分子组装无机—聚胺材料分离稀土金属离子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“中东有石油,中国有稀土”。我国稀土资源丰富,现已成为世界稀土产品的生产大国。稀土是高技术领域中的重要材料,在高科技光电磁材料中,稀土已成为各国竞相关注的21世纪重要的基础材料。单一、高纯稀土是稀土材料的研究及其开发应用的基础。由于稀土元素之间的物理和化学性质十分相似,分离系数很小,稀土矿物共生,稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。从稀土矿物中制备分离出高纯、单一的稀土是最具有挑战性的研究课题。目前工业化稀土分离方法主要采用液—液萃取法和固—液萃取法。液—液萃取法具有分离速度快、处理量大等优点,但因受目前分离方法的二出口或三出口的限制,每通过一次分离,最多只能获得出口数目的纯稀土,因此,为获得全部纯稀土,需要反复将中间富集物再进萃取槽分离,同时部分有机溶剂残留在水相中,引起污染;而且在技术和经济上限制了对低浓度稀土溶液处理。固—液萃取法包括离子交换法和萃取树脂色层法,因为生产周期长,离子交换法不适合工业生产。萃取树脂把含有萃取剂的载体作为固定相代替离子交换树脂,稀土随流动相在填充床内流动时经过多次的萃取、反萃取和交换等过程,流出液经分部收集,可达到同时获得多个纯稀土的目的。萃取剂的高选择性与树脂填充床的高效性相结合,是萃取树脂应用于分离的突出特点。它克服了溶剂萃取时采用大量有机溶剂带来的污染,以及易乳化和分相困难的缺点,有可能高效地把离子交换法和液—液萃取法难以分离的组分实行有效的分离。萃取树脂色层法,对稀土元素分离的处理量、分离速度、分离效率影响最大的是萃取树脂。制备分离速度快、分离效率高的萃取树脂,是制备高纯、单一稀土的关键。目前用于稀土分离的萃取树脂主要是聚苯乙烯—二乙烯苯共聚物荷载烷基磷酸酯萃取剂,尽管有较高选择性,但是萃取树脂合成方法复杂,价格高,树脂比表面积小;在树脂制备过程中,萃取剂有可能被引入树脂颗粒的闭孔中,导致吸附在闭孔中的稀土离子难脱附,水在非极性苯乙烯—二乙烯苯共聚物表面难湿润,吸附和脱附速率小;一个烷基磷酸酯萃取剂分子只提供几个配位原子,树脂交换容量小;树脂较低的机械强度,萃取剂随流动相流失,树脂在填充床内膨胀,背压高,容易降解,限制聚苯乙烯—二乙烯苯螯合树脂在大规模工业生产中应用。
     由于无机材料是由无机元素组成的,其结构的改性和修饰难度很大,难以根据实际需要来控制其大小、形状以及物理化学特性。而有机化合物则具有优良的分子剪裁与修饰的功能,但它们却在坚固性与稳定性等方面具有明显的缺点。如何将无机和有机化合物两者互补的性能结合起来,构筑结构可塑、稳定、坚固的新型杂化材料已成为无机化学与材料科学领域中的重要研究课题。近几年来运用分子设计和分子工程思想进行无机功能材料的复合、组装、杂化以及加强功能性物质结构与性能已成为无机功能材料研究热点;其中以功能为目标进行无机—有机杂化材料的精心设计和调控已成为这一领域中的挑战性课题。
     本论文运用分子设计进行组装的无机—聚胺材料,用于稀土金属离子吸附分离;吸附稀土金属离子后的无机—聚胺材料,可以用淋洗液将无机—聚胺材料吸附的稀土金属离子洗脱下来,无机—聚胺材料重新活化再生,可多次循环使用,不产生二次污染物。分子组装的无机—聚胺材料,赋予特效选择稀土金属离子的筛效应与键合能力,可极大地提高对水溶液中稀土金属离子的负载容量和分离效果。该无机—聚胺材料新型萃取树脂研制开发,促进国内稀土总回收率提高,不可再生稀土资源的有效利用,稀土资源的可持续发展具有一定的意义。
     本文利用表面活性剂诱导合成法和离子印迹技术,通过正硅酸乙酯和N-(2-氨乙基)-3-氨丙基三甲氧基硅烷酸性催化水解和缩聚反应,将氨基嫁接到介孔材料的孔壁上,制备出一类有序无机—聚胺杂化材料;利用锚定剂乙烯基三氯硅烷(Cl_3SiCHCH_2),在膨润土表面,接枝低分子量壳聚糖,制备出第二类壳聚糖聚胺—膨润土材料。利用FT—IR、TG—DTA、XRD、MIP等技术,表征了上述二类杂化材料的组成和孔结构,主要研究内容及结论如下:
     1、利用CTAB诱导合成法和稀土离子印迹技术,通过TEOS和AAPS酸性催化水解和缩聚反应,通过共价键结合,使带有氨基的硅烷将氨基嫁接到介孔材料内表面孔壁上,制备出一类新颖的稀土离子印迹无机—聚胺介孔杂化材料;首次应用此类新颖介孔杂化材料分离稀土。通过正交试验设计,确定了La~(3+)印迹无机—聚胺介孔杂化材料的制备最佳工艺条件为TEOS:AAPS:CTAB:H_2O:La(NO_3)_3摩尔配比是1:0.25:0.15:230:0.1,反应溶液pH值是2,反应初期水解反应温度60℃。在此工艺条件制备的La~(3+)印迹无机—聚胺介孔杂化材料,平均粒度是11.19μm,比表面积为513.4 m~2/g、平均孔径4.62 nm;在1.0×10~(-3)mol/L La~(3+)溶液测定La~(3+)吸附量为176 mmol/g。
     2、首次利用稀土离子印迹技术,以及锚定剂乙烯基三氯硅烷,通过MA和AM自由基共聚反应,将壳聚糖接枝到无机膨润土表面,组装壳聚糖聚丙酰胺—膨润土材料,经过Hofmann降解反应制备出壳聚糖聚胺—膨润土材料,应用此类新颖杂化材料分离稀土。确定组装La~(3+)印迹壳聚糖聚胺—膨润土材料合理工艺条件:乙烯基硅烷化膨润土1 g,壳聚糖0.5 g,MA 0.4 g,AM 1.6 g,LaCI_3 1 g,水3 g,K_2S_2O_8 0.02 g;反应温度70℃,反应时间4 h;Hofmann降解反应:NaOH 6 g,5%NaOCI 8.1 g反应温度-10℃,反应时间6 h。La~(3+)印迹壳聚糖聚胺—膨润土材料的粒度分布不均匀,平均粒度是66.77μm,比表面积为83.52 m~2/g、平均孔径4.53 nm;在1.0×10~(-3)mol/L La~(3+)溶液测定La~(3+)吸附量为11.6 mmol/g;接枝到膨润土表面的壳聚糖、聚胺和甲基丙烯酸等有机物达到34%。
     3、采用循环伏安法,扫描电位在-0.80~0.00 V范围内(vs.SCE),分别研究了La~(3+)、Ce~(3+)、Y~(3+)三种稀土离子与三溴偶氮胂在壳聚糖修饰碳糊电极上,形成的络合吸附波,一对灵敏的氧化还原峰,利用峰电位不同,对稀土离子定性电化学识别,利用峰电流的大小,对稀土离子定量电化学识别。并分别测定了这三种稀土离子的线性范围和方法检出限,并计算出相应的回归线性关系式。获得稀土离子测试的最佳pH值范围1.5~3.0。常见碱金属和碱土金属离子不干扰测定;该方法简便、有效用于稀土离子的电化学识别。
     4、采用稀土离子电化学识别,寻找到一种快速、简单方法,来量化评价离子印迹聚合物对稀土离子的化学识别。根据固相萃取过程中的分离因数,定义了识别率(the recognition ratio)R=K_(impr int ed)/K_(nonimpr int ed);在同一电解池中,被测稀土金属离子浓度恒定时,利用稀土金属离子的电化学识别,印迹杂化材料和空白杂化材料修饰碳糊电极分别作为工作电极,循环伏安图中的峰电流,可以计算出印迹杂化材料识别率。测定的La~(3+)印迹壳聚糖聚胺—膨润土、Ce~(3+)印迹壳聚糖聚胺—膨润土、La~(3+)印迹无机—聚胺、Ce~(3+)印迹无机—聚胺杂化材料识别率分别是1.91、2.65、2.10、1.78。
"There is oil in the Middle East, there is rare earth in China". China has the most abundant rare earth resources, at present, it has been the largest producer and supplier in the world. In the 21st century, rare earths are important materials in high-tech areas, especially in photoelectric, magnetic functional materials, which have aroused worldwide attention. Sole, the high pure rare earth is a base to exploit and study on the application of rare earth materials. Because they have very similar physical and chemical properties, rare earth elements tend to occur together in Earth's crust, moreover, there are many impurity elements in rare earth mixtures obtained by decomposing rare earth minerals, making their separation extremely difficult. Thus, in the process of the separation of rare earth elements, we must consider not only the separation of rare earth elements among 17 elements, which have very similar physical and chemical properties, but also the separation of many impurity elements, which occur together with rare earth elements in Earth's crust. It is a challenging task to separate rare earths from rare earth ores. The most important separation processes today make use of combinations of liquid-liquid and solid-liquid extraction. Liquid-liquid extraction has been the favored route for a fast separation velocity and a big production capacity. Because of the limits of two or three vents in this separation method, most only can obtain the vent number the pure rare earths via a separation process. Thus, in order to obtain all rare earths, it is needed that intermediate concentration rare earths reentry into an organic phase that is in contact with an acidic solution of the extractor, and many extraction cycles are required. Liquid-liquid extraction may involve environmental drawbacks such as relics of solvents or extractants in water; furthermore, their technical and economic efficiencies are limited by the treatment of dilute effluents. The solid-liquid extraction includes ion exchange and extraction chromatography. The ion exchange process is not suitable for industrial production because of the very long periods required to accomplish significant separation. The extraction resin with the extraction carrier as the stationary phase instead of the ion exchanger, rare earths are extracted, counter-extracted and exchanged time after time while they are flowing along with the mobile phase through a packed bed, the effluent is sectionally collected, and simultaneously obtains many pure rare earths at one time. However, the extraction chromatography combines the selectivity and the flexibility of liquid-liquid extractions with the versatility, the high efficiency and the simplicity of chromatographic columns. Extraction chromatographic separation overcomes the defects of solvent extraction, which are easy emulsification, solvent pollution and difficulty in phase separation. Extraction chromatographic separation may separate effectively rare earths for their difficult separation by using ion exchange or liquid-liquid extraction. In extraction chromatographic separation, extraction resins influence clearly production capacity, separation velocity and separation efficiency of rare earth. The extraction resin with a fast separation velocity and high separation efficiency is a key to separate rare earth. Conventional poly (styrene-divinylbenzene) resin with organophosphorus compounds as an extractant, seems to have favourable properties such as the high selectivity, but their very complicated methods of synthesis, high cost, small specific surface area of resins, slow sorption and desorption, small exchange capacity of resins, low mechanical strength, extractants loss with flow phase, large resin bed volumes, high back pressure and easily degradation have limited their application in industrial scale separation processes; moreover, extractants may be inducted into the closed pores of resin grains, and result in desorption difficulty of rare earth ions adsorbed into closed pores; water is difficult to wet surfaces of the nonpolar poly (styrene-divinylbenzene) resin; one organophosphorus extractant only provides several coordinating atoms; the resin swells in a packed bed.
