., Trangenic potato plants with enhancedresistance to the tomato moth, Lacanobia oleracea: growth room trials. Molecular Breeding,1997,3:49-63.
    84. Gatehouse L N, Shannon A L, Burgess E P J et al., Characterization of major midgut proteinasecDNAs from Helicoverpa armigera larvae and changes in gene expression in response to fourproteinase inhibitors in the diet. Insect Biochemistry and Molecular Biology,1997,27:929–944
    85. Gattolin S, Newbury H J, Bale J S, et al., A diurnal component to the variation in sieve tubeamino acid content in wheat. Plant Physiology,2008,47:912-921.
    86. Gettins P G, Serpin structure, mechanism, and function. Chemistry Review,2002,102:4751-4804.
    87. Gholizadeh A, Santha I M, Kohnehrouz B B et al., Cystatins may confer viral resistance in plantsby inhibition of a virus-induced cell death phenomenon in which cysteine proteinases are active:cloning and molecular characterization of a cDNA encoding cysteine proteinase inhibitor(celostatin) from celosia cristata (crested cock’s comb), Biotechnology Application Biochemistry,2005,42:197-204.
    88. Giri A P, Harsulkar A M, Deshpande V V et al., Chickpea defensive proteinase inhibitors can beinactivated by podborer gut proteinases. Plant Physiol,1998116:393–401.
    89. Goddijn O J M, van der Duyn Schouten P M, Schilperoort R A et al., A chimaeric tryptophandecarboxylase gene as a novel selectable marker in plant cells. Plant Molecular Biology,1993,22:907-912.
    90. Goddijn O J M, van der Duyn Schouten P M, Schilperoort R A et al., A chimaeric tryptophandecarboxylase gene as a novel selectable marker in plant cells. Plant Molecular Biology,1993,22:907-912.
    91. Goldsbrough A P, Lastrella C N, Yoder J I, Transposition mediated repositioning and subsequentelimination of marker genes from transgenic tomato. Biotechnology,1993,11:1286-1292.
    92. Gomes C E M, Barbosa A E A D, Macedo L L P, Pitanga J C M et al., Effect of trypsin inhibitorfrom Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitiscapitata (fruit fly). Plant Physiology and Biochemistry,2005,43:1095–1102.
    93. Habibi J, Brandt S L, Coudron T A, et al., Uptake, flow, and digestion of casein and greenfluorescent protein in the digestive system of Lygus hesperus Kninght. Archives of InsectBiochemistry and Physiology,2002,50:62–74.
    94. Haldrup A, Petersen S G, Okkels F T, The xylose isomerase gene from Thermoanaerobacteriumthermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as theselection agent. Plant Molecular Biology,1998,37:287-296.
    95. Haldrup A, Petersen S G, Okkels F T, The xylose isomerase gene from Thermoanaerobacteriumthermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as theselection agent. Plant Molecular Biology,1998,37:287-296.
    96. Haq S K, Atif S M, Khan R H, Protein proteinase inhibitor genes in combat against insects, pests,and pathogens: natural and engineered phytoprotection. Archives of Biochemistry andBiophysics,2004,431:154-159.
    97. Hayashimoto A, Li Z, Murai N A, PEG-mediated protoplast transformation system forproduction of fertile transgenic rice plants.Plant Physiology,1990,93:857-863.
    98. Hejgaard J, Inhibitory plant serpins with a sequence of three glutamine residues in the reactivecentre. Biology Chemistry,2005,386:1319-1323.
    99. Herrero S, Gechev T, Bakker P L et al., Bacillus thuringiensis Cry1Ca-resistant Spodopteraexigua lacks expression of one of four aminopeptidases N genes. BMC Genomics,2005,6:96.
    100. Hiei Y, Komari T, Kubo T, Transformation of rice mediated by Agrobacterium tumefaciens. PlantMolecular Biology,1997,35:205-218.
    101. Hilder V A, Gatehouse A M R, Sherman S E et al., A novel mechanism of insect resistanceengineered into tobacco. Nature,1987,300:160-163.
    102. Hilder V A, Gatehouse A M R, Sherman S E et al., A novel mechanism of insect resistanceengineered into tobacco.Nature,1987,300:160-163.
    103. Hines M E, Osuala C I, Nielsen S S, Isolation and partial characterization of a soybean cystatincysteine proteinase inhibitor of Coleopteran digestive proteolytic activity. Journal of Agricultureand Food Chemistry,1991,39:1515-1520.
