高强度Mg-Zn-Zr-Er合金组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZK60是目前商用镁合金中强度最高的一种,然而它还存在如绝对强度不够高,塑性不足等缺点。在改善合金塑性的同时,提高合金的强度是镁合金研究与应用中急需解决的关键问题之一。
     本课题在ZK60镁合金的基础上进一步提高Zn含量的同时,添加不同含量的稀土元素Er(wt%=0,0.5%,1.0%,2.0%,4.0%,下同),在满足晶界形成一定量稀土相的同时,充分发挥Zn在基体中固溶强化作用,以期提高合金的综合力学性能。本文通过金相(OM)、X-射线衍射分析(XRD)、差热分析(DSC)、扫描电镜(SEM+EDS)和透射电镜(TEM)等实验手段研究了不同Er含量合金在铸态、挤压前热处理、变形态以及后续热处理态显微组织,分析了稀土Er在合金中的存在形式及对各种状态下显微组织和力学性能的影响。
     研究结果表明,Mg-9Zn-0.6Zr合金铸态组织主要由α-Mg和晶界上大量的Mg-Zn共晶相组成。随着稀土Er的加入,合金中形成了2种不同Zn/Er比的Mg-Zn-Er稀土相。随着Er含量的增加,第二相体积分数呈增加趋势。一定量的稀土Er具有细化铸态组织的作用:不含Er合金的枝晶间距为102μm,添加稀土Er含量达到2.0%时,合金组织最细小,枝晶间距为32μm。
     热挤压过程中镁合金发生了明显的动态再结晶。稀土Er加入到Mg-9Zn-0.6Zr合金中,在挤压过程中起到促进纳米级球状MgZn_2相动态析出的作用,有效强化了合金。随着稀土Er含量的增加,纳米级球状MgZn_2析出相成减小趋势。稀土Er的加入有利于合金均匀塑性变形和均匀再结晶,Er含量为2.0%时,其挤压态晶粒尺寸最小,平均长径为7~8μm,平均短径为2~3μm。其中Er含量为0.5%的合金力学性能为σb=366MPa,σ0.2=313MPa,δ=22%。
     对挤压态合金进行了固溶、固溶时效以及直接时效热处理。结果表明,稀土Er加入到Mg-9Zn-0.6Zr合金中,形成的含Er稀土相具有阻碍再结晶晶粒长大和提高合金的组织热稳定性的作用。挤压后在400℃固溶1.5h,不加稀土Er以及Er含量为0.5%合金发生完全再结晶;稀土Er含量大于1.0%时,合金再结晶不完全。随着固溶时间延长至12h时,Er含量为1.0%,2.0%,4.0%的合金发生完全再结晶,组织由晶粒平均尺寸为7~8μm的等轴晶组成,其中Er含量为2.0%的合金组织最均匀。挤压后进行固溶时效处理,不含Er以及Er含量为0.5%的合金基体中析出了大量MgZn_2相,使得合金屈服强度较固溶态明显提高。而Er含量大于1.0%的合金屈服强度增加不明显。挤压后经直接时效,合金的屈服强度进一步提高,随着稀土Er的增加,增幅呈下降趋势,而塑性有所下降。这和基体中MgZn_2相的析出有关,随着稀土Er的增加,基体中MgZn_2相析出呈减少趋势。其中Er含量为0.5%的合金的力学性能为σb=372MPa,σ0.2=342MPa,δ=16%。对比挤压态和挤压后直接时效态合金发现,合金挤压过程中纳米级球状MgZn_2相的动态析出较时效过程中MgZn_2相的静态析出更加有优势,对提高合金屈强比的同时提高合金塑性更加有利。
Be the highest strength in commercial magnesium alloys, ZK60 alloy also has the highest specific strength in all the magnesium alloys. However, it still exist some defect such as low-absolute strength, poor-plasticity. So, to improve the strength while the plastic of the magnesium alloys is improved, became the urgently key problem to be solved in research and applications of magnesium alloy.