     Because characteristics of inorganic materials, it is extremely difficult to change or modify the configuration, according to the practicably need to control size, configuration, physical and chemical properties. Whereas, organic materials have excellent molecular tailorable and modificatory function, but have the defects of consistency and stability. How to combine each other properties both inorganic materials and organic materials, and to construct plasticity, stabilization, ruggedization of novel hybrid materials in configuration, has become an important challenging task in inorganic chemistry and materials science. In recent years, how to recombine, assemble, hybridize and reinforce functional properties of materials has become an investigating hotspot by using molecular design and engineering thoughts; especially, in order to obtain functional properties as an aim, how to design and control carefully inorganic-organic materials has become a challenging task in this area.
     In this dissertation, using molecular design, inorganic polyamine materials are molecularly assembled for the adsorption and separation of rare earth ions. When rare earth ions are desorbed from adsorbed inorganic polyamine materials, they may regenerate adsorption capacity for recycled use, and do not produce contamination. Inorganic polyamine materials molecular assembly endows with a good selection and combination of rare earth ions, which improves the adsorption capacity and separation efficiency of rare earth ions in solution. To develop and exploit these inorganic polyamine materials-novel extraction resins, is very important to accelerate improvements in the overall yield of rare earth, to make efficient use of rare earth resources for their sustainable development in China, they can not be regenerated.
     In this paper, there are two kinds of hybrid polyamine materials. Firstly, using both surfactant-mediated synthetic method and ionic imprinting technique, the amino group is grafted on the pore wall of mesoporous materials, a novel ordered hybrid inorganic-polyamine material is prepared via the acid-catalyzed hydrolysis and polycondensation of TEOS and AAPS. Secondly, using anchor reagent Cl_3SiCHCH_2, low molecular weight chitosan is grafted on the surface of bentonite, a novel chitosan polyamine-bentonite hybrid material is prepared via the covalent combination of polyamine ligands and bentonite. The composition and pore structures of these two kinds of hybrid materials are characterized with FT-IR, TG-DTA, XRD and MIP. The mostly investigated contents and obtained results are outlined as follows:
     1. Using both CTAB surfactant-mediated synthetic method and ionic imprinting technique, the amino group is grafted on the pore wall of mesoporous materials via a covalent combination, a novel ordered hybrid inorganic-polyamine material is prepared via the acid-catalyzed hydrolysis and polycondensation of TEOS and AAPS. This novel ordered mesoporous inorganic-organic hybrid material is used to the separation of rare earth ions for the first time. The optimal technological conditions are determined by orthogonal experiments to prepare mesoporous hybrid La~(3+) imprinted inorganic-polyamine material, namely, TEOS:AAPS:CTAB: H_2O: La(NO_3)_3 mole ratio is 1: 0.25: 0.15: 230: 0.1, reaction solution pH is 2, and the hydrolysis temperature is 60℃in initial reaction stage. The mesoporous hybrid La~(3+) imprinted inorganic-polyamine material is prepared under this optimal technological conditions, its average granularity is 11.19μm, its specific surface area is 513.4 m~2/g, its average pore radius is 4.62 nm and the La~(3+) adsorption capacity is 176 mmol/g in 1.0×10~(-3) mol/L La~(3+) solution.
     2. Using ionic imprinting technique and anchor reagent Cl_3SiCHCH_2, low molecular weight chitosan is grafted on the surface of bentonite, a novel hybrid chitosan polyacrylamide-bentonite material is assembled through radical copolymerization of MA and AM, Hoffmann reaction is carried out to prepare the novel hybrid chitosan polyamine-bentonite material. It is first application on the separation of rare earth ions. The optimum technological conditions are obtained to assemble La~(3+) imprinted chitosan polyamine -bentonite material, namely, 1 g dried silylated bentonite, 0.5 g chitosan, 0.4 g MA, 1.6 g AM, 1 g LaCI_3, 3 g H_2O, 0.02 g K_2S_2O_8, reaction temperature is 70℃and reaction time is 4 h; moreover, in Hoffmann reaction, 6 g NaOH, 8.1 g 5% NaOCI, reaction temperature is -10℃and reaction time is 6 h. The La~(3+) imprinted chitosan polyamine-bentonite material is assembled under this technological conditions, its granularity distribution is asymmetric, its average granularity is 66.77μm, its specific surface area is 83.52 m~2/g, its average pore radius is 4.53 nm and the La~(3+) adsorption capacity is 11.6 mmol/g in 1.0×10~(-3) mol/L La~(3+) solution. The organic compound, such as chitosan, polyamine and methacrylic acid, grafted on bentonite arrives at 34 %.
     3. Cyclic voltammetry is applied to electrochemically recognize La~(3+) or Ce~(3+), Y~(3+) using carbon paste electrodes modified with chitosan. A pair of well-defined sensitive redox peaks, representing the adsorptive complexes of the rare earth ion and tribromoarsenazo, are found using scanning potentials from -0.80 to 0.00 V vs. SCE. These peak potentials and peak currents are used to determine quantitatively these rare earth ions. The linear detection range and detection limit of La~(3+) or Ce~(3+), Y~(3+) are determined, respectively; linear fit relations of RE(III) are calculated. The optimal pH range 1.5~3.0 is obtained for these rare earth ions detection. Some common metal ions such as alkali and alkaline cations do not effect determination of the rare earth ion. This simple, effective method can be used to electrochemical recognition of rare earth ions.
     4. Keeping the rare earth ion concentrations constant, permit developing a simple, effective method to evaluate quantitatively the ionic recognition of the imprinted polymers using electrochemical recognition of rare earth ions. Based on the distribution coefficient in a solid-liquid extraction process, the recognition ratio is given by R = K_(impr int ed)/K_(nonimpr int ed) . In the sameelectrochemical cell, keeping the concentrations of rare earth ions constant, the recognition ratio R is calculated by the peak current in the cyclic voltammograms. In this study, the recognition ratios of La~(3+) imprinted chitosan polyamine-bentonite material, Ce~(3+) imprinted chitosan polyamine -bentonite material, La~(3+) imprinted inorganic-polyamine material and Ce~(3+) imprinted inorganic-polyamine material are 1.91, 2.65, 2.10 and 1.78, respectively.
引文
[1] 徐光宪.稀土 上册[M].第二版,北京:冶金工业出版社,2002,1~869.
    [2] 徐光宪.稀土 下册[M].第二版,北京:冶金工业出版社,2002,1~698.
    [3] Strange P, Svane A, Temmerman W M, et al. Understanding the valency of rare earths from first-principles theory [J]. Nature, 1999, 399: 756~758.
    [4] Danielson E, Devermey M, Giaquinta D M, et al. A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods [J]. Sci., 1998, 279: 837~839.
    [5] Schuetz P, Caruso E Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles [J]. Chem. Mater, 2002, 14: 4509~4516.
