彩色棉数量性状的遗传效应以及其资源的多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用了5个产量、品质性状差异较大的彩色棉品种以及1个白絮棉品种,采用不完全双列杂交交配设计(6×5/2)产生杂交一代15个组合以及6个自交亲本,考查了籽棉产量、皮棉产量,籽指、衣指、衣分等产量性状和5个纤维品质性状,采用加性—显性遗传模型和统计分析方法(朱军,1997)分析了以上资料,其结果如下:
     1.方差分析结果表明,彩色棉衣指、衣分、纤维长度以基因的加性效应为主,早代选择可以取得较好的效果。籽指以显性方差为主,在选配杂交组合时可以加以利用,从而获得较高的杂种优势。纤维强度、整齐度、伸长率和细度的显性方差与加性方差相当,对选择效果会产生一定的影响,以高世代选择为好。彩色棉产量性状的狭义遗传率都较高,变幅为27.19%(籽指)~80.58%(衣分),品质性状的狭义遗传率变幅为9.58%(伸长率)~87.01%(纤维长度)。
     2.6个亲本的配合力效应分析表明,紫絮棉和彩8在纤维长度、强度以及伸长率上都具有正的GCA效应,以它们作亲本可以明显改善后代的纤维品质,是彩色棉品质育种的有效亲本:彩9-1除了在纤维长度上为负向GCA外,不会降低后代的其它品质性状,而对红叶棕絮的利用不会大幅度的降低杂种一代的产量性状;对优质白棉的利用则会大大改善杂交彩色棉的产量和品质。组合紫絮棉×彩9-1、红叶棕絮×彩8、红叶棕絮×白棉、彩8×彩9-1、彩8×白棉等5个组合在品质上具有较强的SCA效应。上述亲本和组合在彩色棉育种以及杂交棉选育中可以有目的地加以利用。
     3.产量、品质各性状相关分析表明,除了籽指与籽棉产量之间为负相关外,对衣指、衣分的选择可以提高后代的籽、皮棉产量,同时籽指、衣指和衣分三个产量性状之间也可以进行同步选择。整齐度、强度这两个性状与长度之间都以正向加性协方差为主,说明纤维长度、整齐度和强度这三者在彩色棉的高品质育种中同步选择效果较好,在对细度一定范围的选择中也可对纤维长度和强度进行选择。彩色棉品质性状与产量的协方差都为负值,但整齐度与籽棉产量之间、伸长率与籽、皮棉产量以及细度与籽、皮棉产量之间的负向加性协方差不显著,说明这五者之间在实际育种过程中的后代选择上是不存在相互制约的,而对长度和强度的选择则可能导致彩色棉产量的降低。
     4.白棉与彩色棉品质性状杂种优势分析表明,在纤维长度上白色棉和彩色棉的所有组合的负超亲优势都达到了-10%以上,同时也无显著的正向中亲优势,说明彩色棉与白棉杂交一代在纤维长度上是很难得到改善的。在纤维强度上,杂交组合大部分表现显著正超亲优势,说明彩色棉杂交后代的纤维强度具强的杂种优势,甚至有的组合超过纤维强度好的白色棉亲本。在纤维细度上,不同的组合具体表面不一,
    
    有部分组合正向超亲优势明显,而有部分组合负向超亲优势明显。从具有显著正向
    超亲优势的双亲值来看,双亲差异相对小的组合能够产生显著的正超亲优势,而差
    异大的组合则难产生正超亲优势。
Fifteen F1 combinations crossed among 5 naturally colored cotton and 1 fiber white cotton different in yield components or fiber quality parameters according to half diallel crossing design (6X5/2) were used to evaluate the genetic effects of seed index, lint index, lint percentage and fiber quality. The experiment data processing was conducted by using additive-dominant genetic model (Zhu, 1997). The main results were as follows:
    1. The lint index, lint percentage and fiber length of naturally colored cotton were mainly controlled by the additive effects and could be improved by selection in early generations. We can take advantage of the high heterosis in selecting the combinations since the seed index was mainly controlled by dominant effects. While the fiber strength, the uniformity ration, the fiber elongation and micronaire were controlled by additive effects and dominant effects equivalently, which would affect the selection effects in early generations and the improvement would be better for these traits by selecting in later generation. The heritability of naturally colored cotton yield components were 27.19%(seed index)~80.85%(lint percentage) and fiber quality parameters were 9.58%(fiber elongation)~87.01%(fiber length).