     In the present paper, base on the ZK60 magnesium alloy, in order to meet precipitation strength by rare-earth phase and solution strength by Zn content in matrix, to improve the comprehensive mechanical property, Zn content was improved to 9%, meanwhile different Er(wt%=0,0.5%,1.0%,2.0%,4.0%) content were added. Optical microscope, X-ray diffraction analysis(XRD), Differential Scanning Caborimetry(DSC), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and transmission electron microscopy(TEM) were used to study the microstructure of as-cast, heat-treatment before as-extruded, as-extruded and heat-treatment after as-extruded state. The forms of existence of Er in the alloys and its effect to microstructure and mechanical properties were studied under different conditions.
     The result indicate that the microstructure of as-cast Mg-9Zn-0.6Zr magnesium alloy was mainly consisted ofα-Mg and large amount of Mg-Zn eutectic phase. With Er addition, two types of thermally stable Er-bearing compounds with distinct Zn/Er ratio formed. The volume fraction of the second-phase particles increased with the increase of Er addition. The dendrite arm spacing gradually decreased with the increase of the Er addition, being the smallest at 2.0%Er, the average grain size is about 32μm(102μm without Er addition).
     Dynamic recrystallization occurred obviously during hot deformation. The addition of Er could bring about homogenous deformation behaviour and recrystallization behaviour to the alloy and it also promote dynamic precipitation of nano-scale spherical MgZn_2 phase to improve the strength of matrix. With the Er addition, the volume of nano-scale spherical MgZn_2 phase decreased. With 2.0%Er addition, the grain size of as-extruded alloy is smallest with its the average long axis and short axis are in the range of 7~8μm and 2~3μm, respectively. The mechanical properties of Mg-9Zn-0.6Zr alloy with 0.5% Er content areσb=366MPa,σ0.2=313MPa,δ=22%.
     Solution, age and solution plus age treatment have been done to as-extruded alloys with different Er addition. It is suggested that Er addition can increase the microstructure stability drastically and the Er-bearing particles have hindered grain growth during the solution treatment, leading to the smaller grain size in the Er-bearing alloy. Solution treatment at 400℃for 1.5h was carried out after extrusion. Perfect recrystallization occurred in the alloys without Er and with 0.5%Er. With more Er addition, some non-recrystallized grains exist in the alloys. While extend solid solution time to 12h, alloys with Er content 1.0%,2.0%,4.0% were consisted of equiaxial grain with 7~8μm in average scale. Because of a large amount of MgZn_2 phase were precipitated in age treatment at 200℃for 10h after solution treatment, the yield strength and the elongation of the alloys are increased. Age treatment after extrusion, the yield strength increased. With the Er addition, the increased range of the yield strength is decreased. It is ascribed to the precipitate of the MgZn_2 in the matrix. Compare with age treatment, the dynamic precipitation of fine MgZn_2 particles with a modified spherical morphology occurred during hot extrusion are more effective than static precipitation of MgZn_2 particles through subsequent long-time aging in improving the mechanical property. The mechanical properties of Mg-9Zn-0.6Zr alloy with 0.5% Er contentσb=372MPa,σ0.2=342MPa,δ=16%.
引文
[1] R.L.Edgar, Magnesium Alloys and their Application K.U.Kainer Pub, France, 2000:.3.
    [2] D.V.Hai, S.Itoh, S.Kamado and Y.Kojima. Finite element simulation of sheet forming process for magnesium wrought alloys[J]. Adv. Mater. Res, 2006, 11-12: 413-416.
    [3] S.Schumanm and H.Friendich, Mater.Sci.Forum, 2003,51: 419-422.
    [4] L.L.Rokhlin, Magnesium Alloys Containing Rare Earth Metals-Structure and Properties (Taloy & Francis Pub, Moscow,2003):83.
    [5] B.L.Mordike and T.Ebert. Magnesium properties-application-potential[J].Mater.Sci.Eng. A, 2001,302(1):37-45.
    [6] Aghion E, Bronfin B. Magnesium alloys development towards the 21’st century [J]. Mater.Sci.Forum, 2000, 350-351:19-28.
    [7]曹富荣,崔建忠,雷方.超轻镁合金的研究历史与发展现状[J].材料工程,1996,(09):3-5.
    [8]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.
    [9]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [10]曾小勤,王渠东,吕宜振,等.镁合金应用进展[J].铸造,1998,(11):39-43.
    [11] Cahn R W,丁道云等译.非铁合金的结构与性能[M].北京:科学出版社,1999.
    [12] Polmear. J. Recent development in light alloys[J]. Materials Trans,1996, 37(1):13-31.