    104. Hohn B, Levy A A, Puchta H, Elimination of selection markers from transgenic plants, CurrentOpinion in Biotechnology,2001, l2(2):139-143.
    105. Huang S, Gilbertson L A, Adams T H et al., Generation of marker-free transgenic maize byregular two-border Agrobacterium transformation vectors. Transgenic Research,2004,13:451-461.
    106. Jain M, Chengalrayan K, Abouzid A, Gallo M, Prospecting the utility of a PMI/mannoseselection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. PlantCell Reports,2007,26(5):581-590.
    107. Johnson R, Narraez J, An G et al., Expression of proteinase inhibitors I and II in transgenictobacco plants: effects on natural defense against Manduca sexta larvae. Proceedings of theNational Academy of Sciences United States of America,1989,86:9871-9875.
    108. Jongsma M A, Bakker P L, Stiekema W J et al., Phage display ofdouble-headed proteinaseinhibitor:analysis of the binding domains opotato proteinase inhibitorⅡ.Molecular Breeding,1995,1:181-191
    109. Jongsma M A, Bolter C, The adaptation of insects to plant protease inhibitors.Journal ofInsectPhysiology,1997,43:885-895.
    110. Joshi B, Sainani M, Bastawade K et al., Cysteine protease inhibitor from pearl millet: a new classof antifungal protein. Biochemical and Biophysical Research Communications,1998,246:382-387.
    111. Kaeppler H F, Carlson A R, Menon G K. Routine utilization of green fluorescent protein as avisual selectable marker for cereal transformation.In Vitro Cellular and DevelopmentalBiology,2001,37:120-126.
    112. Karban R, Baldwin I T, Baxter K J et al., Communication between plants; Induced resistance inwild tobacco plants following clipping of neighbouring sagebrush. Oeoologia(Berlin),2000,125(1):66-71.
    113. Khajuria C, Buschman L L, Chen M S et al., Identification of a Novel Aminopeptidase P-LikeGene (OnAPP) Possibly Involved in Bt Toxicity and Resistance in a Major Corn Pest (Ostrinianubilalis). Plos one,2011,6(8):1-10.
    114. Khajuria C, Zhu Y C, Chen M-S et al., Expressed sequence tags from larval gut of the Europeancorn borer (Ostrinia nubilalis): Exploring the genes potentially involved in Bacillus thuringiensistoxicity and resistance. BMC Genomics,2009,10:286.
    115. Kim J Y, Chung Y S, Paek K H et al., Isolation and characterization of a cDNA encoding thecysteine proteinase inhibitor, induced upon flower maturation in carnation using suppressionsubtractive hybridization. Molecules and Cells,1999,9(4):392-397.
    116. Kobayashi K, Cabral S, Calamante G et al, Transgenic tobacco plants expressing the Potato virusX open reading frame3gene develop specific resistance and necrotic ring symptoms afterinfection with the homologous virus. Molecular Plant-Microbe Interaction,2001,14(11):1274~1285.
    117. Koiwa H, Bressan R A, Hasegawa PM, Regulation of protease inhibitors and plant defense.Trends in Plant Science,1997,2:379-384.
    118. Komari T, Hiei Y, Ishida Y et al., Advances in cereal gene transfer. Plant Biology,1998,1:161~165.
    119. Kunze I, Ebneth M, Heim U et al.,2-Deoxyglucose resistance: A novel selection marker for planttransformation. Molecular Breeding,2001,7:221-227.
    120. LaFayette P R, Kane P M, Phan B H et al., Arabitol dehydrogenase as a selectable marker forrice. Plant Cell Reports,2005,24:596-602.
    121. LaFayette P R, Parrott W A, A non-antibiotic marker for amplification of plant transformationvectors in E. coli. Plant Cell Reports,2001,20(4):338-342.
    122. Laing W A, McManus M T, In Protein Protein interactions in plants.(McManus M T, Laing W A,Allan A C eds.) Sheffield Academic Press.2002,7:77-119.