    [6] Lis S. Luminescence spectroscopy of lanthanide (Ⅲ) ions in solution [J]. Journal of Alloys and Compounds, 2002, 341: 45~50.
    [7] Serre C, Pelle F, Gardant N, et al. Synthesis and characterization of MIL-79 and MIL-80: Two new luminescent open-framework rare-earth dicarboxylates with unusual 1D inorganic subnetworks [J]. Chem. Mater, 2004, 16: 1177~1182.
    [8] Kenyon A J. Review recent developments in rare-earth doped materials for optoelectronics [J]. Progress in Quantum Electronics, 2002, 26: 225~284.
    [9] Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates: a review [J]. Chem. Mater, 2003, 15: 3974~3990.
    [10] Sharma R P, Ogale S B, Zhang Z H, et al. Phase transitions in the incoherent lattice fluctuations in YBa_2Cu_3O_(7-8)[J]. Nature, 2000, 404: 736~740.
    [11] Tomita M, Murakami M. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29K [J]- Nature, 2003, 421: 517~520.
    [12] Tomita M, Nagashima K, Herai T, et al. Resin-impregnated bulk RE-Ba-Cu-O current leads for the superconducting magnet on maglev train [J]. Physica C, 2002, 372-376: 1216~1220.
    [13] Tomita M, Nagashima K, Murakami M, et al. Resin-impregnated bulk YBCO current leads for Maglev [J]. Physica C, 2001, 357-360: 832~836.
    [14] Abe R, Higashi M, Zou Z G. Photocatalytic water splitting into H_2 and O_2 over R_3 TaO_7 and RNbO_7 (R=Y, Yb, Gd, La): effect of crystal structure on photocatalytic activity [J]. J. Phys. Chem. B, 2004, 108(3): 811~814.
    [15] Furuno H, Kambara T, Tanaka Y. Highly enantioselective homogeneous catalysis of chiral rare earth phosphates in the hetero-Diels-Alder reaction [J]. Tetrahedron Letters, 2003, 44: 6129~6132.
    [16] Broeder F J A, Molen S J, Kremers M, et al. Visualization of hydrogen migration in solids using switchable mirrors [J]. Nature, 1998, 394: 656~658.
    [17] Bethencourt M, Botana F J, Calvino J J, et al. Lanthanide compounds as environmentally friendly corrosion inhibitors of aluminium alloys: a review [J]. Corrosion Science, 1998, 40(11): 1803~1819.
    [18] Uda T, Jacob K T, Hirasawa M. Technique for enhanced rare earth separation [J]. Sci., 2000, 289: 2326~2329.
    [19] 张小明.中日美三国的稀土应用状况[J].稀有金属快报,2001,3:12.
    [20] 吴百芦,徐光宪,高小霞等.稀土的战略意义—我国面临的挑战及对策建议[J].中国软科学,1996,4:82~89.
    [21] 李彦宏.我国稀土工业的发展现状[J].稀有金属快报,2001,1:19~20.
    [22] Fray D J. Separating rare earth elements [J]. Sci., 2000, 289: 2295~2296.
    [23] 罗永,崔大立,叶祖光等.高纯单一稀土提取技术研究[J].稀土,1996,17(6):62~65.
    [24] 李桂珠,罗永,杨桂林.萃取色层法提取5~6N高纯Tb_4O_7、Dy_2O_3、Yb_2O_3和Lu_2O_3[J].稀土,1997,18(5):1~4.
    [25] Fischer R J, Pang D. Silica-polyamine composite materials for heavy metal ion removal, recovery, and recycling. Ⅱ. Metal ion separations from mine wastewater and soft metal ion extraction efficiency [J]. Sep. Sci. Technol., 1999, 34(16): 3125~3137.
    [26] 范忠雷,刘大壮.硅胶聚胺复合材料的合成及应用[J].化学通报(网络版),2003,66:1~5.
    [27] 顾保江,龙志奇,黄小卫等.我国稀土化合物产业现状和展望[J].稀有金属,2003,27(3):391~394.
    [28] 余永富.我国稀土矿选矿技术及其发展[J].西部探矿工程,2000,63(2):1~4.
    [29] 余永富.我国稀土矿选矿技术及其发展[J].中国矿业大学学报,2001,30(6):537~542.
    [30] 易宪武,黄春辉,王慰,刘余九,吴瑾光.钪稀土元素[M].北京:科学出版社,1998,151~569.
    [31] 何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995,1~571.
    [32] 涂星,廖列文.稀土元素的分离技术[J].贵州化工,2003,28(3):3~5.
    [33] 高锦章,郭效军,王碧等.高温熔融固-液萃取在分离与富集中的应用[J].稀有金属 1999,23(4):304~310.
    [34] 王秀山.萃淋树脂用作分离剂的研究现状[J].离子交换与吸附,1994,10(4):369~374.
    [35] 高自立,孙思修,沈静兰.溶剂萃取化学[M].北京:科学出版社,1991,1~283.
    [36] 刘兴荣,张秀娟.络合交换乳状液膜分离稀土镝和铥[J].稀土,1996,17(2):9~13.
    [37] Li Xizhong, Sun Yanping. 2005. Progress in solid-liquid extraction resin for the separation of rare earth elements [J]. Journal of Rare Earths, 2005, 23 (Suppl.): 581~592.
    [38] 李华昌,周春山,符斌.萃淋树脂技术及其在湿法冶金中的应用[J].有色金属,2001,53(1):70~73.
    [39] 游建南.萃淋树脂分离技术的发展及其在湿法冶金分析中的应用[J].湿法冶金,2000,19(1):57~63.
    [40] Byers C H, Williams D F. Efficient recovery of lanthanides by continuous ion exchange [J]. Ind. Eng. Chem. Res., 1996, 35: 993~998.
    [41] Ramanujam A, Achuthan P V. Extraction chromatographic separation of promethium from high active waste solutions of Purex origin [J]. Solvent Extraction and Ion Exchange, 1995, 13(2): 301~312.
    [42] Hoshi H, Wei Y Z, Kumagai M, et al. Group separation of trivalent minor actinides and lanthanides by TODGA extraction chromatography for radioactive waste management [J]. Journal of Alloys and Compounds, 2004, 374: 451~455.
    [43] Alain F R, Dumont N, Dunjic B, et al. Polymeric and immobilized crown compounds, material forion separation [J]. Tetrahedron, 1997, 53(4): 1343~1360.
    [44] Hirata S, Kajiya T, Aihara M, et al. Determination of rare earth elements in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry [J]. Talanta 2002, 58: 1185~1194.
    [45] Nesterenko P N, Jonesb P. Isocratic separation of lanthanides and yttrium by high-performance chelation ion chromatography on iminodiacetic acid bonded to silica [J]. Journal of Chromatography A, 1998, 804: 223~231.
    [46] Montavon G, Markai S, Andres Y, et al. Complexation studies of Eu (Ⅲ) with alumina-bound polymaleic acid: effect of organic polymer loading and metal ion concentration [J]. Environ. Sci. Technol, 2002, 36: 3303~3309.
    [47] Sugiura M, Hirata M H. Effect of phospholipids on cartier-mediated transport of lanthanide ions through cellulose triacetate membranes [J]. Sep. Sci. Technol., 1993, 28 (10): 1933~1937.
    [48] Chang H L, Moo Y S. A chelating resin containing 4-(2-thiazolylazo) resorciol as the functional group. Chromatographic application to the preconcentration and separation of some trance metal ions including uranium [J]. Anal. Chim. Acta, 1997, 351: 57~63.
    [49] Agrawal Y K, Kaur H. Synthesis, characterization and applications of poly (β-styryl) hydroxamic acids [J]. Reactive & Functional Polymers, 1999, 42: 1~9.
    [50] Agrawal Y K, Kaur H, Menon S K. Poly (styrene-p-hydroxamic acids): Synthesis and ion exchange separation of rare earths [J]. Reactive & Functional Polymers, 1999, 39: 155~164.
    [51] Wang Z H, Ma G X, Lu J. Separation of heavy rare earth elements with extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonicacid [J]. Hydrometallurgy, 2002, 66: 95~99.
    [52] Hubicka H, Drobek D. Separation of Y (Ⅲ) complexes from Dy (Ⅲ), Ho (Ⅲ) and Er (Ⅲ) complexes with iminodiacetic acid on the anion-exchangers type 1 and type 2 [J]. Hydrometallurgy, 1999, 53: 89~100.
    [53] Hubicka H, Drobek D. Studies on separation of iminodiacetate complexes of lanthanum (Ⅲ) from neodymium (Ⅲ) and praseodymium (Ⅲ) on anion-exchangers [J]. Hydrometallurgy, 1998, 50: 51~60.
    [54] Hubicki Z, Olszak M. Studies of sorption and separation processes of rare earth element complexes on the anion-exchanger Wofatit SBW in the CH_3OH-HNO_3 system [J]. Hydrometallurgy, 1998, 50: 261~268.
    [55] Hubicki Z, Olszak M. Studies on separation of rare earth elements on various types of anion-exchangers in the C_3H_7OH-7 M HNO_3 systems [J]. Journal of Chromatography A, 2002, 955: 257~262.