    [13]张庆松.现代材料动态[M].第2版.北京:科学出版社,2002.
    [14] Si-Yong Chang. Microstructure and tensile properties of bi-materials with macro-interface between unreinforced Magnesium and composite[J]. Journal of alloys and Compounds, 2007,316(1-2):275-279.
    [15]余琨,黎文献,李松瑞.含稀土镁合金的研究与开发[J].特种铸造及有色合金,2001, 1(2):41-43.
    [16]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社,2004.
    [17] Hajime Iwasaki. Microstructure and Strength of Rapidly Solidified magnesium Alloys[J]. Light Metal Age,1999, 4(6):6-12.
    [18]刘正,范立坤.镁基快速凝固合金的研究与开发[J].汽车工艺与材料,2003,6(6):20-24.
    [19] Dr.Howard, I.Kaplan. The Future is Bright and Light[J]. Light Metal Age,1993,7(4):22-25.
    [20]张坤译.镁-今天的金属[M].国外金属加工,2002,2(2):1-6.
    [21] T. Mukai. Application of superplasticity in commercial magnesium alloy for fabrication of structural components[J]. Mater. Sci. Tech, 2000, 16(11-12):1314-1319.
    [22] I.J.Polmear. Magnesium alloys and application[J]. Mater. Sci.&Tech, 1994,10:1-16.
    [23] Ma Qian, P Cao. Discussions on grain refinement of magnesium alloys by carbon inoculation[J]. Scri.Mater, 2005,52(5):415-419.
    [24]谢明,刘建良.粉末冶金快速凝固技术与材料[J].云南冶金,2000,(3):26-32.
    [25] Balakrishna C, Teodora S N, Raghavan S. A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding[J]. Materials Science and Engineering A, 2005, 410-411:394-397.
    [26]张诗昌等.镁合金的熔炼工艺现状及发展趋势[J].特种铸造及有色合金,2000,(6):51-54.
    [27] Satio Y, Utsunomiya H, Suzuki H, et al. Improvement in the r-value of Aluminum strip by a continuous shear deformation process[J]. Scri mater, 2000, 42(12):1139-1144.
    [28]汪凌云,黄光胜,范永革.变形AZ31镁合金晶粒细化[J].中国有色金属学报,2003,13(3):594-598.
    [29]张世军,黎文献.镁合金的晶粒细化工艺[J].铸造,2001,3(7):373-375.
    [30]曾小勤,王渠东,吕宜振等.镁合金应用进展[J].铸造,1998,5(11):39-43.
    [31]吕新宇,王建国等.提高MB15镁合金挤压型材力学性能的研究[J].轻合金加工技术, 2000,28(6):22-24.
    [32] Lou A, Pekguleyruz M O. Review of cast magnesium alloys for elevated temperature application[J]. J.Mater.Sci, 1994, 29:52-59.
    [33]卢晨,卫中山,黄晓峰等.耐热镁合金的研究进展[J].铸造, 2005, 54(2):112-114.
    [34]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [35]郭旭涛,李培杰,曾大本.稀土在耐热镁合金中的应用[J].稀土, 2002,23(2):66-69.
    [36] P E沙林.金属材料中的稀土元素[J].材料工程, 1993,(1):1251-1253.
    [37]范才河,陈刚,严红革等.稀土在镁及镁合金中的作用[J].材料导报, 2005, 19(7):61-63.
    [38]于文斌,刘志义,程南璞等.稀土变形镁合金的研究和开发[J].材料导报, 2006, 20(11):65-72.
    [39] X. Gao and J.F. Nie. Characterization of strengthening precipitate phases in a Mg–Zn alloy[J]. Scr Mater,2007,56(8):645-648.
    [40] J.F. Nie. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J].Scr Mater,2003,48(8):1009-1015.
    [41] Ohara H. Light Metal. 1998, 48(8):422-424.
    [42] Bussiba A, Ben Artzy A, Shtechman A, et al. Grain refinement of AZ31 and ZK60 Mg alloys towards superplasticity studies[J]. Materials Science and Engineering A, 2001, 302(1):56-62.
    [43] Polmear I J. Magnesium alloys and applications[J]. Mater Sci Techn, 1994, 10:1-16.
    [44]徐光宪.稀土[M].北京:冶金工业出版社,1987.