    123. Laskowski M J, Kato I, Protein Inhibitors of Proteinases. Annual Review of Biochemistry,1980,49:593-626.
    124. Laskowski M, Kato I, Protein inhibitors of proteinases. Annual Review of Biochemistry,1980,49:593-626.
    125. Law R, Zhang Q, McGowan S et al., An overview of the serpin superfamily. Genome Biology,2006,7(5):216.
    126. Lawrence P K, Koundal K R, Agrobacterium tumefaciens mediated transformation ofnpigeonpea (Cajanus cajan (L.) Millsp) and molecular analysis of regenerated plants. CurrentScience, June2001,80(11):1428-1432.
    127. Lawrence P K, Koundal K R, Plant protease inhibitors in control of phytophagous insects.Electronic Journal of Biotechnology,2002,5(1):93-109.
    128. Leplé J C, Bonade-Bottino M, Augustin S, Toxicity to Chrysomela tremulae (Coleoptera:Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. MolecularBreeding,1995,1(4):319-328.
    129. Li X G, Chen S B, Lu Z X et al., Impact of copy number on transgenic expression in tobacco,Atca Botanica Sinica,2002,44(1):120-123.
    130. Lin G D, Bode W, Huber R et al., The0.25nm X-ray structure of the Bowman-Birk type inhibitorfrom mung bean in ternary complex with porcine trypsin. European Journal of Biochemistry,1993,212:549-555.
    131. Luo M, Wang Z Y, Li H P, et al., Overexpression of a weed (Solanum americanum) proteinaseinhibitor in transgenic tobacco results in increased glandular trichome density and enhancedresistance to Helicoverpa armigera and Spodoptera litura. International Journal of MolecularSciences,2009,10:1896-1910.
    132. Miki B, McHugh S, Selectable marker genes in transgenic plants:applications,alternatives andbiosafety. Journal of Biotechnology,2004,107:193-232
    133. Millar A J, Carre I A, Stryer C A, et al., Circadian clock mutants in Arabidopsis indentified byluciferase imaging. Science,1995,267:1161~1163
    134. Miller M,Tagliani L,Wang N et al., High efficiency transgene segregation in co-transformedmaize plants using an Agrobacterium tumifaciens T-DNA binary system. Transgenic Research,2002,11:381-396.
    135. Mitsuhara I, Ugaki M, Hirochika H et al., Efficient Promoter Cassettes for Enhanced Expressionof Foregin Genes in Dicotyledonous and Monocotyledonous Plants. Plant Cell Physiology,1996,37(1):49-59.
    136. Negrotto D, Jolley M, Beer S et al., The use of phosphomannose-isomerase as a selectablemarker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation.Plant Cell Reports,2000,19:798-803.
    137. Odell J T, Nagy F, Chua N H, Identification of DNA sequences required for activity of thecauliflower mosaic virus35S promoter. Nature,1985,313:810-812.
    138. Oger P., Petit A., Dessaux Y, Genetically engineered plants producing opins alter their biologicalenvironment. Nature Biotechnology.1997,15(4):369-372.
    139. Oliveira A S, Filho J X, Sales M P, Cysteine proteinases cystatins. Brazilian Archives of Biologyand Technology,2003,46(1):91-104.
    140. Oppert B, Morgan T D, Kramer K J, Efficacy of Bacillus thuringiensis Cry3Aa protoxin andprotease inhibitors against coleopteran storage pests. Pest Management Science,2011,67(5):568-573.
    141. Palm C J, Seidler R J, Schaller D L, Persistence in soil of transgenic plant produced Bacillusthuringiensis var. Kurstari δ-endotoxin, Canadian Journal of Microbiology,1996,42(12):1258-1262.
    142. Park Y, Choi B H, Kwak J S et al., Kunitz-type serine protease inhibitor from potato (Solanumtuberosum L. cv. Jopung). Journal of Agriculture and Food Chemistry,2005,53:6491-6496.
    143. Perl A, Galili S, Shaul O et al., Bacterial dihydrodipicolinate synthase and desensitized aspartatekinase: Two novel selectable markers for plant transformation. Nature Biotechnology,1993,11:715-718.
    144. Pernas M, Sanchez M R, Gomez L et al., A chestnut seed cystatin differentially effective againstcysteine proteinases from closely related pests. Plant Molecular Biology,1998,38:1235-1242.
    145. Pontiroli A., Ceccherini M T, Poté J et al., Long-term persistence and bacterial transformationpotential of transplastomic plant DNA in soil. Research in Microbiology.2010,161(5):326-334.
