氯化聚丙烯溶液性质和超声降解动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯具有优良的综合性能,在工业生产和日常生活中得到广泛应用。但是由于一般涂料树脂对聚丙烯附着力很差,而氯化聚丙烯对聚丙烯具有优良的附着力,因此,聚丙烯的广泛应用就成为研究氯化聚丙烯的推动力。
     本文针对氯化聚丙烯理论研究欠缺的薄弱环节,对氯化聚丙烯在溶液中的体积性质、粘度性质、溶解度参数等热力学性质及超声降解动力学进行了深入系统地研究,具有重要的学术理论意义和工程应用前景。
     用沉淀分级方法对氯含量为30%的氯化聚丙烯进行分级,得到5种窄分子量的级分,测定了氯化聚丙烯的不同级分与不同溶剂组成的二元混合物溶液的密度,在溶剂一定、浓度一定、温度一定时,不同级分氯化聚丙烯溶液的密度是相同的,不受分子量及其分布的影响。在此基础上,计算了氯化聚丙烯链节在溶液中的表观摩尔体积、标准偏摩尔体积和偏摩尔体积,并与溶剂分子的体积进行对比,确定了氯化聚丙烯链节的组成为丙烯二聚体为母体,表达式为C_6H_(11)Cl。为Flory-Huggins晶格理论提供了极其宝贵的数据。
     实验测定了298.15K、308.15K和318.15K温度下,氯化聚丙烯与甲苯、四氢呋喃、氯仿、四氯化碳、二甲苯和丁酮组成的二元混合物6种浓度的密度。该系列数据为氯化聚丙烯工程设计和研究提供了基础数据。
     用乌氏粘度计测定了不同温度下,浓度在10%以下6种氯化聚丙烯溶液的粘度,证明所考察的氯化聚丙烯溶液均为牛顿流体。考察了浓度、温度和分子量对溶液粘度的影响,建立了相关数学模型,确定了模型参数。计算了实验温度范围内氯化聚丙烯溶液的流动活化能。为工程设计中混合和流动条件的选取提供了依据,为溶液中分子间相互作用的研究奠定了基础。
     分别对五种浓度氯化聚丙烯甲苯溶液进行超声辐照,得到了低分子量的氯化聚丙烯。降解前后氯化聚丙烯分子结构、氯含量及在溶液中的存在状态均没有发生改变,氯化聚丙烯分子断裂位置在C-C键。在此基础上,考察了降解后氯化聚丙烯的分子量和特性粘数,发现文献中的Mark-Houwink方程[η]=0.017M~(0.6919)也适用于超声降解后的氯化聚丙烯,扩大了该方程的使用范围。
     测定了超声降解得到的不同分子量的氯化聚丙烯的相对溶解度。进而提出了一个判断氯化聚丙烯可溶溶剂与不可溶溶剂的溶解度新标准:相对溶解度增加的溶剂为可溶溶剂;分子量降低后溶解度不变的溶剂为不可溶溶剂。对于氯化聚丙烯来说,这种判别方法所得结果与客观事实及Flory-Huggins高分子溶液理论和Hansen、Lieberman、Funasaka所用标准的结果是一致的。依据本文提出的新标准,计算了氯化聚丙烯的三维溶解度参数,并用浊度法进行了验证。从热力学角度详细讨论了温度、聚合物浓度和聚合物与溶剂之间的相互作用参数对聚合物溶解过程的影响。氯化聚丙烯三维溶解度参数的确定为氯化聚丙烯热力学数据增添了新的内容,也为氯化聚丙烯的溶剂选择提供了依据。
     用数据拟合方法求取了超声降解动力学方程中的极限分子量和速率常数,实验证明该方法是可行的。考察了常用超声降解动力学方程对氯化聚丙烯实验数据的处理结果,发现处理结果并不满意,于是提出了一个新的聚合物超声降解二级动力学方程式,1/(M_t-M_(lim))-1/(M_o-M_(lim))=kt,氯化聚丙烯甲苯溶液的超声降解服从该动力学方程。详细考察了浓度对氯化聚丙烯降解反应速率常数和极限分子量的影响。该方程为聚合物超声降解动力学作了新的补充。
     用收集到的41组聚合物超声降解文献数据验证了常用和新提出的动力学方程的普适性,发现所有数据均可用一级或新提出的二级动力学方程处理,进而对聚合物超声降解动力学进行了归纳,得出了一般化的表达式:-dM_t/dt=k(M_t-M_(lim))~n,n=1或=2。认为超声降解动力学可以用统一的GPLE方程式表示。
Due to good integrate properties, polypropylene(PP) has been widely used in industry and our daily life. The adhesion property of chlorinated polypropylene(CPP) to PP is better than other coating resins. Therefore, the abroad application of PP turns into the impetuses to study the properties of CPP.