    2. Zixumian and Cai 8 had positive GCA effects for fiber length, fiber strength and fiber elongation, therefore, these two varieties were the better parents for significantly increasing the fiber quality of progenies of naturally colored cotton. The parent of Cai 9-1 couldn't decrease the fiber quality except fiber length. Hongyezongxu was the parent for no-insignificantly decreasing the yield components of Fl. The parent of fiber white cotton with high quality fiber property could improve yield and fiber quality of colored cotton hybrid. Zixumian X Cai9-1, Hongyezongxu X Cai8, hongyezongxu X Emian3, Cai8 X Cai9-land Cai8 X Emian3 were considered promising combinations for fiber quality which had significant positive SCA effects. These varieties and combinations could be used in breeding of naturally colored cotton and the hybrid according to the different breeding goals.
    3. The genetic materials of naturally colored cotton with high seed index and lint percentage might have high seed yield and lint yield which could be improved by selecting yield components except seed index that was negative covariance with yield. The positive genetic covariance between seed index, lint index and lint percentage could help breeders to improve these traits simultaneously. The relationships among uniformity ration, fiber strength and fiber length with positive additive correlations mainly could mainly be used in indirect selection of colored cotton breeding. The breeders could select simultaneously fiber length and fiber strength in a range of Micronaire. The negative genetic covariance was found between fiber quality parameters and yield components. But the negative additive covariance were no-significant between uniformity ration and seed yield, fiber elongation and
    
    
    yield, Micronaire and yield, and this result demonstrated there wasn't affection between each other in these five paired traits. It might decrease the yield of naturally colored cotton by selecting high fiber length and fiber strength.
    4. In white fiber cotton and colored cotton crosses, the estimated surpassing parental Fl heterosis values for fiber length were all reached above -10% and the positive mean parents heterosis values were not significant. However, fiber strength showed significant surpassing parental Fl heterosis over the better parent based on population in the mass of combinations, even surpassed the parent with white fiber in some combinations. The differences between the estimated heterosis values for Micronaire were due to the different combinations. It was shown clearly that the Fl combinations crossed between parents with similar performances had relatively high dominant effects and significant positive Fl surpassing parental heterosis, while no Fl combination crossed
引文
1.曹新川,何良荣,蔡伟,等.彩色棉与海岛棉种间F1杂种优势分析.棉花学报,2003,15(3):191-192
    2.产焰坤,郑曙峰,路曦结,等.陆地棉品种间杂种优势及其主要性状的遗传分析.中国棉花,1998,25(5):10-12
    3.房卫平,许守明,孙玉堂等.棉花抗黄萎病的RAPD标记.河南农业科学,2001,9:11-13
    4.耿川东,龚蓁蓁,黄骏麒等.用RAPD标记鉴定棉花品种间差异.江苏农业学报,1995,11(4):21-24
    5.耿军义,王国印,翟学军,等.陆地棉有色纤维基因遗传及其对产量和品质的影响[J].棉花学报,1998,10(6):307-311.