    146. Pyati P, Bandani A R, Fitches E et al., Protein digestion in cereal aphids (Sitobion avenae) as atarget for plant defence by endogenous proteinase inhibitors. Journal of Insect Physiology,2011,57:881-891.
    147. Qi R F, Song Z, Chi C, Structural features and molecular evolution of Bowman-Birk proteaseinhibitors and their potential application. Acta Biochemica et Biophysica,2005,37(5):283-292.
    148. Rahbé Y, Deraison C, Bonade-Bottino M et al., Effects of the cysteine protease inhibitororyzacystatin on different expression (OC-I) in different aphids and reduced performance ofMyzus persicae on OC-I expressing transgenic oilseed rape. Plant Science,2003,164:441-450.
    149. Raineri D M, Bottino P, Gordon M P et al., Agrobacterium-mediated transformation of rice(Oryza sativa L.). Biotechology,1990,8:33-38.
    150. Rajagopal R, Sivakumar S, Agrawal N et al., Silencing of Midgut Aminopeptidase N ofSpodoptera litura by Double-stranded RNA Establishes Its Role asBacillus thuringiensis ToxinReceptor. The Journal of Biological Chemistry,2002,277:46849-46851.
    151. Rawlings N D, Tolle D P, Barrett A J, Evolutionary families of peptidase inhibitors. Journal ofBiochemisry,2004,378:705-716.
    152. Ribeiro A P O, Pereira E J G, Galvan T L et al., Effect of eggplant transformed with oryzacystatingene on Myzus persicae and Macrosiphum euphorbiae. Journal of Applied Entomology,2006,130(2):84-90.
    153. Rispe C, Kutsukake M, Doublet V, Large gene family expansion and variable selective pressuresfor cathepsin B in aphids. Molecular Biology and Evolution,2008,25(1):5–17.
    154. Roberts T H, Marttila S, Rasmussen S K et al., Differential gene expression for suicide-substrateserine proteinase inhibitors (serpins) in vegetative and grain tissues of barley. Journal ofExprimental Botany.,2003,54:2251-2263.
    155. Roger L M, Hart E S, Kaye S B et al., Bean a-amylase inhibitor1in transgenic peas(Pisumsativum) provides complete protection from pea weevil (Bruchus pisorum) under fieldconditions. PNAS,2000,97(8):3820-3825.
    156. Ryan C A, Insect-induced chemical signals regulating natural plant protection responses. In:Denno R F, Mcclure M S eds. Variable plants and herbivores in natural and managed systems.New York, Academic Press,1989,43-60.
    157. Ryan S N, Liang W A, McManus M T, A cysteine proteinase inhibitor purified from apple fruit.Phytochemistry,1998,49:957-63.
    158. Saguez J, Cherqui A, Lehraiki S et al., Effect of mti-2transgenic potato plants on the aphidMyzus persicae (Sternorrhyncha: Aphididae). International Journal of Agronomy,2010,2010:1-7.
    159. Sakuta C, Konishi A, Yamakawa S et al., Cysteine proteinase gene expression in the endospermof germinating carrot seeds. Bioscience Biotechnology and Biochemistry,2001,65:2243-2248.
    160. Salvucci M E, Rosell R C, Brown J K, Uptake and metabolism of leaf proteins by the silverleafwhitefly. Archives of Insect Biochemistry and Physiology,1998,39:155–165.
    161. Sambrook J, Fritsch E F, Maniatis T, Molecular Cloning-A Laboratory Manual,2nd ed. ColdSpring Harbor Laboratory Press, Cold Spring Harbor, New York,1989,931~944.
    162. Sane V A, Nath P, Aminuddin et al., Development of insect resistant.transgenic plants using plantgenes expression of cowpea trypsin inhibitor in transgenic tobacco plants. Current Science,1997,72:741-747.
    163. Saxean D., Flores S., Stotzky G, Bt toxin is released in root exudates from12transgenic cornhybrids representing three transformation events, Soil Biology and Biochemistry,2002,34(1):133-137.
    164. Shi C H, Dai Y, Xia B et al., The purification and spectral properties of polyphenol oxidase Ifrom Nicotiana tobacum. Plant Molecular Biology Reporter,2001,19:381-382
    165. Smalla K, Gebhard F, Van Elsas J D, et al., Prevalence of nptII and Tn5in kanamycin-resistantbacteria from different environments. FEMS Microbiology Ecology,1993,13:47~58
    166. Sreekala C L,Wu K, Gu D et al, Excision of a selectable marker in transgenic rice(Oryza sativaL.) using a chemically regulated Cre/loxP system. Plant Cell Reports,2005,24:86-94.