     Aim at the weakness of CPP property research at present, systemic studies to volume properties, viscosity properties, solubility parameter and other thermodynamic properties as well as ultrasonic degradation kinetics of CPP were carried through in the thesis. These studies have a great science and applied significance for CPP.
     The CPP was separated into five fractions using fractional precipitations by solvent/nonsolvent technique. Densities for binary mixtures of five fractionated and unfractionated CPP which contains a mass fraction of 30 % chlorine with solvents were determined. At a fixed temperature, concentration and solvent, the densities for binary mixtures of fractionated and unfractionated CPP with solvents have the same value. The width of molecular weight distribution of CPP does not affect the densities of these mixtures. Based on this, the apparent molar volumes, standard partial molar volumes and partial molar volumes of CPP repeat unit have been calculated. Comparing with the molecular volumes of solvents, the repeat unit structure of CPP, C_6H_(11)Cl, has been determined. This result supplies valuable data for Flory-Huggins lattice theory.
     Densities for binary mixtures of CPP which contains a mass fraction of 30 % chlorine with toluene, tetrahydrofuran, chloroform, carbon tetrachloride, xylene and 2-butanone were determined at temperatures from (298.15 to 318.15) K. This systemic data supply basic data for project design and research of CPP.
     The viscosities of binary mixtures of CPP with solvents at 1%, 2%, 3%, 4%, 5% and 10% concentrations were measured using Ubbelohde capillary viscometer. It was found that all mixtures showed Newtonian flow. The effects of concentration, temperature, and molecular weight on viscosity have been studied. Flow activation energy of CPP solution was calculated in the experimental temperature range. These results offer references for selection of flow conditions and study of interaction between molecules.
     Ultrasonic irradiation was carried out for CPP toluene solutions at five concentrations. CPP with low molecular weight was obtained. The molecule structure, the chlorine content and the configuration of molecules in toluene solution don't change. This indicates that the molecules of CPP break at carbon-carbon bond. Molecular weight and intrinsic viscosity of degraded CPP were measured. It is found that the Mark-Houwink equation,[η]=0.017M~(0.6919), is also suitable for degraded CPP. Its application range is enlarged.
     Relative solubilities of CPP with different molecular weights were determined by weighing method at 298.15K. A new standard for judging good and poor solvents of CPP was proposed. The results obtained by the proposed standard are consistent with reality, the standard of complete miscibility suggested by Flory-Huggins and the standard proposed by Hansen, Lieberman,Funasaka. According to the standard proposed here, the three-dimensional solubility parameters and the total solubility parameter of CPP acquired by optimization calculation were calculated. They were verified by the turbidity method. The effects of temperature, concentration, interaction parameter between polymer and its solvents on dissolution of polymer were discussed from thermodynamic point. The three-dimensional solubility parameters add a new content for thermodynamic data of CPP and offer reference for selection of its solvents.
