两级序批式膜生物反应器处理生活污水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前生物除磷脱氮工艺中出现的硝化菌与聚磷菌泥龄的不协调、反硝化与释磷过程对碳源的竞争、厌氧区硝酸盐成分对释磷的影响、沉淀固液分离时富磷污泥的释磷作用及出水中存在少量富磷污泥颗粒导致出水TP提高等问题,提出两级序批式MBR工艺(两级SBMBR)。两级SBMBR工艺以优化除磷脱氮为目的,通过运行条件的控制,将聚磷菌与硝化菌分别控制在两级反应器中优势生长,形成先除磷(同时去除大部分有机物)、后脱氮的运行模式,实现去除有机物的同时,高效除磷与脱氮,并有效控制膜污染,为工程实践提供参考和设计依据。两级SBMBR工艺具有以下特点:①解决自养硝化菌与异养细菌之间泥龄的矛盾,同时又可使最终排水端反应器中为非富磷污泥,再通过膜的高效截留,从而可充分降低出水的TP浓度,最终达到优化除磷与脱氮的效果;②在一级反应器中去除大部分有机污染物,在二级反应器中进一步去除难降解有机物,提高有机物去除率;③降低有毒物质对脱氮的冲击,提高脱氮的稳定性;④序批式、空曝、间歇抽滤出水相结合的运行方式,可以有效控制膜污染。
     采用两级SBMBR工艺,以青岛崂山区凉泉社区生活污水为处理对象,采用试验与机理分析相结合的研究方法,全面系统地研究了两级SBMBR工艺分级优化除磷脱氮的可行性、处理效能、混合液特性及对膜污染的影响。
     1、从SBMBR1(除磷级)除磷及去除有机物总体效能、周期除磷特性及除磷机理,SBMBR2(脱氮级)脱氮的总体效能及脱氮动力学等方面对两级SBMBR进行了研究。研究得出:通过运行泥龄的控制(SBMBR1为5~7d ,SBMBR2为25~30d),两级SBMBR能够将聚磷菌与硝化菌分别控制在两级反应器中优势生长,从而将除磷(同时去除有机物)与脱氮这两个相互矛盾的生物处理过程分别控制在两级反应器中优化完成。在系统稳定运行阶段,出水COD、TN、TP、NH3-N平均值分别为25.75mg/L、12.33 mg/L、0.46mg/L、2.71 mg/L,满足城市景观环境用水水质要求;综合考虑沉淀期间POAs的释磷作用及沉淀效率,确定SBMBR1最佳沉淀时间为20min;通过周期试验确定硝化速率常数k1=0.21,反硝化速率常数k2=0.22,反硝化速率要高于硝化速率。
     2、通过实验室测定及扫描电镜观察,对比分析了SBMBR1(除磷级)、SBMBR2(脱氮级)混合液污泥特性。试验发现:在混和液物理特性和生物特性方面,两级反应器均表现出了不同。从外观观察SBMBR1反应器中的活性污泥呈浅黄色,随着运行时间的增加,污泥粒径逐步增加,SV、SVI值逐步下降,呈现出较强的颗粒特征,沉降性能良好;SBMBR2污泥呈土黄色,污泥絮体被高强度的曝气所产生的切应力所打碎,污泥粒径迅速降低,絮体较为细碎,和水相混合成均一粘稠的溶液,看不到泥水分界面;低泥龄、高负荷运行,使得SBMBR1可以保持较高的微生物活性,MLVSS/MLSS值、SOUR值均高于SBMBR2;两级反应器活性污泥中均有大量的菌胶团,长杆菌、短杆菌和球菌是构成主体,但SBMBR1活性污泥中含有大量固着型原生动物如累枝虫等,还存在着一定数量的丝状菌,生物相要比SBMBR2丰富。
     3、借助原子力显微镜、扫描电镜、透射电镜等手段对平板膜污染现象进行观测和分析,并通过膜表面污染物EPS测定、污染膜表面能谱分析,得出平板膜表面污染物的组成。经过110多天的运行之后,SBMBR2反应器内膜表面形成了导致过膜压力升高的粘稠的污染层,污染后平板膜的粗糙度与清洁膜相比增加了20倍左右,膜表面污染层的最大厚度为1695.74nm。通过达西公式对平板膜的阻力分布进行了表征,得到平板膜自身固有阻力占总阻力的38.24%,沉积阻力占总阻力的53.09%(其中凝胶极化阻力为43.09%)、内部污染阻力占总阻力的8.67%,得出膜表面形成的凝胶层是导致膜过滤性能下降的主要原因。膜污染主要是由有机物污染、微生物污染、无机物污染造成,膜表面有机污染物含量为417.69mgEPS/g.MLSS,蛋白质:多糖=3.5:1,蛋白质为优势污染物;膜表面及膜孔内部生物污染以球菌、杆菌为主;膜表面无机污染物主要是Fe、Na、Zr、Rb、Ca等化合物在膜表面和膜孔内形成的硬垢。
     4、对SBMBR2反应器中膜污染影响因素进行了研究,通过优化操作方式、投加PAC等措施延缓膜污染。得出:污泥浓度的增加会加剧膜污染的速度;EPS、SMP因膜的截留在反应器内积累,是形成凝胶层的主要影响因素;混合液中,大分子物质占到了61%,大大高于进水与出水,是引起膜污染的主要原因。序批式运行方式与间歇抽滤、空曝相结合的膜运行方式,可以减缓浓差极化,有效降低沉积污染及凝胶层污染,膜比流量下降速率与连续流MBR相比明显降低,系统在运行100多天后,过膜压差仅增加了0.12bar;投加适量PAC,污泥粒径增加,上清液SMP降低,膜的过滤性能明显得到改善,当PAC投加量为1g/L时,膜比流量提高了70%,周期内膜通量衰减速率也有所降低,上清液中蛋白质和多糖含量分别降低了14%、12%,有助于延缓膜污染。对污染膜组件的清洗采用物理清洗与化学清洗相结合的形式,空曝2小时、400ppm次氯酸钠清洗2小时、200ppm次氯酸钠溶液浸泡20小时后膜比通量恢复至81.51%。
The two-stage sequencing batch membrane bioreactor (TSBMBR) process was put forward to face with the problems in biological nitrogen and phosphorous removal, like different sludge age between nitrification and phosphorous bacteria, competition for carbon during denitrification and phosphorous release process, influence of nitrate on the phosphorous release in anaerobic zone, phosphorous release during sedimentation process, sludge with high phosphorous concentration in the effluent which can cause high TP concentration in effluent and etc. The two-stage sequencing batch membrane bioreactor (TSBMBR) process was aim to optimize the removal of nitrogen and phosphorous. With the control of operation parameters, phosphorous bacteria and nitrification bacteria can be controlled in two-stage reactors. Phosphorous and large amount of COD could be removed in the first stage, and nitrogen could be removed in the second stage, which could in a whole realize the simultaneous removal of COD, nitrogen and phosphorous. The membrane fouling can also be mitigated effectively. This operation can provide references for application and design. The characteristics of two-stage sequencing batch membrane bioreactor (TSBMBR) process can be summarized as follows:①Dissolve the contradiction between autotrophic nitrification bacteria and heterotrophic bacteria and enable the sludge in the reactor that provides effluent is not P-rich type, and with the effective separation of membrane, the concentration of TP in the effluent can be completely reduced. And the optimal nitrogen and phosphorous removal can be obtained;②Large amount of COD can be removed by the first stage of reactor and the refractory biodegradable organics can be furthered removed in the second stage reactor, hence the removal efficiency of COD can be improved;③Reduce the toxic shock loading to nitrification bacteria and enhance the stability of denitrification;④Combine sequencing bath and intermittent suction operation modes together to mitigate membrane fouling effectively.