    [56] Hubicka H, Drobek D. Study on separation of lanthanum from praseodymium complexes with IMDA by gel and macroporous anion exchangers [J]. Journal of Rare Earths, 2000, 18 (2): 90~96.
    [57] Hubicki Z, Olszak M. Studies on separation of samarium (Ⅲ) nitrate complexes from neodymium (Ⅲ) on strongly basic anion exchangers [J]. Sep. Sci. Technol., 2000, 35 (4): 535~546.
    [58] Sungur S K, Akseli A. Separation and determination of rare earth elements by Dowex2-X8 resin using sodium trimetaphosphate as elution agent [J]. Journal of Chromatography A, 2000, 874: 311~317.
    [59] Akseli A, Kutun S. Distribution coefficients and cation-exchange separation of rare earths in sodium trimetaphosphate media and application to monazite [J]. Sep. Sci. Technol., 2000, 35(4): 561~571.
    [60] Pin C, Joannon S. Combined cation-exchange and extraction chromatography for the concomitant separation of Zr, Hf, Th, and the Lanthanides from geological materials [J]. Talanta, 2002, 57: 393~403.
    [61] Hubicka H, Kolodynska D. Separation of rare-earth element complexes with trans-1, 2-diaminocyclohexane-N, N, N', N'-tetraacetic acid on polyacrylate anion exchangers [J]. Hydrometallurgy, 2004, 71: 343~350.
    [62] Hubicka H, Kolodynska D. Studies on application of polyacrylate anion-exchangers in sorption and separation of iminodiacetate rare earth element (Ⅲ) complexes [J]. Hydrometallurgy, 2001, 62: 107~113.
    [63] Hubicka H, Kolodynska D. Investigation on the use of the weakly basic polyacrylate anion exchanger Amberlite IRA-68 for sorption and separation of iminodiacetate complexes of rare earth elements [J]. Journal of Rare Earths, 2002, 20(6): 611~618.
    [64] 金明钟,吕坤,施鼐等.聚丙烯接枝丙烯酸(PP-g-AA)对稀土离子吸附反应的研究[J].高分子学报,2003,1:93~96.
    [65] Alexandratos S D, Natesan S. Coordination chemistry of phosphorylated calixarenes and their application to separations science [J]. Ind. Eng. Chem. Res., 2000, 39: 3998~4010.
    [66] Su Z X, Zhou Y B, Chang X J, et al. Synthesis of poly (vinyl alcohol) phosphorylate dicyandiamide formaldehyde resin complex and its absorption of rare earth ions [J]. Journal of Applied Polymer Science, 2002, 84 (5): 962~968.
    [67] Hasany S M, Saeed M M, Ahmed M. Sorption of traces of silver ions onto polyurethane foam from acidic solution [J]. Talanta, 2001, 54: 89~98.
    [68] Shahawi M S E, Almehdi M. Qualitative, semi-quantitative and spectrophotometrie determination of ruthenium (Ⅲ) by solid-phase extraction with 3-hydroxy-2-methyl-1, 4-naphthoquinone-4-oxime-loaded polyurethane foam columns [J]. Journal of Chromatography A, 1995, 697: 185~190.
    [69] Zhang T H, Shan X Q, Liu R X. Preconcentration of rare earth elements in seawater with poly (acrylaminophosphonic dithiocarbamate) chelating fiber prior to determination by inductively coupled plasma mass spectrometry [J]. Anal. Chem., 1998, 70(18): 3964~3968.
    [70] Koopman C, Witkamp G J, Rosmalen G M V. Removal of heavy metals and lanthanides from industrial phosphoric acid process liquors [J]. Sep. Sci. Technol., 1999, 34 (15): 2997~3008.
    [71] Jia Q, Wang Z H, Li D Q, et al. Adsorption of heavy rare earth (Ⅲ) with extraction resin containing bis (2, 4, 4-trimethylpentyl) monothiophosphinic acid [J]. Journal of Alloys and Compounds, 2004, 374: 434~437.
    [72] Fritz J S. Early milestones in the development of ion-exchange chromatography: a personal account [J]. Journal of Chromatography A, 2004, 1039: 3~12.
    (73) Willie S N, Sturgeon R E. Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time of flight mass spectrometry [J]. SpectrochimicaActa Part B, 2001, 56: 1707—1716.
    (74) Ruth W J, Hu B, Jiang Z C. Determination of trace metal impurities in cerium oxide by fluorination assisted ETV-ICP-AES after HPLC separation [J]. Journal of Rare Earths, 2004, 22(2): 197-200.
    (75) Cao X D, Yin M, Li B. Determination of rare earth impurities in high purity gadolinium oxide by inductively coupled plasma mass spectrometry after 2-ethylhexylhydrogen-ethylhexy phosphonate extraction chromatographic separation [J]. Talanta, 1999, 48: 517—525.
    (76) Lin Y, Wu H, Smart NG, et al. Studies on in-situ chelation/supercritical fluid extraction of lanthanides and actinides using a radiotracer technique [J]. Sep. Sci. Technol., 2001, 36(5-6): 1149-1162.
    (77) Talanova G G Phosphorus-containing macrocyclic ionophores in metal ion separations [J]. Ind. Eng. Chem. Res., 2000, 39: 3550—3565.
    (78) Ismail I M, Nogami M, Suzuki K. The utilization of TMMA chelating resins for the adsorption of U (VI) and some lanthanide ions from acidic media [J]. Solvent Extraction and Ion Exchange, 2003, 21(3): 465-481.
    (79) Kakoi T, Oshima T, Nishiyori T. Effect of sodium ions on the extraction of rare earth metals by liquid surfactant membranes containing a calix [4] arene carboxyl derivative [J]. Journal of Membrane Science, 1998, 143: 125—135.
    (80) Ohto K, Yano M. Effect of coexisting alkaline metal ions on the exaction selectivity of lanthanide ions with the calixarene carboxylate derivatives [ J]. Polyhedron, 1997, 16(10): 1655-1661.
    (81) Kubota F, Shinohara K, Shimojo K. Extraction of rare earth metals by calix [4] arene solubilized in AOT reversed micellar solution [J]. Sep. Purif. Technol., 2001, 24: 93— 100.
    (82) Kubota F, Kakoi T, Goto M. Permeation behavior of rare earth metals with a calix [4] arene carboxyl derivative in a hollow-fiber membrane [J]. Journal of Membrane Science, 2000, 165: 149-158.
    (83) Jain V K, Handa A, Pandya R. Polymer supported calix [4] arene semicarbazone derivative for separation and preconcentration of La (III), Ce (III), Th (IV) and U (VI) [J]. Reactive & Functional Polymers, 2002, 51: 101 — 110.
    (84) Rao T P, Kala R. On-line and off-line preconcentration of trace and ultratrace amounts of lanthanides [J]. Talanta, 2004, 63: 949-959.
    (85) Kleinhanns I C, Kreissig K, Kamber B S, et al. Combined chemical separation of Lu, Hf, Sm, Nd,and REEs from a single rock digest: precise and accurate isotope determinations of Lu-Hf and Sm-Nd using Multicollector-ICPMS [J]. Anal. Chem., 2002, 74: 67—73.
    (86) Maria C B, Edoardo M, Corrado S. Determination of lanthanides by ion chromatography separation and retention mechanism [ J]. Anal. Chim. Acta, 1997, 353: 239—244.
    (87) Schijf J, Byrne R H. Determination of stability constants for the mono- and difluoro-complexes of Y and the REE, using a cation-exchange resin and ICP-MS [J]. Polyhedron, 1999, 18: 2839-2844.
    (88) Pinto D V B S, Martins A H. Electrochemical elution of a cation-exchange polymeric resin for yttrium and rare earth recovery using a statistical approach [ J]. Hydrometallurgy, 2001, 60 : 99-104.
    (89) Cao X D, Yin M, Wang X R. Elimination of the spectral interference from polyatomic ions with rare earth elements in inductively coupled plasma mass spectrometry by combining algebraic correction with chromatographic separation [J]. Spectrochimica Acta Part B, 2001, 56: 431-441.
    (90) Monsallier J M, Schussler W, Buckau G, et al. Kinetic investigation of Eu(III)-Humate interactions by ion exchange resins [J]. Anal. Chem., 2003, 75: 3168—3174.
    (91) Zheng Z Y, Ling D R, Sun Y. Production of rare-earth oxides of high purity [J]. Journal of Chromatography A, 1995, 707: 131 — 135.
    (92) Tennichi Y, Matsuoka S, Yoshimura K. Simultaneous determination of trace metals by solid phase absorptiometry: application to flow analysis of some rare earths [J]. Fresenius J Anal Chem, 2000, 368: 443-448.
    (93) Villiers P G R D, Deventer J S J V, Lorenzen L. The use of ion-exchange resins for the recovery of valuable species from slurries of sparingly soluble solids [J]. Minerals Engineering, 1997, 10(9): 929-945.
    (94) Hubicka H, Drobek D. Anion-exchange method for separation of ytterbium from holmium and erbium [J]. Hydrometallurgy, 1999, 47: 127-136.