     The limiting molecular weight and rate coefficient under ultrasonic irradiation could be obtained by data fitting technique. It was proved that the method was feasible by experiment. The fitting accuracy of common kinetic equations of polymers under ultrasonic irradiation for experimental data of chlorinated polypropylene was evaluated. It was found that the fitting results of these kinetic equations for experimental data of chlorinated polypropylene were not satisfactory. Therefore, a new second order kinetic equation for ultrasonic degradation was proposed: 1/(M_t-M_(lim))-1/(M_o-M_(lim))=kt. Ultrasonic degradation of CPP toluene solution obeys this equation. The effect of concentration on rate coefficient and limiting molecular weights was investigated. This equation is a new complement for ultrasonic degradation kinetics of polymers.
     General applicability of the common and new kinetic equations kinetic equations were verified by the 41 sets of available original ultrasonic degradation data of polymers collected from previous reports. It was found that the general applicability of the first and second order kinetic equation proposed in this work were wider than other equations. They can substitute the other equations completely. Then a general power law expression(GPLE)of ultrasonic degradation,-dM_t/dt=k(M_t-M_(lim))~n n=1 or 2, was suggested. The kinetic equations can be united by the GPLE.
引文
[1]赵敏,高俊刚,邓奎林等.改性聚丙烯新材料[M].北京:化学工业出版社,2002
    [2]洪定一.聚丙烯-原理、工艺与技术[M].北京:中国石化出版社,2002
    [3]方永奎,张翼,邱万忠,邱安娥.聚丙烯氯化改性的工艺[J].大庆石油学院学报.2004,28(2),48-50
    [4]周海清,周铭.聚丙烯塑料涂料的制备与性能研究[J].涂料工业.2000,(4),1-4
    [5]路胜利,叶胜荣,杨慕杰.聚烯烃粘接最新研究进展[J].科技通报.2002,18(5),402-408
    [6]傅和青,黄洪,张心亚,陈焕钦.聚丙烯塑料用胶粘剂的研究[J].绝缘材料.2004,(5),17-22
    [7]涂料工艺编委会.涂料工艺(上,下)[M].北京:化学工业出版社,1997
    [8]熊人恒,陶亚明.无毒氯化聚烯烃胶粘剂[J].粘接.1992,13(1):23-24
    [9]沈钟等.胶体与化学[M].北京:化学工业出版社,1997
    [10]Robert J.Clemens等.氯化聚烯烃提高涂层对聚丙烯塑料附着力的机理研究[J].涂料工业.1995,(5),7-12
    [11]葛发祥.氯化等规聚丙烯[J].安徽化工.1993,(2):5-12
    [12]李军.氯化聚丙烯及其应用前景[J].现代化工.1996,(6):20-23
    [13]徐润华,智海,任俊等.氯化聚丙烯技术进展[J].精细化工.1994,11(2):35-37
    [14]范忠雷.氯化聚丙烯及其马来酸酐接枝物基础性质的研究.郑州大学博士学位论文.2003
    [15]Fang Z, Zeng M,Cai G, et al.Application of phase dispersion-crossiinking synergism on recycling comm.ingled plastic wastes[J].Journal of Applied Polymer Science.2001,82(12):2947-2952
    [16]Ha C S,Park H D,Cho W J.The effect of a commingled plastics[J].Polymer Recycling.2000,5(1):1-7
    [17]徐润华,刘国海,戴猷元.氯化聚丙烯市场与技术分析研究[J].化工新型材料.2002,30(5),1-4
    [18]王正岩.氯化聚丙烯的生产状况与经济评价分析[J].化工进展.2003,22(7),774-776
    [19]范忠雷,唐四叶,刘大壮,朱冬生.氯化聚丙烯研究进展.现代化工.2004,24(12),16-19
    [20]李伟生.无规聚丙烯的氯化及产物结构的初步研究[J].石油化工.1989,18(5):295-300
    [21]李伟生,施良和,沈德言.核磁共振研究氯化无规聚丙烯的结构[J].高分子学报.1989,(3),291-297
    [22]傅和青,黄洪,张心亚,陈焕钦.氯化聚丙烯接枝改性研究[J].化学与粘合.2004,(1),23-25
    [23]Siye Tang, Dazhuang Liu. Determination of three-dimension solubility parameters of chlorinated polypropylene by ultrasonic degradation [J]. Physics Chemistry of Liquids.2006, 44(5):490-498.