     TSBMBR process was applied to treat wastewater of Liaoquan residential area, Laoshan district, Qingdao. Experiment and mechanical analysis were combined to systematically research on the feasibility of TSBMBR in removing phosphorous and nitrogen, the removal efficiency, solution characteristics and influence on membrane fouling.
     1. The research on TSBMBR includes removal efficiency of phosphorous and organic pollutants in SBMBR1 (phosphorous removal stage), phosphorous removal characteristics and mechanism in one cycle and removal efficiency of nitrogen and denitrification dynamics in SBMBR2 (nitrogen removal stage). Through the control of sludge age (5~7d i n SBMBR1,25~30d in SBMBR2), phosphorous bacteria and nitrification bacteria were the dominant species in each stage. Therefore, the contradiction between phosphorous removal and nitrogen removal can be optimized in two chambers separately. After the stable operation of system, COD, TN, TP and NH3-N average concentration in the effluent was 25.75mg/L, 33 mg/L,0.46mg/L and 2.71 mg/L, which could meet the Criteria of Scenic Environment Using Water. Concerning the phosphorous release effects in sedimentation period of PAOs and sedimentation efficiency, the optimal sedimentation time in SBMBR1 was 20 min. Through the periodic experiment, the nitrification rate constant K1 equaled to 0.21 and the denitrification rate constant K2 equaled to 0.22. That is to say, the denitrification rate is higher than nitrification rate.
     2. Lab experiments and SEM observation were performed to analyze the sludge characteristics in SBMBR1 and SBMBR2. From biological and physical point of view, the sludge characteristics in two stages are totally different. The sludge in SBMBR1 was light yellow and with the time passed by, the sludge size gradually increased and the SV, SVI value gradually decreased. The sludge in SBMBR1 presented granular characteristics and settled very well. The sludge in SBMBR1was brown and the sludge flocs was smashed by the shear force due to high intensity of aeration. The sludge size decreased and the sludge flocs blended with water forming ropy solutions, and there was no distinguish interface between water and sludge. Low sludge age and high loading operation enabled the sludge in SBMBR1 keeping higher sludge activity and the MLVSS/MLSS ratio and SOUR values of SBMBR1 were higher than SBMBR2. Both in SBMBR1 and SBMBR2, there were large amount of zoogloea, bacillus, coryneform of bacteria, and pediococcus. However, in SBMBR1 there were also a lot of Protozoa like epistylis and etc. A certain amount of filamentous bacteria can also be found in SBMBR1. The biological species in SBMBR1 were much more abundant than that in SBMBR2.
     3. Membrane fouling on flat-sheets membrane was observed and analyzed with AFM, SEM and TEM. After the measurement of membrane surface EPS and membrane surface ETX analysis, the pollutants composition on the surface of flat-sheets membrane was calculated. After 110 days operation, pollutants layer formed on the membrane surface in SBMBR2, which could induce the increase of trans-membrane pressure (TMP). The roughness of fouled membrane surface was 20 times higher than the new membrane and the thickest height of membrane pollutant layer was 1695.74nm. Darcy’s Law was used to analyze the resistance distribution on the membrane surface, the resistance of membrane (Rm) accounted for 38.24% of total resistance, the cake resistance (RC) accounted for 53.09% of total resistance (43.09% of which was gel polarization resistance), and the pore blocking resistance(Rp) accounted for 8.67% of total resistance. The gel lay caused by concentration polarization on the membrane surface was the main reason of the reduction of membrane permeability. The membrane pollutants were composed of organic pollutants, biological pollutants and inorganic pollutants. The organic pollutants represented by EPS on the membrane surface were 417.69EPSmg/g.MLSS, and the protein/polysaccharide ratio was 3.5. Protein was the predominant pollutants. The biological pollutants on the membrane surface are mainly bacillus and pediococcus and the inorganic pollutants were scales mainly composed of Fe, Na, Zr, Rb and Ca compounds inner and outer the membrane.
     4. The influential factors of membrane fouling in SBMBR2 were also investigated. Membrane fouling was mitigated through optimizing operation parameters and dosing PAC. The increase of sludge concentration could increase the membrane fouling velocity. EPS and SMP accumulated in the reactor were the main formation reason of gel layer. In reactor solutions, substances with high molecular weight accounted for 61%, which was much higher than the value in the influent and effluent. This is the main reason of membrane fouling. The Combination of sequencing bath and intermittent suction operation modes could mitigate membrane fouling effectively, the velocity of which was much lower than the non-stop MBR. After operation for more than 100 days, the TMP only increased 0.12bar. After the dosing of PAC, the sludge size increased, and the SMP in the supernatant reduced, and the membrane filterability was mitigated dramatically. With the dosage of PAC reached 1g/L, the specific membrane flux enhanced 70% and the membrane flux reduction rate in one cycle was also reduced. The protein and polysaccharide concentration in the supernatant was also reduced by 14%, and 12%, which was beneficial for the mitigation of membrane fouling. The combination of physical and chemical cleaning was performed on the cleaning of fouled membrane. After aeration for 2 hr, 400 mg/L sodium hypochlorous cleaning for 2 hr, and then 200 mg/L sodium hypochlorous marinating for 20hr, the specific membrane flux recovered to 81.51%.