    6.郭旺珍,张天真,潘家驹,等.我国陆地棉品种的遗传多样性研究初报.棉花学报,1997,9(5):242-247
    7.韩祥铭,刘英欣.陆地棉产量性状的遗传分析.作物学报,2002,28(4):533-536
    8.何光华,侯磊,李德谋,等.利用分子标记预测杂交水稻产量及其构成因素.遗传学报,2002,29(5):438-444
    9.纪家华,王恩德,李朝晖,等.陆地棉优异种质间的杂种优势和配合力分析.棉花学报,2002,14(2):104-107
    10.李卫华,胡新燕,申温文等.陆地棉主要经济性状的遗传分析.棉花学报,2000,12(2):81-84
    11. 李永山,陈萍,范巧兰,等.彩色棉种质资源鉴定及其利用研究.中国农业科学,2002,18(6):36-38
    12.李悦有,王学德.彩色棉纤维的超微结构观察:浙江大学学报(农业与生命科学版),2002,28(2):378-382
    13.林毅,赵伦一.陆地棉主要纤维品质性状的基因效应估测.遗传学报,1988,15(6):401-408
    14.刘海涛,郭香墨,夏敬源.转Bt基因抗虫棉与常规陆地棉种内杂种主要性状的基因效应分析.棉花学报,2000,12(3):118-121
    15.马藩之,周有耀,王瑞婷,等.陆地棉品种间杂交后代性状的遗传分析.北京农业大学学报,1983.9(4):27-33
    16.马育华.植物育种的数量遗传学基础.北京:江苏科学技术出版社,1982,3
    17.潘家驹.棉花育种学.北京:中国农业出版社,1998,176-181
    18.潘家驹.棉花育种学.北京:中国农业出版社,1998,23-59
    19.邱新棉,赵连英.天然彩色棉研究进展.中国棉花.2000,(27):5-7
    20.邱新棉,周文龙,李茂松,等.天然彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究.中国农业科学,2002,35(6):610-615
    21.宋国立,崔荣霞,(?)坤波,等.澳洲棉种研究多样性的RAPD分析.棉花学报,1999,11(2):65-69
    22.孙济中.刘金兰,张金发.棉花杂种优势的研究和利用.棉花学报.1994.6(3):135-139
    23.孙学振,刘霞,王立国,等.彩色棉研究进展与展望.山东农业大学学报(自然科学版).2002,
    
    33(4):509-514
    24.王国祥.彩色棉的色彩及其遗传分析.甘肃农业科技,1998(11):7-9
    25.王学德,潘家驹.陆地棉杂种优势及自交衰退的遗传分析.作物学报,1991,17(1):18-23
    26.王学德.潘家驹.棉花亲本遗传距离与杂种优势间的相关性研究.作物学报.1990,16(1):32-38
    27.王志忠,王兆晓.崔瑞敏等.种间杂交与陆地棉品种间杂交杂种优势利用研究.棉花学报,1998,10(3):162-166
    28.王志忠,王兆晓,崔淑芳.种间杂交种质系与陆地棉品种配合力的探讨.中国棉花,1996,23(10).7-10
    29.吴吉祥,朱军,许馥华.季道藩.陆地棉F2纤维品质性状杂种优贽的遗传分析.棉花学报,1995,7(4):217-222
    30.武耀廷,张天真,殷剑美.利用分子标记和形态学改善检测的陆地棉栽培品种遗传多样性.遗传学报,2001,28(11),1040-1050
    31.武耀廷.棉花产量性状杂种优势的遗传基础研究.[博士论文].南京:南京农业大学 2001
    32.西蒙古良.陆地棉纤维色泽的遗传[J].国外农学—棉花,1984,(3):17-19
    33.徐崇志,李青,曹新川.彩色棉与海岛棉种间杂种优势及其主要性状的遗传分析.中国棉花,2003,30(5).17-18
    34.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994
    35.杨伯祥,周宜军,王治斌.彩色棉主要经济性状研究.中国棉花,1999,26(1):9-10
    36.杨仁民等,世界彩色棉育种概况.棉花文摘,1992,7(3):9
    37.叶子弘,朱军.陆地棉开花成铃性状的遗传研究Ⅲ.不同发育阶段的遗传规律.遗传学报,2000,27(9):800-809
    38.易成新,张天真,郭旺珍.陆地棉衣分QTL的形态和RAPD分子标记筛选.作物学报,2001,27(6):781-786
    39.殷剑美,武耀廷,朱协飞.张天真.陆地棉产量与品质性状的主基因与多基因遗传分析.棉花学报,2003,25(2):67-72
    40.袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状的主基因与多基因遗传分析.遗传学报,2002,29(9):827-834
    41.袁有禄,张天真,郭旺珍等.陆地棉优异纤维品系的铃重和衣分的遗传及杂种优势分析.作物学报,2002,28(2):196-202
    42.袁有禄,张天真,郭旺珍等.棉花高品质纤维性状OTLs的分子标记筛选及其定位.遗传学报,2001,28(12):1151-1161