    [24]邓舜杨.塑料用涂料[M].上海:上海科学技术文献出版社,1984
    [25]Tomasetti E,Daoust D,Legras R,et al.Diffusion of adhesion promoter(CPO) into PP/PE copolymer blends: mechanism [J]. J.Adhesion Sci.Technol.2001, 15(13):1589-1600
    [26]Mirabella F M, Ndiba D.Theoretical analysis and experimental characterization of the TPO/adhesion promoter/paint interface of painted thermoplastic polyolefins[J].Polymer Engineering and Science.2000, 40(9):2000-20006
    [27]Tomasetti E, Legras R, et al.Plastic deformation in polypropylene/ethylenepropylene copolymer blend during paint debonding[J]. Polymer.2000, 41:6597-6602
    [28]Tomasetti E, Vandorpe S, et al. Diffusion of an adhesion promoter (chlorinated polypropylene) into polypropylene/ethylenepropylene copolymer (PP/PE) blends:methods of quantfication[J].J.Adhesion Sci.Technol.2000,14(6):779-789
    [29]Morris H R, Turner J F, et al.Chemical imaging of thermoplastic olefin surface architecture[J]. Langmuir. 1999, 15(8):2961-2972
    [30]Morris H R,Munroe B,et al.Fluorescence and Raman chemical imaging of thermoplastic olefin adhesion promotion[J].Langmuir. 1998,14(9):2426-2434
    [31]Bonnerup C, Gatenholm P.Effect of surface energetics and molecular interdiffusion on adhesion in multicoomponent polymer systems[J].J.Adhesion Sci.Technol. 1993, 7(3):247-262
    [32]Prater T J,Kaberline S L, Holubka J W, et al.Examination of the distribution of TPO adhesion promoter material in a painted TPO system[J]. J.Coatings Technol. 1996, 68(857):83-91
    [33]Waddington S, Briggs D.Adehesion mechanisms between polymer coatings and polymerpropylene studied by X.P.S. and SIMS[J].Polymer Communications. 1991, 32(16):506-508
    [34]Wu Chifei, Akiyama saburo.Dynamic mechanical and adhesive properties of acrylate robber/chlorinated polypropylene blends compatibilized with a hidered phenol compound [J].Polymer Journal.2001, 33(12):955-958
    [35]Ellis T S.Interactions of chlorinated polyolefin with ethylene-propylene copolymers and their relevance to painted TPOs [J].Ploymer Engineering and Science.2001, 41(12):2065-2072
    [36]Horst H B, Harald B.Coating of untreated polypropylene with halogen free aqueous materials [J].Progress in Organic Coatings.2000, 40(1-4):49-54
    [37]Tang H.Miscrostructural studies of interfacial deformation in painted thermoplastic polyolefins[J].Journal of Materials Science.2002, 37(22):4783-4791
    [38]张良均,麦锋年.CPP/AA/BA/MMA接枝共聚物的合成与性能[J].化学与生物工程.2004,(3),35-36
    [39]汤凤,黄洪,陈焕钦.CPP/MMA/St三元接枝共聚胶粘剂的研制及粘接性能研究[J].中国胶粘剂.2004,14(2),1-3
    [40]Martz, et al.US4997882.1991
    [41]Miyamoto, et al.US5430093.1995
    [42]Beyrle, et al.US5378746.1995
    [43]臧亚南,丁恩勇.聚乙二醇^氯化聚丙烯相变材料的制备[J].高分子材料科学与工程.2005,21(5):75-77