引文
[1] McCann, B. Suporting a sanitation shift. Water 21, April 2001, 23~24
    [2] Zeeman, G., Lens, P. and Lettiga, G. Decentrlised sanitation and reuse. Water 21, April 2001, 24~25
    [3]王宝贞,王琳主编.水污染治理新技术—新工艺、新概念、新理论.北京:科学出版社,2004.1~20,87~130
    [4]王琳,王宝贞编著.分散式污水处理与回用.北京:化学工业出版社,2003,190 ~278
    [5]朱宛华.水环境污染的恢复技术.地学前缘,2001,8(l):147~150
    [6]王琳,王宝贞编著.饮用水深度处理技术.北京:化学工业出版社,2002.310~312
    [7]顾平,李方方.膜技术在水处理中的应用现状及其发展.中国给水排水,1998,14(5):25~27
    [8]彭跃莲,刘忠洲.MBR在废水处理中的应用.水处理技术,1999,25(2):63~69
    [9]王沛等.陶瓷膜处理轧钢乳化液废水操作条件及技术经济比较.工业水处理,1999,19(2):14~15
    [10]何厚波,熊杨,周敬超.生活垃圾填埋场渗滤液的特点及处理技术.环境卫生工程.2002.10(4):159~163
    [11]张忠祥,钱易,等.废水生物处理新技术.北京:清华大学出版社,2004
    [12] Thomas H, Judd S, Murrer J. Fouling characteristics of membrane filtration in membrane bioreactors.Membr Technol, 2000, 2000(122): 10~13
    [13]黄霞,桂萍,范晓军等.膜生物反应器废水处理工艺的研究进展.环境科学研究.1998.11(1):40~44
    [14] C. T. Smith, et al. The Use of Ultrafiltration Membrane for Activated Sludge Separation. Presented paper of 24th Annual Purdue Industrial Wastewater Conference. 1969:75~80
    [15] Budd W E, Okey R W. Biological treatment of waste water and industrial wastes. US patent,3,472,765 to Dorr-Oliver Incorporated, 1969: 14
    [16] H. E. Crethlein. Anaerobic Digestion and Membrane Separation of Domestic Wastewater. JWPCF. 1978,(50):754~763
    [17]苓运华.日本“水综合再生利用系统‘90年代’的进展概要”.环境科学研究,1990,3(2):50~53
    [18]岑运华. MBR在污水处理中的应用.水处理技术, 1991,17(5):318~323
    [19]濵光太郎,片山茂.限外澞過を组くんだ排水高度处理.用水と廢水,1987,29(10):36~40
    [20] Yamamoto K., Hiasa M., Mahmood T., etal. Directsolid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Wat.Sci.Tech. 1989, 21: 43~54
    [21] Chiemchaisri C, Yamamoto K.Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment. Mem Sci, 1994, 87(1-2): 119~129.
    [22] Chiemchaisri C, Wong Y K, Urase T, et al. Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment. Wat Sci Technol, 1992, 25(10):231~240.
    [23] Chiemchaisri C, Yamamoto K, Vigneswaran S. Household membrane bioreactor in domestic wastewater treatment. Wat Sci Technol, 1993, 27(1):171~178.
    [24] Chiemchaisri C, Yamamoto K. Biological nitrogen removal under low temperature in a membrane separation bioreactor. Wat Sci Technol, 1993, 28(10):325~333.
    [25] Ueda T, Hata K. Domestic wastewater treatment a submerged membrane bioreactor with gravitational filtration. Wat Res, 1999, 33(12):2888~2892.
    [26]郑祥,朱小龙,张绍园等.膜生物反应器在水处理中的研究及应用.环境污染治理技术与设备,2000,1(5):12~20
    [27] Hadi Husain, Pierre Cote. Membrane bioreactor for municipal wastewater treatment.Water Quality Index, March/April, 1999:19~22.
    [28] Tom Stephenson, Simon Judd, Bruce Jefferson and Keith Brindle. Membrane bioreactor for wastewater treatment. IWA Publishing, 2000
    [29] T.Stephenson,S.Judd et al.著.膜生物反应器污水处理技术.北京:化学工业出版社,2003.5~8
    [30]林哲.膜分离活性污泥法的研究.城市环境和城市生态,1994,7(1):6~11
    [31]吴天芬,郭学弟,李书申.超滤法处理回用印钞厂沙擦版液的研究.环境科学.1993.14(4):34~36
    [32]杨志斌,黄勇,潘杨.采用双泥系统的废水脱氮除磷工艺的研究现状与进展.环境科学与管理,2006,31(6):67~71
    [33] U.Van Dongen, M.S.M.Jetten and M.C.M.Van Loosdrecht. The SHARON-Anammox Process for Treatment of Ammonium Rich Wastewater. Water Science and Technology. 2001,44 (1):153~160
    [34] I. Schmidt, O. Sliekers, M. Schmid, et al. New Concepts of Microbial Treatment Processes for the Nitrogen Removal in Wastewater. FEMS Microbiology Reviews. 2003,27(4):481~492
    [35] A. O. Sliekersa, N. Derworta, J. L. C. Gomez, et al. Completely Autotrophic Nitrogen Removal Over Nitrite in One Single Reactor. Water Research. 2002,36(10):2475~2482
    [36] M. Schmid, U. Twachtmann, M. Klein, et al. Molecular Evidence for Genus Level Diversity of Bacteria Capable of Catalyzing Anaerobic Ammonia Oxidation. Systematic and Applied Microbiology. 2000,23(1):93~106
    [37] K. M. Udert, C. Fux, M. Munster, et al. Nitrification and Autotrophic Denitrification of Source-separated Urine. Water Science and Technology. 2003,48(1):119~130
    [38] C. Fux, M. Boehler, P. Huber, et al. Biological Treatment of Ammonium-rich Wastewater by Partial Nitritation and Subsequent Anaerobic Ammonium Oxidation (Anammox) in a Pilot Plant. Journal of Biotechnology. 2002,99(3):295~306
    [39] A. O. Sliekers, K. A. Third, W. Abma, et al. CANON and Anammox in a Gas-lift Reactor. FEMS Microbiology Letters. 2003,218(2):339~344
    [40] P. Lam, J. P. Cowen and R. D. Jones. Autotrophic Ammonia Oxidation in a Deep-sea Hydrothermal Plume. FEMS Microbiology Ecology. 2004,47(2):191~206
    [41] K.A.Third, A. O. Sliekers, J. G. Kuenen, et al. The CANON System (Completely Autotrophic Nitrogen Removal Over Nitrite in One Single Reactor) under Ammonium Limitation: Interaction and Competition Between Three Groups of Bacteria. Systematic and Applied Microbiology. 2001,24(4):588~596
    [42] Suwa Y., Suzuki T., Toyohara H., Yamagishi T. and Urushigawa Y. Single stage - single sludge nitrogen removal by an activated sludge process with cross flow filtration. Wat Res., 1992, 26(9): 1149~1157
    [43]张军,王宝贞,张立秋,王爱杰.复合淹没式膜生物反应器脱氮除磷效能研究.中国给水排水,2000, 16 (9):9~11
    [44]顾国维,何义亮编著.膜生物反应器在污水处理中的研究和应用.北京:化学工业出版社,2002.75~78,80~100
    [45] G. T. Seo, T. S. Lee, and B. H. Moon et al. Two stage intermittent aeration membrane bioreactor for simultaneous organic nitrogen and phosphorus removal. Wat. Sci. Technol., 2000, 41(10~11): 217~225.