    167. Stepanenko O V, Verkhusha V V, Kuznetsova I M et al, Fluorescent Proteins as Biomarkers andBiosensors: Throwing Color Lights on Molecular and Cellular Processes. current protein andpeptide science2008August;9(4):338–369.
    168. Stepanenko O V, Verkhusha V V, Kuznetsova I M et al., Fluorescent Proteins as Biomarkers andBiosensors: Throwing Color Lights on Molecular and Cellular Processes. Current Protein andPeptide Science,2008,9(4):338–369.
    169. Takesue Y, Yokota K, Nishi Y, Taguchi R, Ikezawa H, Solubilization of trehalase from rabbitrenal and intestinal brush-border membranes by a phosphatidylinositol-specific phospholipase C.FEBS Lett.ers,1986,201(1):5–8.
    170. Thipyapong P, Steffens J C, Differential response of the polyphenol oxidase F promoter toinjures and wound signals. Plant Physiology,1997,115:409-418.
    171. Tsybina T, Dunaevsky Y, Musolyamov A et al, New protease inhibitors from buckwheat seeds:properties, partial amino acid sequences and possible biological role. Biological Chemistry,2004,385(5):429-434.
    172. Turk V, Bode W, The Cystatins: protein inhibitors of cysteine proteinases. FEBS Letters,1991,285:213-219.
    173. Uchimiya H, Fushimi T, Hashi H et al, Expression of a foreign gene in callus derived fromDNA-treated protoplast of rice(Oryza sativa L.). Molecular and General Genetics,1986,204:204~207.
    174. Volpicella M, Ceci L R, Gallerani R et al, Functional expression on bacteriophage of the mustardtrypsin inhibitor MTI-2. Biochemical Biophysical Research Communications,2001,280(3):813–817.
    175. Wang Y, Chen B, Hu Y et al, Inducible excision of selectable marker gene from transgenic plantsby the Cre/loxsite-specific recombination system. Transgenic Research,2005,14:605-614.
    176. Watrud L S, Seidler R J, Nontarget ecological effects of plant, microbial, and chemicalintroductions to terrestrial systems, In: Huang P.M., Adriano D.C., Logan T.J., and Checkai R.T.,(eds), Soil Chemistry and Ecosystem Health, Madison, Wisconsin, American, SpecialPublication1998,52:313-340.
    177. Williamson V M, Hussey R S, Nematode pathogenesis and resistance in plants. Plant Cell,October1996,8:1735-1745.
    178. Wilson F.D., Flint H.M., Deaton et al, Resistance of cotton lines containing a Bacillusthuringiensis toxin to pink bollworm (Lepidoptera: Gelechidae) and other insects. Journal ofEconomic Entomology,1992,85(4):1516-1521.
    179. Yeh K W, Lin M L, Tuan S J et al, Sweet potato (Ipomea batatas) trypsin inhibitors expressed intransgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Reporter,1997,16:696-699.
    180. Zeng F R, Zhu Y C, Cohen A C, Molecular cloning and partial characterization of a trypsin-likeprotein in salivary glands of Lygus hesperus (Hemiptera: Miridae). Inscet Biochemistry andMolecular Biology,2002,32:455–464.
    181. Zeng F, Xue R, Zhang H et al, A new gene from Xenorhabdus bovienii and its encoded proteaseinhibitor protein against Acyrthosiphon pisum. Pest Management Science,2012'AcceptedArticle', doi:10.1002/ps.3299.
    182. Zhang C L, Chen D F, McCormac A C et al, Use of the GFP reporter as a vital marker forAgrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). MolecularBiotechnology,2001,17:109-117.
    183. Zhang S, Cheng H, Gao Y et al, Mutation of an aminopeptidase N gene is associated withHelicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochemistry andMolecular Biology,2009,39:421–429.
    184. Zhang W J, Yang S S, Shen X Y, The salt-tolerance gene rstB can be used as a selectable markerin plant genetic transformation. Molecular Breeding,2009,23(2):269-277.
    185. Zhang W, McEIory D, Wu R, Analysis of rice Act15’region activity in transgeneic rice plants.Plant Ce11,1991,3:1155~1165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700