    [44]范忠雷,刘大壮.氯化聚丙烯溶度参数的研究[J].中国胶粘剂.2003,12(3):10-13
    [45]刘大壮,刘敏,欧玉静.正己烷对氯化聚丙烯-甲苯溶液稀释比值的研究[J].郑州 大学学报(工学版).2005,26(3):1-3
    [46]欧玉静,范忠雷,刘大壮,刘齐璋.氯化聚丙烯与石油树脂等复配溶液粘度的研究[J].合成树脂与塑料.2004,21(2):10-13
    [47]范忠雷,刘大壮,赵根锁.氯化聚丙烯与醇酸树脂共混物的红外光谱测定[J].光谱学与光谱分析.2003,23(3):611-612
    [48]马向东,李瑶,孙培勤,刘大壮.氯化聚丙烯和醇酸树脂与二甲苯相容性的研究[J].涂料工业.2002,(8):3-5
    [49]Zhonglei Fan, Dazhuang Liu, Jiangji Wang. Physics and Chemistry of Liquids[J]. 2003, 41(4):391-397
    [50]DaZhuang Liu, Zhonglei Fan, Peiqin Sun and Xueru Dong. Solution properties of chlorinated polypropylene and maleic anhydride grafted chlorinated polypropylene[J].Physics and Chemirstry of Liquids.2004, 42(6):551-560
    [51]范忠雷,刘大壮,董雪茹,马向东.马来酸酐接枝率对氯化聚丙烯和醇酸树脂相容性的影响[J].塑料工业.2005,33,增刊:168-170
    [52]马向东,张晓玲,刘大壮,孙培勤.马来酸酐改性氯化聚丙烯和醇酸树脂相容性的研究[J].粘接.2003,24(4):1-2
    [53]刘敏,刘大壮,孙培勤 孙绍晖.离子液体催化氯化聚丙烯与甲苯烷基化反应的研究[J].胶体与聚合物,2005,23(4):18-20
    [54]何平笙.高分子物理实验[M].合肥:中国科学技术出版社,2002,106-108
    [55]应崇福.超声学[M].北京:科学出版社,1990
    [56]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社(第一版),1992
    [57]梁梅.超声作用对尼龙6熔体的降解行为以及尼龙6/高密度聚乙烯共混体系结构与性能的影响.四川大学硕士学位论文.2004
    [58]钟理.高级氧化处理有机污水技术进展[J].工业水处理.2002,22(1):1-4
    [59]钟理,严益群,吕扬效.高级氧化过程的研究与进展[J].现代化工.1997,12:16-19
    [60]陈伟,范瑾初.超声降解水体中有机污染物技术综述[J].上海环境科学.1999,18(10):457-460
    [61](苏联)H.K.巴拉母鲍依姆著.高分子化合物力化学[M].北京:化学工业出版社,1982
    [62]G.J.Price, P.F.Smith. Ultrasonic degradation of polymer solutions: 2. The effect of temperature, ultrasound intensity and dissolved gases on polystyrene in toluene[J]. Polymer. 1993, 34(19):4111-4117
    [63]Jiang Li, Shaoyun Guo, Xiaonan Li. Degradation kinetics of polystyrene and EPDM melts under ultrasonic irradiation[J]. Polymer Degradation and Stability, 2005, 89:6-14
    [64]Isabelle Masselin,Xavier Chasseray, Laurence Durand-Bourlier, Jean-Michel Lainé, Pierre-Yves Syzaret, Daniel Lemordant[J]. Effect of sonication on polymeric membranes.Journal of Membrane Science. 2001, 181:213-220
    [65]Min Larng Tsaih, Lan Zang Tseng, Rong Huei Chen. Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan[J].Polymer Degradation and Stability 86(2004) 25-32
    [66]J.P.Lorimer and T.J.Mason. Some recent studies at Coventry University Sonochemistry Centre[J]. Ultrasonics Sonochemistry, 1995, 2(2): 81-86
    [67]李延盛,尹其光.超声化学[M].北京:科学出版社.1995
    [68]Farah Kanwal, John J.Liggat, Richard A.Pethrick. Ultrasonic degradation of polystyrene solutions[J]. Polymer Degradation and Stability, 2000, 68:445-449
    [69]Mohammad Taghi Taghizadeh, Abbas Mehrdad. Calculation of the rate constant for the ultrasonic degradation of aqueous solutions of polyvinyl alcohol by viscometry[J]. Ultrasonics Sonochemistry, 2003, 10:309-313