    [46] He sheng bing,Wang bao zhen,Wang lin,Jiang yi feng.An novel approach to treat combined domestic wastewater and eacess sludge in MBR.Journal of Environmental Science.2003,15(5):674~679
    [47]何圣兵等.生物膜-膜生物反应器处理生活污水的实验研究.给水排水,2002,28(11):21~23
    [48] Y.Wang, X.Huang and Q.Yuan.Nitrogen and Carbon Removals from Food Processing Wastewater by an Anoxic/Aerobic Membrane Bioreactor. Process Biochemistry.2005,40: 1733~1739
    [49]齐唯等.浸没式膜生物反应器的同步硝化和反硝化效应.中国给水排水,2003,19(7):8~11
    [50]罗虹等.应用投加粉末活性炭的膜生物反应器处理生活污水的研究.重庆环境科学,2002,24(6):28~31
    [51] S.G.Joanna, C.Andrzej, M.Korneliusz.Nitrogen removal from wastewater withigh ammonia nitrogen concentration viashorter nitrification and denitrification. Water Science andTechnology.1997,36(10):73~78
    [52]高景峰,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响.高技术通讯,2002,12(12):88~93
    [53] W.J.Ng,et al.Study on sequencing batch membrane bioreactor for wastewater treatment. Water Science and Technology.2000,41(10~11):227~234
    [54]李春杰等.SMBR处理焦化废水中的短程硝化反硝化.中国给水排水,2001,17(11):8~12
    [55] J.Cho,K.G.Song,H.L.Sang et al. Sequencing anoxic/anaerobic Membrane Biological (SAM)Pilot Plant for Advanced Wastewater Treatment.Desalination,2005,178(1-3):219~225
    [56] S - H. Yoon, H - S. Kim, and J - K. Park et al.Influence of important operational parameters on performance of a membrane biological reactor.Wat .Sci. Technol.,2000 ,41 (10~11) :235 ~242
    [57] Tatsuki Ueda and Kenji Hata. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration .Wat. Res., 1999, 33 (12): 2888~2892
    [58] B.Kocadagistan, E.Kocadagistan, N.Topcu et al. Wastewater treatment with combined upflow anaerobic fixed-bed and suspened aerobic reactor equipped with a membrane unit. Process Biochemistry.2005,40(1):177~182
    [59] B.Lesjean,R.Gnirss and C.Adam.Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal.Desalination,2002,149:217~224
    [60] Krampe J, Krauth K. Sequencing batch reactor with submerged hollow fiber membranes for the biomass separation. Water Sci. Technol., 2001, 43(3): 195~199
    [61]肖景霓,张捍民,代文臣等.序批式膜生物反应器同时脱氮除磷的比较研究.环境科学,2006,27(11):2233~2238
    [62] H.Buisson.The use of immersed membranes for upgrading wastewater treatment plants.Water Science and Technology.,1998,37(9):89~95
    [63] Berthold Gunder et al.Replacement of secondary clarification by membrane separation results with tubular, plate and hollow fiber modules.wat.sci.tech.,1998,38(4): 383~393
    [64]王志,甄寒菲,王世昌.膜过程中防治膜污染强化渗透通量技术进展.膜科学与技术,1999,19 (1):1~5
    [65]邱运仁,张启修.超滤过程膜污染控制技术研究进展. Modern Chemical Industry,2002,22(2):18~21
    [66] Stephenson T, Judd S,Jefferson B,et al, Membrane Bioreactors for Wastewater Treatment. London: IWA Publishing, 2000:25~37
    [67]张颖,顾平,邓晓钦.膜生物反应器在污水处理中的应用进展.中国给水排水,2002,18(4):90~92
    [68] Fangang Meng, Hanmin Zhang, Fenglin Yang, et al, Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor, J. Membr. Sci., 2006, 272(1-2):161~168
    [69] Hernandez Rojas M.E, Van Kaam R, Schetrite S, et al, Role and variations of supernatant compounds in submerged membrane bioreactor fouling, Desalination,2005,179(1-3): 95~107
    [70] Fane, A. G., Fell, C. J. D., and Nor, M. T. Ultra filtration Activated sludge system- development of a predictive model Polym. Sci Technol, 1981, 13:631~658.
    [71] Keith Brindle, Tom Stephenson, Application of membrane biological reactors for the treatment of wastewaters, Biotechnology and Bioengineering, 1996, 49(6): 601~610
    [72] S. Lubbecke, A. Vogelpohl, W. Dewjanin, Wastewater treatment in a biological high-performance system with high biomass concentration, Water Research, 1995, 29(3): 793~802
    [73] T. Ueda, K. Hata, Y. Kikuoka, Treatment of domestic sewage from rural settlements by a membrane bioreactor, Water Science and Technology, 1996,34(9): 189~196
    [74] GAO Mengchun, YANG Min, LI Hongyan, et al. Nitrification and sludge characteristics in a submerged menbrane bioreactor on synthetic inorganic wastewater. Desalination, 2004(170): 177~185
    [75] Nagaoka H. Influnece of bacterial extracellular polymers on the membrane separation activated sludge process. Wat Sci Tech, 1996, 34 (9): 165~172.