    43.袁伸康,余青.天然彩色棉品种存在问题与对策.新疆农业科学,2002,39(1):63-64
    44.张秉贤,王国祥.彩色棉与白色棉之间的DNA分子标记研究.中国棉花,2000,28(2):16-17
    45.张天真,靖深蓉.金林,等.杂种棉选育的理论与实践.北京:科学出版社,1998
    46.张雪林.彩色棉选育新进展[1].湖南农业科学,1998,(3):22-23
    47.张正圣,李先碧,刘大军,等.陆地棉高品质系的杂种优势利用研究.棉花学报,2002,14(5):264-268
    48.张正圣,李先碧,刘大军,等.陆地棉高强纤维品质系和Bt基因抗虫棉的配合杂种优势研究.中国农业科学,2002,35(12):1450-1455
    49.周有耀.陆地棉产量及纤维品制性质的遗传分忻(综述).北京农业大学学报.1988.14(2):
    
    135-141
    50.朱军,季道藩,许馥华.作物品种间杂种优势遗传分忻的新方法.遗传学报,1993,20(3):262-271
    51.朱军.估算遗传方差和协方差的混合模型方法.生物数学学报,1992.7(1):1-11
    52.朱军.广义遗传模型与数量遗传分析新方法.浙农大学报,1994,20(6)551-559
    53.朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报(农业与生命科学版),2000,26(1):1-6
    54.朱军.遗传模型分析方法.杭州:中国农业出版社,1997
    55.朱军.作物杂种后代基因型值和杂种优势的预测方法.生物数学学报,1993,8(1):32-44
    56.朱乾浩,傅碧霞,等.棉花棕色纤维性状的遗传及对其它性状的影响.作物品种资源,1998(1):24-26
    57.邹伟清.陆地棉产量性状的基因效应及其与F1杂种优势关系的研究.山东农业大学学报,1990,21(4):73-79
    58.左开井,孙济中,张献龙,等.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图.华中农业大学学报,2000,19(3):190-193
    59.陈青,朱军,吴吉祥.陆地棉不同铃期单株成铃数和籽棉产量的遗传动态分析.浙江农业大学学报,1999,25(2):155-160
    60.杜雄明,汪若海,刘国强,等.棉花纤维相关性状的主基因—多基因混合遗传分析.棉花学报,1999,11(2):73-78
    61. Basra A S. Malik C P. Development of the cotton fiber. Inter. Rev. Cytology, 1984, 89: 65-113
    62. Brookhart, Beth, The color of money-part Ⅱ. Farm Journal. 1991, 4:7
    63. Coyle, G. G and C. W. Smith. Combining ability for within-boll yield components in cotton, Gossypium hirsutum L. Crop. Sci. 1997, 37: 1118-1122
    64. Griffing L. B. Concept of general and specific combining ability in relation to diallel crossing systems. Austr. Jour. Biol. Sci. 1956, 9: 463-493
    65. Hüseyin BASAL, Ismail TURGUT. Heterosis and Combining Ability for Yield Components and Fiber Quality Parameters in a Half Diallel Cotton(Ghirsutum L.) Population. Turk J Agric, 2003, 27: 207-212
    66. Iqbal MJ, Aziz X, Saeed NA et al. Genetic diversity evaluation of some cotton varieties by RAPD analysis. Theoretical and Applied Genetics, 1997, 94(1): 139-144
    67. Jones M A et al. Cotton Response to Seasonal Pattern of Flower Removal: Ⅰ. Yield and Fiber Quality. Crop Sci, 1996, 36: 633-638
    68. Jones M A et al. Cotton Response to Seasonal Pattern of Flower Removal: Ⅱ Growth and Dry Matter Allocation. Crop Sci., 1996, 36: 639-645