    [70]A.Gronroos, P.pirkonen, J.Hcikkinen, H.Mursunen, H.Sekki. Ultrasonic depolymerization of aqueous polyvinyl alcohol [J].Ultrasonics Sonochemistry. 2001, 8:259-264
    [71]T.Miyazaki, C.Yomota, S.Okada. Ultrasonic depolymerization of hyaluronic acid [J]. Polymer Degradation and Stability, 2001, 74:77-85
    [72]A.Gronroos, P.Pirkonen, O.Ruppert. Ultrasonic depolymerization of aqueous carboxymethylcellulose [J]. Ultrasonics Sonochemistry.2004, 11:9-12
    [73]Peeter Kruus, Robert C.Burk, Mohammad H.Entezari, Rein Otson. Sonication of aqueous solutions of chlorobenzene [J]. Ultrasonics Sonochemistry 1997, 4: 229-233
    [74]GB1679-81
    [75]GB1679-88
    [76]梁玉梅.用熔融法测定氯化石蜡中的氯含量[J].河南化工,1991,(5):23-24
    [77]王洁,李俊萍.氯化石蜡氯含量分析方法的改进[J].氯碱工业,2000,(9):44-45
    [78]张兆麟,刘伟,乔聪震.燃烧—汞量法测定氯化石蜡氯含量[J].河南化工,1994,(7):20-21
    [79]张琴,全红等.氧瓶燃烧法测定含氯素药物技术的改进[J].山西医学院报,1994,25(3):29-297
    [80]刘诗飞,黄恩才,许自强等.氯化石蜡氯含量分析方法的改进[J].河南化工,1991,(1):25-26
    [81]王光明,焦传英,鲁光英.废塑料聚氯乙烯中氯含量测定[J].化工时刊,2002,(3):51-53
    [82]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990
    [83]北京大学化学系高分子教研室编.高分子实验与专论[M].北京:北京大学出版社,1990
    [84]黄雪红,许国强.SBS和MMA-丙烯酸丁酯接枝物的溶解性和溶度参数的订正[J].合成橡胶工业.1998,21(2):99-101
    [85]Koji Yoshidaa, Noriaki Tsuchihashib, Kazuyasu Ibukib, Masakatsu Ueno. NMR and viscosity B coefficients for spherical nonelectrolytes in nonaqueous solvents [J]. Journal of Molecular Liquids 119 (2005) 67-75
    [86]卢焕章,毕兰云,伍章平,史春英等.石油化工基础数据手册[M].化学工业出版社,1984:308-946
    [87]Gascon, I.; Lafuente, C.; Cea, P.; Royo, F.M.; Urieta, J.S. Viscosities of the ternary mixture (cyclohexane+tetrahydrofuran+chlorocyclohexane) at 298.15 and 313.15 K[J].Fluid Phase Equilibria 1999,164,143-155
    [88]Martinez, S.; Garriga, R.; Perez, P.; Gracia, M. Densities and viscosities of binary mixtures of butanone with butanol isomers at several temperatures [J]. Fluid Phase Equilibria 2000,168, 267-279
    [89]马立群,张晓辉,王雅珍.微型高分子化学实验技术[M].北京:中国纺织出版社.1999
    [90]冯开才,李谷,符若文,刘振兴.高分子物理实验[M].北京:化学工业出版社.2004
    [91]Yang, X. Y.; Yi, G. L. Excess molar volumes of sulfolane in binary mixtures with six aromatic hydrocarbons at 298.15 K[J]. Fluid Phase Equilibria 1998, 147, 207-213
    [92]曾兴顺,欧阳钢锋,张明艳,黄钟奇.邻、间、对及乙苯与四氢呋喃的过量体积[J].中山大学学报(自然科学版)2002,41,111-113
    [93]陆贵增,欧阳钢锋,邓桂茹,杨洋溢,黄钟奇.氯仿、硝基苯与三甲苯异构体的过量摩尔体积[J].中山大学学报(自然科学版)2002,43,55-58
    [94]Wang, H. J. Volumetric properties of ternary pseudo-binary mixtures at the temperature 298.15 K. Ⅱ. { (Benzene + chloroform, or carbon Tetrachloride) + (acrylonitrile + chloroform, or carbon tetrachloride) } [J]. J. Chem. Thermodynamics 2000, 32, 963-972
    [95]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989
    [96]沈德言.红外光谱法在高分子研究中的应用[M].北京:科学出版社,1982