    [76]张科杰,邢国平,张云霞.污泥浓度对膜生物反应器运行效果的影响分析.环境保护科学,2004,3(2):19~20,29
    [77] C. Wisniewski, A. Grasmick, Floc size distribution in a membrane bioreactor and consequences for membrane fouling, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138(2~3): 403~411
    [78] Jae-Seok Kim, Chung-Hak Lee, In-Soung Chang, Effect of pump shear on the performance of a crossflow membrane bioreactor, Water Research, 2001, 35 (9): 2137~2144
    [79] Nazim Cicek, Juan P. Franco, Makram T. Suidan et al., Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds, water Environment Research:1999,71(1): 64~70
    [80] N. Cicek, D. Dionysiou, M. T. Suidan et al., Performance Deterioration and structural changes of a ceramic membrane bioreactor due to inorganic abrasion, .Journal of Membrane Science, 1999, 163(1): 19~28
    [81] Boran Zhang, Kazuo Yamamoto, Shinichiro Ohgaki et al., Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation, Water Science and Technology, 1997, 35(6): 37~44
    [82] M. Brockmann, C. F. Seyfried, Sludge activity and cross-flow microfiltration a non-beneficial relationship, Water Science and Technology, 1996, 34(9):205~213
    [83] Wouter Ghyoot, Stefaan Vandaele, Willy Verstraete, Nitrogen removal from sludge reject water with a membrane-assisted bioreactor, Water Research,1999, 33(1): 23~32
    [84] Wouter Ghyoot, Q. Dong, D. Springael et al., Molecular tools for monitoring of gene transfer ina conventional A/S system and a membrane separation bioreactor, Proceeding of Membrane Technology in Environmental Management, 1999, Tokyo: 377~383
    [85] S. Rosenber}, M. Kraume, U. Szewzyk, Operation of different membrane bioreactors: Experimental results and physiological state of the microorganisms, Proceediyig of Membrane Techyiology in Environmental Management,1999,Tokyo,310~316
    [86] Forstorc F, Dallasn J. Activated sludge on settlement some suppositions and suggestion. wat Polhxt Control.1980, 79( 3): 338~351
    [87] Forstorc E. Factors involved in the settlem ent of activated sludge- Inutrients and surface polymers. Water Res.1985,19(10): 1259~1264
    [88] Magara Y, Numbu S, Utosawa K. Biochemical and physical properties of an activated sludge on setting character rustics. Wat Res, 1986,10(1): 71~77
    [89] R. Buraa, M. Cheung, B. Liao et al., Composition of extra cellular polymeric substances in the activated sludge floc matrix. Water Science and Technology,1998, 37(4~5): 325~333
    [90] Jost Wingender, Thomas R Neu, Hans-C Flemming. Microbial extra cellular polymeric substances: characterization, structure and function,1999,Springer, Berlin:49~72
    [91]刘锐,黄霞,范彬等.膜-生物反应器中溶解性微生物产物的研究进展.环境污染治理技术与设备,2002,3(1):1~7.
    [92] Xia Huang, Rui Liu, Yi Qian, Behavior of soluble microbial products membrane bioreactor, Process Biochemistry, 2000, 36,(5): 401~406
    [93] In-Sound Chant, Chum-Hak Lee. Membrane filtration characteristics in membrane-coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling, Desalination, 1998, 120(3):221~233
    [94] Mark C. M. Van Loosdrecht, Mogens Henze, Maintenance, endogeneous respiration, lysis, decay and predation, Water Science and Technology, 1999,39(1): 107~117
    [95] T. Mukai, K. Takimoto, T. Kohno, M. Okada, Ultra filtration behavior of extra cellular and metabolic products in activated sludge system with UF separation process. Water Research, 2000, 34(3):902~908
    [96] Wontae L, Seoltae K, Hangsik SH. Sludge characteristics and their contribution to micro filtration in submerged membrane bioreactors. Journal of Membrane Science, 2003, 216:217~227.
    [97] Jae-Sok Kim, Chum-Hak Lee, Hee-Dons Chun. Comparison of ultra filtration characteristics between activated sludge and BAC sludge, Water Research,1998, 32(11): 3443~3451
    [98] Wisniew C, Grasmik A. Floc size distribution in a membrane bioreactor and consequence used for membrane fouling. Colloids and Surfaces, 1998, 138:403~411.
    [99] Hideki Harada, Kiyoshi Momonoi, Shinichi Yamazaki et al., Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics.Water Science and Technology, 1994, 30(12):307~319
    [100] S. S. Madaeni.The effect of operating conditions on critical flux in membrane filtration of latexes.Process Safety and Eyvironmental Protection, 1997,75(4): 266~269
    [101] L. Defrance, M.Y.Jaffrin, Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment. Journal of Membrane Science, 1999,152(2): 203~210
    [102] Sayed S Madaeni, Anthony G Fane, and Dianne E Wiley, Factors influencing critical flux in membrane filtration of activated sludge, Journal of Chemical Technology and Biotechnology, 1999, 74(6): 539~543
    [103] E. S. Tarleton, R. J. Wakeman. Understanding flux decline in cross-flow micro filtration 2: effects of process parameters. Chemical Engineering Research and Design, 1994, 72(4): 431~440
    [104] E. S. Tarleton, R. J. Wakeman. Understanding flux decline in cross-flow micro filtration 1: effects of particle and pore-size. Chemical Engineering Research and Design, 1993, 71(4): 399~410
    [105] El Hani Bouhabila, Roger Ben Afm, Herve Buisson.Microfiltration of activated sludge using submerged membrane with air bubbling. Desalination,1998, 118(13): 315~322
    [106] Rui Liu, Xia Huang, Chengwen Wang et al. Study on hydraulic characteristics in a submerged membrane bioreactor process. Process Biochemistry, 2000, 36(3): 249~254
    [107] C. Visvanathan, Byung-Soo Yang, S. Muttamara et al. Application of air back flushing technique in membrane bioreactor. Water Science and Technology, 1997, 36(12): 259~266
    [108] Robert Dufresne, Henri-Claude Lavallee, Remi-Ernest Lebrun et al. Comparison of performance between membrane bioreactor and activated sludge system for the treatment of pulping process wastewaters. TAPPl Journal, 1998, 81(4):131~135
    [109] H. Nagaoka, S. Yamanishi, A. Miya. Modeling of biofouling by extracelluar polymers in a membrane separation activated sludge system. Water Science and Technology, 1998, 38(4~5): 497~504
    [110] Bouhabila E H, Roger B A, Buisson H.Fouling characterization in membrane bioreactor. Separation and Purification, Technology, 2001,22-23:123~132
    [111] C. -H. Xing, E. Tardieu, Y. Qian et al. Ultrafiltration membrane bioreactor for urban wastewater reclamation.Journal of Membrane Science, 2000,177(12): 73~82
    [112] X. J. Fan, V. Urvain, Y. Qian et al. Ultra filtration of activated sludge with ceramic membranes in a cross flow membrane bioreactor process. Proceeding of Membrane Technology in Eyvironmental Management, 1999, Tokyo:286~293
    [113] R.W.Field, D.Wu, J.A.Howell et al. Critical flux concept for micro filtration fouling. Journal of Membrane Science,1995,100(3):259~272
    [114] John A. Howell.Sub-critical flux operation of micro filtration. Journal of Membrane Science,1995,107(1-2): 165~171
    [115] D. Y. Kwon, S. Vigneswaran. Influence of particle size and surface charge on critical flux ofcrossflow micro filtration. Water Science and Technology, 1998, 38(45): 481~488
    [116] V. Chen, A. G. Fane, S. Madaeni et al. Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation. Journal of Membrane Science,1997,125(1): 109~122
    [117] C.Wisniewski, A.Grasmick, A.Leon Cruz. Critical particle size in membrane bioreactors: Case of a denitirifying bacterial suspension. Journal of Membrane Science,2000,178(1):141~150
    [118] Laure Defrance, Michel Y. Jaffrin, Bharat Gupta et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresource Technology,2000,73(2):105~112
    [119]张传义,王丽萍等.一体式膜生物反应器膜污染形成机理的试验研究.中国矿业大学学报,2004,33 (4):11~14
    [120]环国兰,张宇峰等.膜污染分析及防治.水处理技术,2003,29(1):1~4
    [121] LaureDefrance, et al. Contribution of various constitutients of activated sludge to MBR fouling.Bio-resource technology, 2000, 105~112.