    (95) Lee K H, Shishido S, Kusachi I, et al. Determination of lanthanides and yttrium in JGb2 and JR3 by inductively coupled plasma-mass spectrometry after cation-exchange pretreatment [J]. Geochemical Journal, 2000, 34: 383—393.
    (96) Sarzanini C. Liquid chromatography: a tool for the analysis of metal species [ J]. Journal of Chromatography A, 1999, 850: 213—228.
    (97) Christian P, Danielle B, Chantal B, et al. Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography [J]. Anal. Chim. Acta, 1994, 298: 209-217.
    (98) Misawa K, Yamazaki F,Ihira N, et al. Separation of rare earth elements and strontium from chondritic meteorites by miniaturized extraction chromatography for elemental and isotopic analyses [J]. Geochemical Journal, 2000, 34: 11—21.
    (99) Nesterenko P N, Shpigun O A. High-performance chelation chromatography of metal ions on sorbents with grafted iminodiacetic acid [J]. Russian Journalof Coordination Chemistry, 2002, 28(10): 726-735.
    (100) Minowa H, Ebihara M. Separation of rare earth elements from scandium by extraction chromatography. Application to radiochemical neutron activation analysis for trace rare earth elements in geological samples [J]. Anal. Chim. Acta, 2003, 498: 25—37.
    (101) Park C I, Cha K W. Spectrophotometric determination of scandium (III) in monazite after separation using Amberlite IRC 718 chelating resin [J]. Bull. Korean Chem. Soc., 1999, 20(12): 1409-1412.
    (102) Matsunaga H, Ismail A A, Wakui Y. Extraction of rare earth elements with 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate impregnated resins having different morphology and reagent content [J]. Reactive & Functional Polymers, 2001, 49: 189—195.
    (103) Masi A N, Olsina R A. Preparation and characterization of chelating resins loaded with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol for preconcentration of rare earth elements [J]. Freseniu J Anal Chem, 1997, 357: 65—68.
    (104) Nishihama S, Sakaguchi N, Hirai T, et al. Extraction and separation of rare earth metals using microcapsules containing bis (2-ethylhexyl) phosphinic acid [J]. Hydrometallurgy, 2002, 64: 35-42.
    (105) Kondo K, Kamio E. Separation of rare earth metals with a polymeric microcapsule membrane [J]. Desalination, 2002, 144: 249-254.
    (106) Vicente O, Padro A, Martinez L, et al. Determination of some rare earth elements in seawater by inductively coupled plasma mass spectrometry using flow injection preconcentration [ J]. Spectrochimica Acta Part B, 1998, 53: 1281 — 1287.
    (107) Liu C Q, Huang Y Q, Naismith N, et al. Novel polymeric chelating fibers for selective removal of mercury and cesium from water [J]. Environ. Sci. Technol., 2003, 37: 4261— 4268.
    (108) Goto M, Miyata T, Uezu K, et al. Separation for rare earth metals in a hollow-fiber membrane extractor modified by plasma-graft polymerization [J]. Journal of Membrane Science, 1994,96(3): 299-307.
    (109) Yang X J, Gu Z M, Fane A G Multicomponent separations by a combined extraction /electrostatic pseudo-liquid membrane (I): Separation of Al, La, Sm, and Y [J]. Hydrometallurgy, 1998, 49: 275-288.
    (110) Luo F, Li D Q, Wu L. Extraction and separation of cadmium (II), iron (III), zinc (II), and europium (III) by Cyanex302 solutions using hollow fiber membrane modules [J]. Solvent Extraction and Ion Exchange, 2004, 22(1): 105—120.
    (111) Chitry F, Pellet-Rostaing S. Separation of lanthanides (III) by nanofiltration-complexation in aqueous medium [J]. Sep. Sci. Technol., 2001, 36(4): 605—618.
    (112) Nakayama C, Uemiya S, Kojima T. Separation of rare earth metals using a supported liquid membrane with DTPA [J]. Journal of Alloys and Compounds, 1995, 225: 288—290.
    (113) Vito I E D, Masi A N, Olsina R A. Determination of trace rare earth elements by X-ray fluorescence spectrometry after preconcentration on a new chelating resin loaded with thorin [J]. Talanta, 1999, 49: 929~935.
    [114] Lehn J M.超分子化学—概念和展望[M].沈兴海等译.北京:北京大学出版社,2002,1~261.
    [115] Katsuhiko A, Toyoki K. Supramolecular chemistry-Fundamentals and applications [M]. Berlin: Springer Heidelberg, 2006, 1~37.
    [116] 刘育,尤长城,张衡益.超分子化学:合成受体的分子识别与组装[M].天津:南开大学出版社,2001,1~4.
    [117] 顾宁,廖建辉,刘金红.分子组装及其应用[J].半导体学报,2003,24(增刊),28~33.
    [118] Whitesides G M, Grzybowski B. Self-assembly at all scales [J]. Science, 2002, 295: 2418~2421.
    [119] 徐筱杰.超分子构筑-从分子到材料[M].北京:科学技术文献出版社,2000,22~48.
    [120] Alberto Ciferri. Supermolecular polymers[M]. 2nd ed, New York: Taylor & Francis Group, LLC, 2005, 1~750.
    [121] Sergey Piletsky, Anthony Turner. Molecular imprinting of polymers [M]. Texas: Landes Bioscience, 2006, 1~198.
    [122] Christoph A. Schalley, Fritz Vogtle, Karl Heinz Dotz. Templates in Chemistry Ⅱ [M]. Berlin: Springer Heidelberg, 2005, 317~351.
    [123] Takeuchia T, Haginaka J. Review separation and sensing based on molecular recognition using molecularly imprinted polymers [J]. Journal of Chromatography B, 1999, 728: 1~20.
    [124] Shepherd R E. Review chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands [J]. Coordination Chemistry Reviews, 2003, 247: 147~184.
    [125] Garcia R, Vigneau O, Pinel C. Solid-liquid lanthanide extraction with ionic-imprinted polymers [J]. Sep. Sci. Technol., 2002, 37(12): 2839~2857.
    [126] Vigneau O, Pinel C, Lemaire M. Ionic imprinted resins based on EDTA and DTPA derivatives for lanthanides(Ⅲ)separation [J]. Anal. Chim. Acta, 2001, 435:75~82.
    [127] Uezu K, Yoshida M, Goto M, et al. Molecular recognition using surface template polymerization [J]. Chemtech, 1999, 29 (4):12~18.
    [128] Uezu K, Kuwabara T, Yoshida M, et al. Lanthanoid element recognition on surface-imprinted polymers containing dioleylphosphoric acid as a functional host [J]. Anal. Sci., 2004, 20 (11): 1593~1597.
    [129] Araki K, Yoshida M, Uezu K, et al. Lanthanide-imprinted resins prepared by surface template polymerization [J]. J. Chem. Eng. Japan, 2000, 33 (4):665~668.
    [130] 李延红,翟林峰.无机有机杂化材料的制备与应用研究进展[J].化工科技市场,2005,4:44~49.
    [131] 孙彦平,李西忠.无机聚胺材料及制备方法,中国专利,ZL 200410064545.5,2004.
    [132] Shea K J, Loy D A. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials [J]. Chem. Mater., 2001, 13: 3306~3319.
    [133] Guido Kickelbick. Concepts for the incorporation of inorganic building blocks into organic polymers on ananoscale [J]. Prog. Polym. Sci., 2003,28:83~114
    [134] Wight A P, Davis M E. Design and preparation of organic-inorganic hybrid catalysts [J]. Chem. Rev., 2002, 102: 3589~3614.
    [135] Claude Chuit, Robert J P. Corriu, Geraud Dubois, et al. Hybrid organic-inorganic materials. Preparation and properties of dibenzo-18-crown-6 ether-bridged polysilsesquioxanes [J]. Chem. Commun., 1999, 9: 723~724.
    [136] Atsushi Shimojima, Kazuyuki Kuroda. Structural control of multilayered inorganic-organic hybrids derived from mixtures of alkyltriethoxysilane and tetraethoxysilane [J]. Langmuir 2002, 18: 1144~1149.
    [137] Josik Portier, Jin-Ho Choy, Subramanian M A. Special review inoganic-organic- hybrids as precursors to functional materials [J]. International Journal of Inorganic Materials, 2001, 3: 581~592.
    [138] Mccarthy D W, Mark J E, Schaefer D W. Synthesis, structure, and properties of hybrid organic-inorganic composites based on polysiloxanes. Ⅰ. Poly (dimethylsiloxane) elastomers containing silica [J]. Journal of Polymer Science: Part B: Polymer Physics, 1998, 36:1167~1189.
    [139] Giarmis S. Papaefstathiou, Leonard R. MacGillivray. Inverted metal-organic frameworks: solid-state hosts with modular functionality [J]. Coordination Chemistry Reviews, 2003, 246: 169~184.
    [140] Luc Beaudet, Kazi-Zakir Hossain, Louis Mercier. Direct synthesis of hybrid organic-inorganic nanoporous silica microspheres. 1. Effect of temperature and organosilane loading on the nanoand micro-structure of mercaptopropyl- functionalized MSU silica [J]. Chem. Mater. 2003, 15: 327~334.