    [97]Azevedo, J. A. T.; Mello Cardoso., M. J. E.; Silva, E. C. Theoretical determination of the theta temperature for solvent-polymer systems[J]. Journal of Molecular Structure (Theochem) 1999, 464, 95-105
    [98]Wang, L.C.; Xu, H. S.; Zhao, J. H.; Song, C. Y.; Wang, F. A. Densities and viscosities of niacin+3-picoline+sulfuric acid+water from(293.15to343.15)K[J]. J.Chem.Eng.Data,2005,50,643-646
    [99]Krakowiak,J.; Koziel, H.; Grzybkowski,W. Apprent molar volumes of divalent transition metal perchlorates and chlorides in N,N-dimethylacetamide[J]. Journal of Molecular Liquids 2005, 118, 7-65
    [100]Yan, Z. N.; Wang, J. J.; Kong, W.; Lu, J. S. Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions [J]. Fluid Phase Equilibria 2004,215, 143-150
    [101]Wang, L.C.; Xu, H. S.; Zhao, J. H.; Song, C. Y.; Wang, F. A. Densities and viscosities of niacin+3-picoline + water mixtures from (293.15 to 343.15)K[J]. J.Chem.Eng.Data, 2005,50,254-257
    [102]Zhao, C. W.; Ma, P. S.; Li, J. D. partial molar volumes and viscosity B-coefficients ofarginine in aqueous glucise, sucrose and L-ascorbic acid solutions at T=298.15K[J]. J.Chem.Thermodynamics 2005, 37, 37-42
    [103]Jiang, Y. C.; Hu, M. C.; Wang, L J.; Zhuo, K. L; Xia, S. P. Volumetric propertoes and volumetric interaction parameters for the CsCl-monosaccharide (D-galactose, D-xylose and D-arabinose)-water systems at T=298.15K[J]. J.Chem.Thermodynamics 2004, 36,671-676
    [104]Yeo, S.D.; Kiran, E. High-pressure density and viscosity of polystyrene solutions in methylcyclohexane [J]. Journal of Supercrifical Fluids 1999, 15, 261-272
    [105]Xiong, Y.; Kiran, E. Miscibility, density and viscosity of polystyrene in n-hexane at high pressures [J]. Polymer 1997, 38, 5185-5193
    [106]汪瑜华.含有功能基团的丙烯酸酯共聚物在溶液中的特殊相互作用和减阻研究.浙江大学博士学位论文.2002
    [107]Kar, F.; Arslan, N. Effect of temperature and concentration on viscosity of orange peel pectin solution and intrinsic viscosity-molecular weight relationship[J]. Carbohydrate Polymers 1999, 40, 277-284
    [108]Jiang Li, Mei Liang, Shaoyun Guo et al. Studies on chain scission and extension of polyamide 6 melt in the presence of ultrasonic irradiation[J]. Polymer Degradation and Stability, 2004, 86:323-329
    [109]D.W.Van Krevelen.Properties of polymers [J].Elsevier Science Publishers B.V., 1990, (3), completely revised edition: 243-282
    [110]E.P.Lieberman.Quantification of the Hydrogen Bonding Parameter [J]. Official Digest. 1962, (1):30-51
    [111]刘大壮,常静,孙培勤.温度对马来酸酐改性的丙烯-丁烯共聚物的Hansen三 维溶度参数的影响[J].郑州大学学报(工学版)2005,年26(2):1-5