    [122] Heesu Park, Kwang-Ho Choo, Chum-Hak Lee.Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor.Separation Science and Technology, 1999,34(14): 2781~2792
    [123] Y.Shimizu, M.Rokudai, S.Thoya et al.Effect of membrane resistance on filtration characteristics for methanogenic wastes. Kakaky Kogaku Ronbunshu,1990,16:145~149
    [124] In-Sound Chant, Kwang-Ho Choo, Chum-Hak Lee et al. Application of ceramic membrane as a pretreatment in anaerobic digestion of alcohol-distillery wastes. Journal of Membrane Science,1994,90(1~2): 131~139
    [125] K.-H. Choo, C.-H. Lee. Effect of anaerobic digestion broth composition on membranr permeability.Water Science and Technology,1996, 34(9):173~179
    [126] E.Tardieua, A.Grasmickb, V.Geau eyc et al. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment. Journal of membrane Science, 1999, 156(1):131~140
    [127] I.S.Chant, C.H.Lee, K.H.Ahn. Membrane Filtration Characteristics in Membrane-Coupled Activated Sludge System: The Effect of Floc Structure on Membrane Fouling. Separation Science and Technology, 1999, 34(9):1743~1758
    [128] Young Wand, Jae-Honk Kim, Kwang-Ho Choo et al. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced draft polymerization. Journal of Membrane Science, 2000,169(2):269~276
    [129] John Pieracci, James V.Crivello, Georges Belfort. Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. Journal of Membrane Scieyice,1999,156(2):223~240
    [130]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水,2000,26(12):1~4
    [131]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [132]邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题.中国给水排水,2002,18(9):23~25
    [133]彭永臻,高凯,于政哲.两段SBR法处理石油化工废水.给水排水,1996,22(6):26~28
    [134] C.S.RA, K.V.LO, et al. Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment. Wat. Res.2000, 34(3): 965~973
    [135]陈韬,彭永臻,田文军等。两段SBR法与普通SBR法的比较研究。水处理技术,2002,28(6)):335~338
    [136]李金秀.SBR用于高浓度有机污水的处理-单基于两级处理系统的比较.环境污染治理技术与设备,2002,3(3):81~85
    [137] G.T.Seo, T.S.Lee, B.H.Moon, J.H.Lim, K.S.Lee.Two stage intermittent aeration membrane bioreactor for simultaneous organic nitrogen and phosphorus removal. Water Science and Technology,2000,41(10~11):217~225
    [138]张捍民,肖景霓,成英俊等.强化膜生物反应器脱氮除磷性能对比试验研究.环境科学学报,2005,25(2):242~248
    [139]严杰,罗海波,陆德源.现代微生物学实验技术及其应用.北京:人民卫生出版社,1997.110~120
    [140]刘晓云,王琳,林跃梅.透射电镜技术在好氧污泥颗粒超微结构研究中的应用.中国海洋大学学报,2006,36(5):817~820
    [141]郑蕾,田禹,孙德智,马楠.活性污泥胞外聚合物提取方法研究.环境污染治理技术与设备,2006,7(11):32~34
    [142]宁正祥.食品成分分析手册.北京:中国轻工业出版社,1998.26~27,236~237
    [143] Frolund B,Palmgren R,Keiding K,et al.Extraction of extracelluar poly mers from activated sludge using a cation exchange resin.Wat.Res.,1996,30(8):1749~1758.
    [144]陈钧辉,陶力,李俊等.生物化学实验(第三版).北京:科学出版社,2003
    [145]徐亚同,史家梁,张明.污染控制微生物工程.北京:化学工业出版社,2001.231~233
    [146]张自杰主编.排水工程.北京:中国建筑工业出版社.1987.274~280
    [147]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002
    [148] Leslie C P, Dagger Glen T, Lim Henry C. Biological wastewater treatment (2nd ed). New York, Marcel Dekker, Lnc, 1999
    [149] Randall C W. Design and retrofit of wastewater treatment plants for biological nutrient removal. Lancaster, Technomic Publishing Co, 1992
    [150]许保玖,龙腾锐.当代给水与废水处理原理(第二版).北京:高等教育出版社,2000
    [151] Kuba T, Wachameister A, Van Loosdrecht M C M. Effect of nitrate on phosphorus release inbiological phosphorus removal system. Wat Sci. Tech., 1994, 30(6): 263~296
    [152]汪大翚,雷乐成.水处理新技术及工程设计.北京:化学工业出版社,2001
    [153]邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题.中国给水排水,2002,18(9):23~25
    [154]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [155] Liu W T, Mino T, Nakamura K, et al.Internal energy-based competition polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio. Wat. Res., 1997,31(6):1430~1438
    [156]沈同,王镜岩,赵邦梯.生物化学.北京:高等教育出版社.1984:122~123
    [157]张荪楠,吴之丽译.污水除磷脱氮技术.北京:中国环境科学出版社,1987
    [158]钱易,米祥友.现代废水处理新技术.北京:中国科学技术出版社,1993
    [159] T. Knin, A. P. Annachhatre. Novel Microbial Nitrogen Removal Processes. Biotechnology Advances. 2004,22(7):519~532
    [160]沈耀良,王宝贞.废水生物处理新技术-理论与应用.北京:中国环境科学出版社,1999
    [161]张小玲,李斌,杨永哲等.低DO下的短程硝化及同步硝化反硝化.中国给水排水,2004,20(5):13~16
    [162]陈澄,土洪臣,彭永臻.控制低溶解氧浓度实现生活污水短程硝化研究.哈尔滨商业大学学报(自然科学版),2004,20(3):339~341
    [163]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004
    [164]许保玖,龙腾锐.当代给水与废水处理原理(第二版).北京:高等教育出版社,2000
    [165]曾薇,彭永臻,王淑莹等.两段SBR法去除有机物及短程硝化反硝化.环境科学,2002,23(3):50~54
    [166]刘锦霞,顾平.膜生物反应器污水处理中膜污染控制的研究.中国土木工程学会水工分会第四届理事会第一次会议,444~448.