    [141] Schmidt H, Jonschker G, Goedicke S, et al. The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites [J]. Journal of Sol-Gel Science and Technology, 2000, 19: 39~51.
    [142] Tewodros Asefa, Mark J. MacLachlan, Neil Coombs, et al. Periodic mesoporous organosilicas with organic groups inside the channelwalls [J]. Nature, 1999, 402: 867~871.
    [143] Noble K. Porous siloxane-silica hybrid materials by sol-gel processing [J]. Journal of Sol-Gel Science and Technology, 2003, 26: 419~423.
    [144] Ju Y H, Webb O F, Dai Sheng, et al. Synthesis and characterization of ordered mesoporous anion-exchange inorganic/organic hybrid resins for radionuclide separation [J]. Ind. Eng. Chem. Res., 2000, 39: 550~553.
    [145] Byunghwan Lee, Li-Li Bao, Hee-Jung Ira, et al. Synthesis-and characterization of organic-inorganic hybrid mesoporous anion-exchange resins for perrhenate (ReO_4~-) anion adsorption [J]. Langmuir, 2003, 19: 4246~4252.
    [146] Shinji Inagaki, Shiyou Guan, Tetsu Ohsuna, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J]. Nature, 2002, 416:304~307.
    [147] Alexander Katz, Mark E. Davis. Molecular imprinting of bulk, microporous silica [J]. Nature, 2000, 403:286~289.
    [148] Dongyuan Zhao, Jianglin Feng, Qisheng Huo, et al. Stucky. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores [J]. Sci., 1998, 279: 548~552.
    [149] Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers on ordered mesoporous supports [J]. Sci., 1997, 276: 923~926.
    [150] Jovica D. Badjic, Nenad M. Kostic. Unexpected interactions between sol-gel silica glass and guest molecules. Extraction of aromatic hydrocarbons into polar silica from hydrophobic solvents [J]. J. Phys. Chem. B 2000, 104: 11081~11087.
    [151] 李旭华,袁荞龙,王得宁,应圣康.杂化材料的制备性能及应用[J].功能高分子学报.2006,13(2):211~218.
    [1] Galo J de A A Soler-Ⅲia, Clement Sanchez, Benedicte Lebeau, Joel Patarin. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem. Rev., 2002, 102: 4093~4138.
    [2] Raman N K, Anderson M T, Brinker C J. T emplate-based approaches to the preparation of amorphous, nanoporous silicas [J]. Chem. Mater. 1996, 8(8):1682~1701.
    [3] Parasuraman Selvam, Suresh K Bhatia, Chandrashekar G Sonwane. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves [J].Ind. Eng. Chem. Res. 2001, 40: 3237~3261.
    [4] Chi-Feng Cheng, Zhaohua Luan, Jacek Klinowski. The role of surfactant micelles in the synthesis of the mesoporous molecular sieve MCM-41[J]. Langmuir. 1995, 11: 2815~2819.
    [5] Steel A, Carr S W, Anderson M W. ~(14)N NMR study of surfactant mesophases in the synthesis of mesoporous silicates [J]. J. Chem. Soc. Chem. Commun. 1994: 1571~1572.
    [6] Firouzi A, Kumar D, Bull L M, Besier T, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies[J]. Science. 1995, 267: 1138~1143.
    [7] 沈绍典.多头季铵盐表面活性剂导向下新结构介孔分子筛的合成与表征[博士学位论文].上海:复旦大学.2003.
    [8] Sumio Sakka. Handbook of sol-gel science and tecnolody processing, characterization and applications Vol.Ⅰ Sol-gel processing [M]. New York: Kluwer academic publishers, 2002: 1~650.
    [9] 李西忠.硅聚合物应用研究—太阳光谱选择性吸收涂层和耐热涂层[硕士学位论文].合肥:合肥工业大学.1991.
    [10] 杨新立.超纯多孔球形硅胶的合成与应用[博士学位论文].大连:中国科学院大连化学物理研究所.2001.
    [11] Sumio Sakka. Handbook of sol-gel science and technology processing, characterization and applications Vol.Ⅲ Applications of sol-gel technology [M]. New York: Kluwer academic publishers, 2002, 1~760.
    (12) 张书政.SPLC杂化液晶及其衍生介孔材料的制备、结构表征与热致喷射效应[博士学位论文].广州:华南理工大学.2005.
    (13) Iler R K. The chemistry of silica[M]. New York: Wiley, 1979, 1~580.
    (14) Pingyun Feng, Xianhui Bu, David J Pine. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems[J]. Langrnuir, 2000, 16: 5304~5310.
    (15) Karin Moiler, Thomas Bein, Reinhard X Fischer. Synthesis of ordered mesoporous methacrylate hybrid systems: hosts for molecular polymer composites [J]. Chem. Mater. 1999, 11: 665~673.
    (16) Atsushi Shimojima, Kazuyuki Kuroda. Structural control of multilayered morganic-organic hybrids derived from mixtures of alkyltriethoxysilane and tetraethoxysilane [J]. Langmuir 2002, 18: 1144~1149.
    (17) Tewodros Asefa, Mark J MacLachlan, Neil Coombs, Geoffrey A Ozin. Periodic mesoporous organosilicas with organic groups inside the channelwalls [J]. Nature, 1999, 402: 867~871.
    (18) K. Noble. Porous siloxane-silica hybrid materials by sol-gel processing [J]. Journal of Sol-Gel Science and Technology, 2003, 26: 419~423.
    (19) Feng X, Fryxell G E, Wang L-Q, Kim A Y, et al. Functionalized monolayers on ordered mesoporous supports [J]. Sci., 1997, 276: 923~926.
    (20) Edwin P P.硅烷和钛酸酯偶联剂[M].梁发思,谢世杰译.上海:上海科学技术文献出版社,1987,1~258.
    (21) Drew Myers. Surfactant Science and Technology[M]. 3rd ed, New Jersey:John Wiley & Sons, 2006, 1~321.
    (22) 冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000,3~30.
    (1) Kawatra S K, Ripke S J. Developing and understanding the bentonite fiber bonding mechanism [J]. Minerals Engineering, 2001, 14 (6) : 647~659.
    (2) 王玉洁,田莉玉,王丽荣等.[J].非金属矿,2003,26(4):467~57.
    (3) 张术根,谢志勇,申少华等.[J].中国非金属矿工业导刊,2002,25(1):177~20.
    (4) 彭长宏,汪玉庭,程格,唐玉荣.接枝羧基壳聚糖的合成及其对重金属离子的吸附性能[J].环境化学,1998,19(5):29~33.
    (5) 曲荣君,刘庆俭.PEG双缩水甘油醚交联壳聚糖的制备及其对金属离子的吸附性能[J].环境化学,1996,15(1):41~46.
    (6) 曲荣君,马千里,郑秀丽,孙言志.壳聚糖衍生物的制备及其吸附性能[J].应用化学,1995,12(2):117~118.
    (7) 曹佐英,赖声礼,葛华才.微波辐射下甲醛交联壳聚糖的制备及其吸附性能的研究[J].现代化工,1999,19(6):24~26.
    (8) Hsien T Y, Rorrer G L. Heterogeneous cross-linking of chitosan gel beads: kinetics, modeling, and influence on cadmium ion adsorption capacity [J]. Ind. Eng. Chem. Res., 1997, 36: 3631~3638.
    (9) Weltrowski M, Martel B, Morcellet M. Chitosan N-benzyl sulfonate derivatives as adsorbents for removal of metal ions in an acidic medium [J]. J. Appl. Polym. Sci., 1996, 59: 647~654.
    (10) 胡道道,史户帧,唐宗薰.甲壳素/壳聚糖的配位化学和配合物应用的研究进展[J].无机化学学报,2000,16(3):385~394.
    (11) 季君晖.Cu~(2+)-壳聚糖螫合物及壳聚糖吸附Cu~(2+)机理的XPS研究[J].应用化学,2000,17(1):115~116.
    (12) Chen J, Tendeyong F, Yiacoumi S. Equilibrium and kinetic studies of copper ion uptake by calcium alginate [J]. Environ. Sci. Technol., 1997, 31: 1433~1439.
    (13) 王志华,王书俊,黄毓礼.X射线光电子光谱法研究壳聚糖吸附镉(Ⅱ)的机理[J].分析实验室,2001,20(6):14~16.
    (14) Juang R S, Ju C Y. Equilibrium sorption of copper (Ⅱ)-ethylenediamineteraacetic acid chelates onto cross-linked polyaminated chitosan beads [J]. Ind. Eng. Chem. Res., 1997, 36: 5403~5409.
    (15) Bodek K.H., Kufelnicki A. Protolytic and complexing properties of microcrystalline chitosan with Co (Ⅱ), Zn (Ⅱ), and Cu (Ⅱ) ions [J]. J. Appl. Polym. Sci., 1995, 57: 645~651.
    (16) Hon D.N.S., Tang L.G. Chelation of chitosan derivation with zinc ions I, O, N-carboxymethyl chitosan [J]. J. Appl. Polym. Sci., 2000, 77: 2246~2253.
    (17) 王莹,邬建敏.以硅胶为基质的交联壳聚糖对Ni~(2+)的吸附研究[J].环境污染与防治,2001,23(6):276~279.