    69. Kehel R JR. ichmond T R. Isolines in cotton effects of nine dominant genes [J]. Crop Science, 1971, 11: 587-589.
    70. KOHEL R J. Genetic analysis of fiber color variant in cotton. Crop Science, 1985, 25: 793-797.
    71. Lee, J. A new spin on naturally colored cottons. Agricultural Research Magazine, 1996, 44(4): 20-21
    72. Lomas K T et al. Single tree genetic linakage mapping in conifers using haploid and from megagametophytes. Bio/Technology, 1992, 10: 686-690
    73. Luckett, D. J. Diallel analysis of yield components, fiber quality and bacterial blight resistance using saced plants of cotton. Euphytica 1989, 44: 11-21
    
    
    74. Meredith Jr, W.R. and J.S. Brown. Heterosis and combining ability of cottons originated from different regions of the U.S. Journal of Cotton Science, 1998, 2: 77-84
    75. METEDITH W T Jr. Quantitative genetics in cotton [M]. Edited by R J Kohel et al, Agronomy, 1984, 24:132-150
    76. Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genesby bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1.88(21):9828-9832
    77. Multani DS, Lyon BR. Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome, 1995, 38:1005-1008
    78. Park YH, Kohel RJ, Law GR. Application ofrandom amplified polymorphic DNA for identifying markers of cotton fiber strength genes. Proccedings Beltwide Cotton Conferences, 1994,700-701
    79. Punitha D, Raveendran T S. Heterosis and combining ability studies in intraspecific colored lined upland cotton (Gossypium hirsutum L.). Crop Research Hisar, 1999, 17(2): 245~249
    80. Robert S R et al. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNA. Proc. Natl. Acad. Sci. U. S. A.,1992,89:1477-1481
    81. Sprague, G.F. and L. A. Tatum. General VS. Specific combining ability in single crosses of com. J. Am. Soc. Agron,1942,34:923-932
    82. Stoilova A, Taofik S. Inheritance and heterosis related to yield and its components in interspecific hybrids of cotton (Gossypium hirsutum×G. barbadense). Rasteniev" dni Nauki, 1998,35(2): 101-104
    83. Taufik S, Stonilova A. Inheritance and heterosis of fiber length and yield in interspecific cotton (Gossypium hirsutum×G. barbadense) hybrids. Rasteniev" dni Nauki, 1998,35(1): 22-25
    84. ULLOA M, Cantrell R G, Perey R G, et al. QTL analysis ofstomatal conductance and relationship to lint yield in an interspecific cotton. The journal of Cotton Sci.2000,4:10-18
    85. Verhalen, L. M. and J. C. Murray. A diallel analysis of several fiber properties traits in upland cotton hybrids. Crop. Sci,1967,30:1045-1048
    86. Vroh Bi I, Jardin P du, Mergeai G et al. Optionization and application of RAPD in a recurrent selection programme of cotton. BASE: Biotechnology. Agronomy, society et Environment, 1997,1(2): 142-250
    87. Wajahatullah MK, Stewart M. Genomic affinity among Gossypium subgenus Sturtia species by RAPD analysis. 1997 Proceedings Beltwide Cotton Conferences, New Orleans, L. A, USA. January 6-10, 1997,Volume 1: 452-453
    88. William. R. and W. R. Meredith Jr. Yield and fiber quality potential for second generation cotton hybrids, Crop. Sci., 1990,30:1045-1048
    89. Williams J .G .K et al, DNA polymorphisms amplified by arbitrary primer are useful as genetic markers. Nucleic Acids Res., 1990, 18:6531-6535
    90. YATSU et al. Cytochemical studies of green -colored cotton fibers [J]. Plant Physeology, 1983,72(1): 73
    91. YATSU et al. Ultrastructural and Chemical evidence that the cell wall of green cotton fiber is suberized [J]. Plant Physiology, 1983,73(2):521-524.
    92. Yu J, Park YongHa, Lazo GR et al. Mappmg cotton genome with molecular markers. 1997 Proceedings Beltwide Cotton Conferences, New Orleans, L. A, U.S.A., January 6-10,1997,Volume 1: 447
    93. Zhu J. Ji D, F. and Xu F. H. A genetic approach for analyzing iuter-cultivar heterosis in crops. Chinese Journal of Genetics. 1993. 2003(3): 183-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700