    [167]张亚雷,李咏梅译.活性污泥数学模型.上海:同济大学出版社,2002.10~15
    [168]顾夏声.废水生物处理数学模式(第二版)[M].北京:清华大学出版社,1993
    [169]国家城市给水排水工程技术研究中心译.污水生物与化学处理技术.北京:中国建筑工业出版社,2002.151~206
    [170]卢然超,张晓健,张悦等.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,22(2):87~90
    [171] L Defrance, M Y Jaffrin, Bharat Gugta, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling.Bioresource Technology,2000,73:105~112
    [172]刘锐,黄霞,刘岩鹏等.膜生物反应器和传统活性污泥工艺的比较.环境科学,2001,22(3):20~24
    [173]桂萍,黄霞,陈颖等.膜生物反应器运行条件对膜过滤特性的影响.环境科学,1999,20(3):38~41
    [174] T.T.Bae,T.M.Tak.Interpretation of Fouling Characteristics of Ultrafiltration Membranes during the Filtration of Membrane Bioreactor Mixed Liquor.Journal of Membrane Science,2005,264:151~160
    [175]卞晓鍇,陆晓峰,施柳青.原子力显微镜及在膜科学研究中的应用.膜科学与技术,2002,22(5):36~40
    [176] Hamza A., Chowdhury G., Matsurra T., et al. Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)-polyether sulfone composite membranes: Effects of composition of solvent system, used for preparing casting solution, on membrane-surface structure and reverse osmosis performance.. Journal of Membrane Science 1997(129):55~64
    [177] Elimelech M, Zhu X, Childress AE Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science,1997 (127):101~109
    [178] Y.Zhao,J.Taylor and S.K.Hong.Combined Influence of Membrane Surface Properities and Feed Water Qualities on RO/NF Mass Transfer,a Pilot Study.Water Reserch, 2005,39(7):1233~1244
    [179] S. Al-Jeshi and A. Neville.An investigation into the relationship between flux and roughness on RO membranes using scanning probe microsopy. Desalination, 2006,189(1-3):221~228
    [180] ChooK-H, LeeC-H. Membrane fouling mechanisms in the membrane- coupled an aerobic bio-reactor.Water Res, 1996, 30(8):1771~1780.
    [181] Hodgson PH.Cake resistance and solute rejection in bacterial micro-filtration: the role of the extra celluar matrix.Journal of Membrane Science, 1993, 79:35~53.
    [182]李绍峰,崔崇威,黄君礼.胞外聚合物EPS对MBR膜污染的影响.哈尔滨工业大学学报,2007,39(2):266~269
    [183]罗敏,王占生,侯立安.纳滤膜污染的分析与机理研究.水处理技术,1998,24(6):318~322
    [184] Choo Kwang Hoetal. Hydrodynamic behavior of anaerobic biosolids during cross flow filtration in the membrane anaerobic bioreactor.Wat.Res.,1998,32(11):3387~3397
    [185] FlemmingHC, etc. Bio-fouling on membranes a microbiological approach. Desalination, 1998, 70:95~119
    [186] Belfort G,Davis R H,Zydney A L .The Behavior of Suspensions and Macromolecular .Membrane Sci,1994,(96):1~58.
    [187]钟璟,徐南平,时均.颗粒粒径和膜孔径对陶瓷膜微滤微米级颗粒悬浮液的影响.高校化学工程学报,2000,3(14):230~235
    [188]张传义,王勇,黄霞等.一体式膜生物反应器经济曝气量的试验研究.膜科学与技术,2004,24(5):11~15
    [189] Shin H S, et al.Fouling Characteristics in Pilot-scale Submerged Membrane Bioreactor. Desalination, 1999,(18):32~37
    [190] Lee W, Lang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreacters. Journal of Membrane Science,2003,216: 217~227
    [191] Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances,soluble microbial products,and active an dinert biomass.Water Res, 2002,36:2711~2720
    [192]张科杰,邢国平,张云霞.污泥浓度对膜生物反应器运行效果的影响分析.环境保护科学,2004,30(2):19~20,29
    [193]吴自强,刘志宏,曹刚.膜生物反应器处理废水研究的进展.工业水处理,2001,21(6):1~3
    [194] Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extracellular polymers: implication on activated sludge floc structure. Wat Sci Tech., 1998, 38(8~9):45~53
    [195] Houghton J I, Stephenson T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability. Water Research, 2002,36:3620 ~3628
    [196] Magara, Y. and Itoh, M. The effect of operational factors on solid/liquid separation by ultra-membrane filtration in a biological denitrification system for collected human excreta treatment plants. Wat. Sci. Tech., 1991, 23:1583~1590
    [197]何义亮,顾国维,刘洁.膜生物反应器生物降解与膜分离作用特性研究.环境污染与防治,1998,20(6):18~20
    [198]何义亮,顾国维.膜生物反应器工艺参数控制研究.上海环境科学,1999,27(4):83~84
    [199]韩怀芬,金漫彤,黄玉柱等.膜生物反应器处理难降解有机废水研究.中国给水排水,2002,18(3):40~43
    [200]白晓琴,赵英,张颖,顾平.好氧MBR与序批式MBR处理生活污水的比较.中国给水排水,2006,22(3):28~31
    [201] Morgan J W, Forster C F, Evison L M.A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges.Water Res.,1990,6:743~750
    [202] Hong Liu, Herbert H P Fang. Extraction of extracellular polymeric substances (EPS) of Sludges. Journal of Biotechnology, 2002, 95(3):249~256.
    [203] Urbain V, Block J C, Manem J.Bioflocculation in activated sludge:analytical approach.Water Res.,1993,27:829~838
    [204] Wilén B M, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties.Water Research, 2003, 37(9):2127~2139
    [205] Delia Teresa Sponza. Extracellular polymer substances and physicochemical properties of flocs in steady and unsteady-state activated sludge systems. Process biochemistry, 2002, 37: 983~998.
    [206] Houghton J I, Stephenson T. Effect of influent organic content on digested sludge extracellularpolymer content and dewaterability.Water Research, 2002,36(14):3620~3628
    [207]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究.中国安全科学学报,2003,13(9):31~34
    [208] Y Ye, P Le Clech, et al. Evolution of fouling during crossflow filtration of model EPS solution. Journal of Membrane Science,2005,264(1~2):190~199
    [209] I S Chang, S O Bag, C H Lee. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge.Proc Biochem, 2001, 36 (8~9):855~860
    [210] J Cho, et al. Modification of ASM No. 1 for a submerged membrane bioreactor system: Including the effects of SMP on membrane fouling. Water Sci Technol., 2003, 47(12):177~181
    [211] J Cho, K H Ahn, et al. Investigation of biological and fouling characteristics of submerged membrane bioreactor process for wastew-ater treatment by model sensitivity analysis.Water Sci Technol., 2004, 49(2):245~254
    [212] Cho B D, Fane A G. Fouling transients in nominally sub-critical flux operation of a membrane bioreactor.Journal of Membrane Science,2002, 209(2):391~403.