    [112]C.M.Hansen.The three dimensional solubility parameter-key to paint component affinities: Ⅰ.Soivents,Plasticizers,Polymers,and Resins[J].Journal of Paint Technology, 1967, 39(505): 104-117
    [113]Tadanori Funasaka et al. Adhesive ability and solvent solubility of propylenebutane copolymers modified with maleic anhydride[J]. International Journal of Adhesion and Adhesives, 19(1999)367-371
    [114]Irwin A.Wiehe.Polygon mapping with two-dimensional solubility parameters[J].Industry Engineering Chemistry Research. 1995, 34:661-673
    [115]A.E涅斯捷罗夫.聚合物物理化学手册第一卷[M].阎家宾等译,北京,中国石化出版社,1995,238-241
    [116]Tomas Lindvig, et al. A Flory-Huggins model based on the Hansen solubility parameters[J].Fluid Phase Equilibria, 2002, 203:247-260
    [117]Ni Xiuyuan, Hu Yuefang, Liu Bailin et al. Mechanical degradation and mechanochemical copolymerization of hydroxyethyl cellulose[J]. European Polymer Journal, 2001, 37:201-206
    [118]Hsing-YuanYen, Mu-Hoe Yang.The ultrasonic degradation of polyacrylamide solution[J]. Polymer Testing. 2003, 22:129-131
    [119]何光波,陈克强,徐僖超声波辐照下PVC的降解反应及与丙烯酸丁酯共聚反应的研究[J].高分子材料科学与工程.1995,Vol.11,No.2:56-61
    [120]Sujay Chattopadhyay, Giridhar Madras. Influence of temperature on the ultrasonic degradation of poly (vinyl acetate) and poly(vinyl chloride) [J]. Journal of Applied Polymer Science.2003, 88:2818-2822
    [121]Andre M.Striegel Influence of chain architecture on the mechanochemical degradation of macromolecules[J].J.Biochem.Biophys.Methods, 2003, 56:117-139
    [122]Jayanta Chakraborty et al. Ultrasonic degradation of polybutadiene and isotactic polypropylene. Polymer Degradation and Stability 2004, 85:555-558
    [123]S.L.Malhotra.Ultrasonic solution degradations of poly (alkyl methacrylates). J. Macromol.Sci.Chem, 1986, A23 (6): 729-748
    [124]Yuntao Li, Jiang Li, Shaoyun Guo et al. Mechanochemical degradation kinetics of high-density polyethylene melt and mechanism in the presence of ultrasonic irradiation[J].Ultrasonics Sonochemistry, 2005,12:183-189
    [125]ZhouXiaodong, Lin Qunfang, Dai Gance et al. Ultrasonic degradation of polysilane polymers[J]. Polymer Degradation and Stability. 1998, 60:409-413
    [126]孙培勤,刘大壮.实验设计数据处理与计算机模拟[M].郑州:河南科学技术出版社,2001
    [127]P.A.R.Glynn,B.M.E.Van der Hoff, J.Macromol.Sci.Macromol.Chem.. 1977
    [128]潘祖仁.高分子化学[M].北京:化学工业出版社,1994
    [129]Giridhar Madras, Benjamin J.McCoy. Molecular-weight distribution kinetics for ultrasonic reactions ofpolymers[J]. AICHE Journal, 2001, 47(10):2341-2348
    [130]刘大壮,孙培勤.催化工艺开发[M].北京:气象出版社,2002
    [131]Liu Dazhuang, He wensheng. Determination of Equilibrium Dispersion of Pt on Al2O3 Support in Sintering Process[J]. Reat. Kint. Catal. Lett. 2000, 71(2), 295-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700