    (18) 陈天,汪士新.壳聚糖对铬离子(Ⅲ)的吸附研究[J].离子交换与吸附,1997,13(5):466~471.
    (19) 庄公惠,郑之敏,杜首成,周亚平,张维霞.壳聚糖与铜离子的均相整合及产物分离[J].天津大学学报,1993,1:1~6.
    (20) 符迈群,唐兰模,张萍,沈敦瑜.壳聚糖(CHT)吸附Cr(Ⅵ)的机理研究[J].四川联合大学学报(工程学版),1997,1(5):8~13.
    (21) Piron E, Domard A. Interaction between chitosan and uranyl ions. Part 2. Mechanism of interaction [J]. Int. J. Biol. Macromol., 1998, 22: 33~40.
    (22) Sreenivasan K. Thermal stability studies of some chitosan-metal ion complexes using differential scanning calorimetry [J]. Polymer Degradation and Stability, 1996, 52: 85~87.
    (23) Peniche-Covas C, Jimenez M S, Nunez A. Characterization of silver-bonding chitosan by thermal analysis and electron impact masss pectrometry [J]. Carbohydr. Polym., 1988, 9: 249~256.
    (24) Wu F C, Tseng R L, Juang R S. Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan [J]. Ind. Eng. Chem. Res., 1999, 38(1) : 270~275.
    (25) Ngah W S W, Liang K H. Adsorption of gold (Ⅱ) ions onto chitosan and N-carboxymethyl chitosan: equilibrium studies [J]. Ind. Eng. Chem. Res., 1999, 38: 1411~1414.
    (26) Qian S H, Huang G Q, Jiang J S. Studies of adsorptions behavior of crosslinked ehitosan for Cr (Ⅳ), Se (Ⅳ) [J]. J. Appl. Polym. Sci., 2002, 77: 3216~3219.
    (27) Furlan L, Favere V T, Laranjeira M C M. Adsorption of calcium ions by graft copolymer of acrylic acid on biopolymer chitin [J]. Polym., 1996, 37 (5) : 843~846.
    (28) Minamisawa H, Iwanami H, Arai N. Adsorption behavior of cobalt (Ⅱ) on chitosan and its determination by tungsten metal furnace atomic absorption spectrometry [J]. Anal. Chim. Acta., 1999, 378: 278~285.
    (29) Guibal E, Milot C, Roussy J. Molybdate sorption by cross-linked chitosan beads: dynamic studies [J]. Water Environ. Res., 1999, 71(1): 190~196.
    (30) Juang R S, Shau R C. Metal removal from aqueous solutions using chitosan-enhanced membranefiltrafion [J]. J. Membr. Sci,, 2000, 165: 159~167.
    (31) Kubota N. Permeability properties of chitosan-transition metal complex membranes [J]. J. Appl. Polym. Sci., 1997, 64: 819~822.
    (32) Wang X P, Shen Z Q, Zhang F Y. Pervaporation separation of water/alcohol mixtures through hydroxypropylated chitosan membranes [J]. J. Appl. Polym. Sci., 1998, 69: 2035~2041.
    (33) Rorrer G L, Hsien T Y, Way J D. Synthesis of porous-magnetics chitosan: beads for removal of :cadmium ions from wastewater[J]. Ind. Eng. Chem. Res., 1993, 32: 2170~2178.
    (34) 邵健,杨宇民.香兰醛改性壳聚糖处理含铅、镉工业废水[J].工艺试验,2000,2:37~40.
    (35) Yang X, Wang Y T, Tang Y R. Preparation and adsorption properties of metal ions of crosslinked chitosan azacrown ethers [J]. J. Appl. Polym. Sci., 1999, 74 : 3053~3058.
    (36) 金玉仁,李冬梅,张宝川,张连众,张利兴,韩世钧.磁性壳聚糖的制备及其对三价钢系和镧系元素的吸附性能研究[J].离子交换与吸附,1999,15(2):177~181.
    (37) Airoldi C, Monteiro I R. Chitosan-organsilane hybrids-syntheses, characterization, copper adsorption and enzyme immobilization [J]. J. Appl. Polym. Sci, 2000, 77: 797~804.
    (38) 曲荣君,刘庆俭,田福军,张秀香.水扬醛改性壳聚糖对金属离子的吸附性能[J].环境化学,1997,16(1):55~59.
    (39) 胡忠于,刘俊峰,易平贵,罗道成.改性壳聚糖对电镀废水中重金属离子的吸附[J].材料保护,2002,35(1):11~12.
    (40) 刘峥,田兴乐,蒋先明.交联壳聚糖缩水杨醛螯合物树脂的制备及性能研究[J].离子交换与吸附,1999,15(5):432~439.
    (41) Kawamura Y, Mitauhashi M, Tanibe H. Adsorption of metal ions on polyaminated highly porous chitin chelating resin [J]. Ind. Eng. Chem. Res., 1993, 32: 386~391.
    (42) Guibal E, Jansson-Charrier M, Saucedo I, Le Cloirce P. Enhancement of meltal ion sorption performances of chitosan: effect of the structure on the diffusion properties [J].Langmuir, 1995, 11: 591~598.
    (43) 谭淑英,汪玉庭,唐玉蓉.壳聚糖乙酸酯冠醚对金属离子的吸附性能的研究[J].环境科学,1999,20(3):59~62.
    (44) Knaul O Z, Hudson S M, Creber K A M. Improved mechanical properties of chitosan fibers [J]. J. Appl. Polym. Sci., 1997, 72(13): 1721~1732.
    (45) Guibal E, Milot C, Tobin J M. Metal-anion sorption by chitosan beads: equilibrium and kinetic studies [J]. Ind. Eng. Chem. Res., 1998, 37: 1454~1463.
    (46) Andrady A L, Torikai A, Kobatake T. Spectral sensitivity ofchitosan photodegradation [J]. J. Appl. Polym. Sci., 1996, 62: 1465~1471.
    (47) Peng C H, Wang Y T, Tang Y R. Synthesis of crosslinked chitosan-crown ethers and evaluation of these products as adsorbents for metal ions [J]. J. Appl. Polym. Sei., 1998, 70: 501~506.
    (48) 谭淑英,汪玉庭,彭长宏,唐玉荣,栾兆坤.Schiff碱型和仲胺型壳聚糖-冠醚对金属离子的络合性能[J].应用化学,1999,16(1):98~100.
    (49) Juang R S, Chen M N. Measurement of binding constants of poly (ethylenimine) with metal ions and metal chelates in aqueous media by ultrafiltration [J]. Ind. Eng. Chem. Res., 1996, 35: 1835~1943.
    (50) 曲荣君,刘庆俭.天然壳聚糖吸附剂研究Ⅱ.镍离子模板壳聚糖树脂的合成及特性[J].高分子材料科学与工程,1996,12(4):140~143.
    (51) 曲荣君,徐依斌,王春华.镍(Ⅱ)模板-缩二乙二醇双缩水甘油醚交联壳聚糖的合成及其吸附特性[J].环境化学,1996,15(3):214~220.
    (52) 金鑫荣,柴平海,张文清.低聚水溶性壳聚糖的制备方法及研究进展[J].化工进展,1998, 2:17~21.
    (53) 袁向华,蔡妙颜,郭祀远.壳低聚糖的制备与应用[J].生命的化学,2001,21(2):1657~167.
    (54) 李治,刘晓非,杨冬芝等,壳聚糖降解研究进展[J].化工进展,2000,6:20~23.
    (55) Varum K M, Ottoy M H, Smidsrod O, et al. Acid hydrolysis of chitosans [J]. Carbohydrate Polymers, 2001, 46: 89~98.
    (56) Allan G G, Peyron M, Molecular weight manipulation of chitosan I : kinetics of depolymerization by nitrous acid [J]. Carbohydrate Resaerch, 1995, 277: 257~272.
    (57) Kabl'nova N N, Murinov K Y, Mullagliev I R, et al. Oxidative destruction ofchitosan under the effect of ozone and hydrogen peroxide [J]. Journal of Applied Polymer Science, 2001, 81: 875~881.
    (58) 尹学琼.壳聚糖金属配位控制降解及低聚壳聚糖的应用研究[博士学位论文].昆明:昆明理工大学.2002.
    (59) Iwao Teraoka. Polymer solutions an introduction to physical properties [M]. New York: John Wiley & Sons, Inc., 2002, 1~324.
    (60) Qurashi M T, Blair H S, Allen S J. Studies on modified chitosan membranes I: Preparation and characterization [J]. J. Appl. Polym. Sci., 1992, 46: 255~261.
    (61) 孙彦平,李西忠.无机聚胺材料及制备方法,中国专利,ZL 200410064545.5,2004.
    (62) 王连军,黄中华等.膨润土的改性研究[J].工业水处理,1999,19(1):97~11.
    (63) 黎玄海,黄祖强等.膨润土酸活化工艺的试验研究[J].化工矿物与加工,2001,10:7~9.
    (64) Gates W P, Anderson J S, Raven M D, et al. Mineralogy of a bentonite from Miles, Queensland, Australia and characterisation of its acid activation products [J]. Applied Clay Science, 2002, 20: 189~197.