    [213]王雪梅,刘燕等.胞外聚合物对浸没式膜生物反应器过滤性能的影响.环境科学学报,2005,25(12):1602~1607
    [214]张凤君等.胞外聚合物对膜生物反应器运行性能的影响.吉林大学学报(地球科学版),2006,11(36):141~143
    [215]许坚,许振良.膜生物反应器污水处理过程中.膜生物污染的研究进展水处理技术,2002,28(3):125~128
    [216]藏倩,孙宝盛等.胞外聚合物对一体式膜生物反应器过滤特性的影响.天津工业大学学报,2005,24(5):41~44
    [217] Liu Y,Fang H H P. Influences of extracellualr polymeric substances (EPS) on flocculation,settling, and dewatering of activated sludge.Critical Reviews in Environ Sci and Tech, 2003,33(3):237~273
    [218] Gaudy A. F. J r. and Blachly J. R. A study of the biodegradability of residual COD. Proc. 39th Purdue Industrial Waste Conf. Indiana : W. Lafayette , 1984
    [219]柳根勇,桃井清至和小松俊哉.膜分离活性污泥法における膜透过性能に对する生物代谢成分の影响.水环境学会志,1997,20(7):473~480
    [220] Barker Duncan J, Stuckey D C.A review of soluble microbial products (SMP) in wastewater treatment systems. Water Re-search,1999,33(14):3063~3082
    [221] Rittmann B E, McCarty P L. Environmental biotechnologyprinciples and applications. New York: McGraw Hill,2001
    [222] Jahn A , Nielsen P H. Cell biomass and exopolymer composition in sewer biofilms. Water Science and Technology, 1998 , 37 (1) : 17~24
    [223] Kim KJ, Chen V, Fane A G. Some factors determining.protein aggregation during ultrafiltration.Biotechnol.Bioeng. , 1993 , 42 :260~265
    [224] Kelly S T, Zydney A L. Mechanisms for BSA fouling during microfilt ration. Journal of Membrane Science ,1995 , 107 : 115~127
    [225]王志,伍艳辉,任延,王世昌.糖类和蛋白类物质污染聚砜膜的不同特性和微观机制.水处理技术,2000,26(5):273~276
    [226]卞晓锴等.蛋白质超滤过程及超滤膜的表面改性研究现状.膜科学与技术,2001,21(4):46~51
    [227]伍艳辉等.膜与蛋白质溶液的相互作用及膜污染机制的能谱研究.化工学报,2001,52(11):1026~1029
    [228] Zhang Jiangzhao, Gu Ping, Mi Baoxia, Micro-polluted surface water treahnent by PAC-MBR process,Transactions of Tianjin University,2002,8(3):159~164
    [229]张颖.膜生物反应器中延缓膜污染技术的研究:[博士学位论文].天津:天津大学,2004
    [230]赵英.膜生物反应器中膜污染控制方法的研究:[博士学位论文].天津:天津大学,2005
    [231] Akoh H,Sugiyama S,Nagaoka H. Influence of EPS on permeability of night soil treatment membrane bioreactor In:Seoul National University.Proceeding of the IWA Specialty Conference on Water Enviorment Membrane Technology. Seoul: Seoul National University, 2004, 1461~1468
    [232] S G Yiantsios,A J Karabelas.An experimental study of humid acid and powdered activated carbon deposition on UF membranes and their removal by ackwashing.Desalination,2001,140(2):l95~209
    [233] Tomaszewska Maria, Mozia Sylwia, Morawski Antoni W. Removal of organic matter by coagulation enhanced with adsorption on PAC.Desalination,2004,16l(1):79~87
    [234] Tomaszewska Maria,Mozia Sylwia. Removal of organic matter from water by PAC/UF system .Water Research,2002,36(16):4137~4143
    [235]吕红,徐又一,朱宝库等.分体式膜-生物反应器在废水处理中的工艺条件.环境科学,2003,24(3):61~64
    [236]罗虹,顾平,杨造燕.投加粉末活性炭对膜阻力的影响研究.中国给水排水,2001,17(2):1~4.
    [237]李春杰,耿琰,周琅.SMSBR去除焦化废水中有机物及氮的特性.上海环境科学,2001,20(1):24~27
    [238]李春杰,耿琰,周琪等.SMSBR处理焦化废水过程中膜污染机理研究.中国给水排水,2002,18(4):5~9
    [239] Heide. Principles and Developments of the Oxidation Ditch Process. Oxidation Ditches, International Institute for Hydraulic and Environmental Engineering, Delft. 1991:17~21
    [240] G. Demoulin, A. Rudiger and M. C. Goronszy. Cyclic Activated Sludge Technology– Recent Operating Experience with a 90,000 p.e. Plant in Germany. Water Science and Technology. 2001,43(3):331~337
    [241] SEGHERS. Technical Report, Brewery Wastewater Treatment with UNITANK, UNITANK Two Stage Aerobic; UNITANK two stage Anaerobic-Aerobic, 2000
    [242] W. Wu, P. Timpany and D. Dawson. Simulation and Application of a Novel Modified SBR for Biological Removal. Water Science and Technology. 2001,43(3):215~222
    [243]操家顺,杨雪冬,Mark van Loosdrecht. BCFS-生物除磷新工艺.中国给水排水, 2002,28(3):23~26
    [244]郝晓地,汪慧贞,Mark van Loosdrecht.可持续除磷脱氮BCFS工艺.给水排水,2002,28 (9):7~9
    [245]赵之平,王志,王世昌.现代分析测试技术在膜结构和性能研究中的应用.膜科学与技术,2001,21(6):34~39.
    [246] Khulbe K C,Matsuura T.Characterization of synthetic membranes by Raman spectroscopy electron spin resonance and atomic force microscope:A review.Polymer,2000(41):1917~1935
    [247]张凤君,王顺义,刘田等.投加粉末活性炭对MBR运行性能的影响.吉林大学学报,2007,37(2):350~354
    [248]尚岩,王宝贞,尚琳等.膜生物反应器投加PAC处理生活污水效能的试验.城市环境与城市生态,2003,16(6):128~129
    [249]赵英,于丹丹,秦东平,顾平.PAC投加量对MBR混合液性质及膜污染的影响.水处理技术,2005,31(11):54~54
    [250]郭玉文,王伟等.基于EDX的飞灰元素组成及重金属分布研究.环境科学研究,2007,20(6):71~76
    [251]龙北生等.采用两级SBR工艺优化除磷脱氮.给水排水,2003,29(11):34~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700