    (65) David W Jenkins, Samuel M Hudson. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers [J]. Chem.Rev. 2001, 101: 3245~3273.
    (66) 大森英三(日).功能性丙烯酸树脂[M].葛传樱译,北京:化学工业出版社,1993.27~279.
    [67] 李西忠,徐卫兵.纸塑复膜胶的研制[J].精细石油化工,1996,2:19~21.
    [68] Brandrup J, Immergut E H, Grulke E A. Polymer Handbook [M]. 4th ed, New York: John Wiley & Sons, 1999, 97~157.
    [69] 李西忠.三元接技氯丁橡胶胶粘剂[J].皮革化工1998,15(3):14~16.
    [70] 张震乾,路建美,王丽华等.交联聚乙烯胺的合成及性能研究[J].石油化工,2002,31(4):254~258.
    (1) Joseph W. Analytical electrochemistry [M]. 2nd ed, New York: John Wiley &Sons, INC., 2000, 1~138.
    (2) Katsuhiko Ariga, Toyoki Kunitake. Supramolecular chemistry-fundamentals and applications [M]. New York: Springer Berlin Heidelberg, 2006, 7~37.
    (3) 董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003,1~415.
    (4) Eric Bakker. Electrochemical Sensors [J]. Anal. Chem., 2004, 76: 3285~3298.
    (5) Keith J Albert, Nathan S Lewis, Caroline L Schauer, et al. Cross-reactive chemical sensor arrays [J]. Chem. Rev., 2000, 100: 2595~2626.
    (6) Gooding J Justin, Hibbert D Brynn, Yang Wenrong. Electrochemical metal ion sensors. Exploiting amino acids and peptides as recognition elements [J]. Sensors, 2001, 1 : 75~90.
    (7) Ibolya Bontidean, Josefin Ahlqvist, Ashok Mulchandani, Wilfred Chen. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection [J]. Biosensors and Bioelectronics, 2003, 18: 547~553.
    (8) Walcarius A, Despas C, Trens P, Hudson M J. Voltammetric in situ investigation of an MCM-41-modified carbon paste electrode a new sensor [J]. J. Electroanal. Chem., 1998, 453 : 249~252.
    (9) Christopher M A Brett. Electrochemical sensors for environmental monitoring. Strategy and examples [J]. Pure Appl. Chem., 2001, 73(12): 1969~1977.
    (10) Sharon Fireman-Shoresh, Iva Turyan, Daniel Mandler, et al. Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films [J]. Langmuir 2005, 21 : 7842~7847.
    (11) Kaneto K, Bidan G. Electrochemical recognition and immobilization of uranyl ions by polypyrrole film doped with calyx [6] arene [J]. Thin Solid Films, 1998, 331 : 272~278.
    (12) Moutet J C, Popescu A, Saint-A.man E, Tomaszewaki L. Electrochemical recognition of alkali metal cations by electrodes modified with poly [tris-(2, 2'-bipyridine) ruthenium (Ⅱ)] films [J]. Electrochim. Acta, 1998, 43(16-17): 2257~2262.
    (13) Zhan Dongping, Xiao Yanjing, Yuan Yi, et al. Electrochemical recognition of alkali metal ions at the micro-water 1, 2-dichloroethane interface using a calix [4] arene derivative [J]. J. Electroanal. Chem., 2003, 553: 43~48.
    (14) Sun Kil Kang, Taek Dong Chung, Hasuck Kim. Electrochemical recognition of Ca~(2+) ion in basic aqueous media using quinone-derivatized calix [4] arene [J]. Electrochim. Acta, 2000, 45: 2939~2943.
    (15) Alina C Ion, Jean-Claude Moutet, Alain Pailleret, et al. Electrochemical recognition of metal cations by poly (crown ether ferrocene) films investigated by cyclic voltammetry and electrochemical impedance spectroscopy [J]. J. Electroanal. Chem., 1999, 464: 24~30.
    (16) Paul D Beer, Philip A Gale, George Zheng Chen. Mechanisms of electrochemical recognition of cations, anions and neutral guest species by redox-active receptor molecules [J]. Coordin. Chem. Rev., 1999, 185-186: 3~36.
    (17) Jongseo Park, Sun Kil Kang, Taek Dong Chung, et al. Selective electrochemical recognition of ions in solution and at self-assembled monolayers [J]. Microchem. J., 2001, 68: 109~113.
    (18) Varma R S, Dahiya R Alberto Tarraga, Pedro Molina, et al. New strained ferrocenophane-based receptors for the Selective electrochemical recognition of Mg~(2+) in the presence of Ca~(2+) cations [J]. TetrahedronLetters, 2003 44: 3371~3375.
    (19) Cai Hong, Shang Chii, Hsing I-Ming. Sequence-specific electrochemical recognition of multiple species using nanoparticle labels [J]. Anal. Chim. Acta, 2004, 523:61~68.
    (20) Wang Fei, Xu Yan, Ye Bao-Xian, et al. Synthesis and structures of the new biferrocenamine-based receptor and its characterization of electrochemical recognition of transition metalions [J]. Inorg. Chem. Commun., 2006, 9: 797~801.
    (21) 江祖成,蔡汝秀,张华山.稀土元素分析化学[M].北京:科学出版社,2000,163~434.
    (22) 焦奎,高小霞.稀土元素的电分析化学研究—偶氮硝羧(CAN)作为稀土络合剂的极谱[J].中国科学(B辑),1985,4:306~1985,4:306~315.
    (23) 彭晖,黎拒难,李海.稀土(Ⅲ)—三溴偶氮胂络合物极谱吸附波的研究[J].理化检验.化学分册,1998,34(9):392~394.
    [24] Li Xizhong, Sun Yanping. Evaluation of ionic imprinted polymers by electrochemical recognition of rare earth ions [J]. Hydrometallurgy, 2007, 87:63~71.
    [25] David Harvey. Modem analytical chemistry [M]. New York: The McGraw-Hill Companies,Inc., 2000, 1~720.
    (1) 张立永.水性体系中分子印迹聚合物微球的制备及其特性[博士学位论文].天津:天津大学.2003.
    (2) Sergey Piletsky, Anthony Turner. Molecular imprinting of polymers [M]. Texas: Landes Bioscience, 2006, 1~198.
    (3) Alexandra Molinelli. Molecularly Imprinted Polymers: Towards a Rational Understanding of Biomimetic Materials [Doctor Dissertation]. Georgia: Georgia Institute of Technology. 2004.
    (4) Baggiani C, Trotta F, Giraudi G, et al. Chromatographic characterization of a molecularly imprinted polymer binding theophylline in aqueous buffers [J]. Journal of Chromatography A, 1997, 786 : 23~29.
    (5) Baggiani C, Giraudi G, Trotta F, et al, Chromatographic characterization of a molecular imprinted polymer binding cortisol [J]. Talanta, 2000, 51 : 71~75.
    (6) Baggiani C, Giraudi G, Giovannoli C, Trotta F, Vanni A. Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2, 4, 5-trichlorophenoxyacetic acid [J]. Journal of Chromatography A, 2000, 883: 119~126.
    (7) Hogendoom E, Van Z P. Recent and future developments of liquid chromatography in pesticide trace analysis[J]. Journal of Chromatography A, 2000, 892: 435~453.
    (8) Zheng N, Fu Q, Li Y Z, et al. Chromatographic characterization of sulfonamide imprinted polymers [J]. Microchemical Journal, 2001, 69: 55~60.
    (9) Khasawneh M A, Vallanol P T, Remcho V T. Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents Ⅱ. Covalent imprinted polymers[J]. Journal of Chromatography A, 2001, 922: 87~97.
    (10) Buchmeiser M R. New synthetic ways for the preparation of high-performance liquid chromatography supports [J]. Journal of Chromatography A, 2001, 918: 233~266.
    (11) Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics [J]. Journal of Chromatography A, 1997, 792: 401~409.
    [12] Schweitz L, Andersson L I, Nilsson S. Molecular imprint-based stationary phases for capillary electrochromatography [J]. Journal of Chromatography A, 1998, 817: 5~13.
    [13] Masque N, Marce R M, Borrull F, Cormack P. A.G. Sherrington D C. Synthesis and evaluation of a molecularly imprinted polymer for selective on-line solid-phase extraction of 4-nitrophenol from environmental water [J]. Anal. Chem., 2000, 72: 4122~4126.
    [14] Li XiZhong, Sun YanPing. Evaluation of ionic imprinted polymers by electrochemical recognition of rare earth ions [J]. Hydrometallurgy, 2007, 87: 63~71.
    [15] Ulmeanu S, Lee J L, Girault H H. Voltammetric characterisation of polyelectrolyte adsorption/transfer at the water |1, 2-DCE interface [J]. Electrochemistry Communications, 2001, 3, 539~543.
    [16] Florou A B, Prodromidis M I, Tzouwara-Karayanni S M, Karayannis M I. Fabrication and voltammetric study of lanthanum 2, 6-dichlorophenolindophenol chemically modified screen printed electrodes: Application for the determination of ascorbic acid [J]. Analytica Chimiea Acta, 2000, 423, 107~114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700