    [45]陈广森,吴国华,黄玉光,王玮,卢展.高强高韧耐热镁合金的研究现状与展望[J].有色合金,2007,31(4):30-33.
    [46] Suzuki M,Sato H,Maruyama K,et al.Creep deformation behavior and dislocation substructures of Mg–Y binary alloys[J].Mater Sci Eng A,2001,319-321:751-755.
    [47] Suzuki M, Kimura T, Koike J, et al. Strengthening effect of Zn in heat resistant Mg–Y–Zn olid solution alloys[J]. Scr Mater,2003,48(8):997-1002.
    [48] Suzuki M, Kimura T, Koike J, et al. Effects of zinc on creep strength and deformation substructures in Mg–Y alloy[J]. Mater Sci Eng A.2004,387-389:706-709.
    [49] Chunjiang Ma, Manping Liu, et al. Tensile properties of extruded ZK60-RE alloys [J].Mater Sci Eng A,2003,349(1-2): 207-212.
    [50] Ya Zhang, Xiaoqin Zeng, et al. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys[J]. Mater Sci Eng A, 2004, 373(1-2):320-327.
    [51] L.L. Rokhlin.Magnesium alloys containing RE metals[M].Taylor and Francis Inc, London, 2003.
    [52]王忠军,张彩碚,崔建忠,乐启炽,邵晓宏,孙跃.铒和钕对铸态ZK60镁合金显微组织和力学性能的影响[J].中国稀土学报.2006,24(6):710-714.
    [53] H.T. Zhou, Z.D. Zhang C.M. Liu, Q.W. Wang .Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy[J].Mater Sci Eng A,2007, 445-446: 1-6.
    [54] L.Y. Wei, G.L. Dunlop, H. Westengen, The Intergranular Microstructure of Cast Mg-Zn and Mg-Zn-Rare Earth Alloys[J]. Metall. Mater. Trans. 1995,26(8) :1947-1955.
    [55] Glow B B. Magnesium Industry Overview [J]. Advanced Mater &Proc ,1996,150(4):33-34.
    [56] Froes F H , Eliezer D , Aghion E. The Science Technology and Applications of Magnesium [J]. JOM,1998 ,50(9):30-34.
    [57] Mordike B L, Ebert T.Magnesium Properties-applications-potential[J]. Materials Science and Engineering A, 2001,302(1):37-45.
    [58] Eliezer D, Aghion E F, Froes H S. Magnesium Science, Technology and Applications[J]. Advanced Performance Materials.1998,5(3):201-212.
    [59]潘复生,韩恩厚等.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.
    [60] M.R.Li, D.W.Deng, K.H.Kuo. Crystal structure the hexagonal (Zn,Mg)4Ho and (Zn,Mg)4Er[J]. J.Alloy Comp. 2006,37(26):66-72.
    [61] Jing Zhang, Xufeng Zhang, Weiguo Li, Fusheng Pan, Zhengxiao Guo. Partition of Er among the constituent phases and the yield phenomenon in a semi-continuously cast Mg-Zn-Zr alloy[J]. Scr Mater, 2010,63(4):367-370.
    [62] Ino S E, Humphreys F J, White S H. Dynamic recrystallisation and the development ofmicrostructure during the high temperature deformation of magnesium[J]. Acta Mater, 1982, 30(10):1909-1919.
    [63] Clark JB. Transmission electron microscopy study of age hardening in a Mg–5 wt.% Zn alloy[J]. Acta Metall,1965,13(12):1281–1289.
    [64] Gao X, Nie JF. Characterization of strengthening precipitate phases in a Mg–Zn alloy[J]. Scr Mater,2007,56(8):645–648.
    [65] Embury JD, Nicholson RB. The nucleation of precipitates: the system Al–Zn–Mg[J]. Acta Metall,1965,13(4):403–417.
    [66] Shin D, Wolverton C. First-principles density functional calculations for Mg alloys: A tool to aid in alloy development[J]. Scr Mater,2010,63(7):680-685.
    [67] J.Bohlen, M.R.Nurnberg, J.W.Senn, D.Letzig.S.R.Agnew. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets.Acta Mater, 2007,55(6):2101-2112.
    [68] Y.Chino, M.Kado, M.Mabuchi. Compressive deformation behavior at room temperature 773K in Mg-0.2mass% Ce alloy[J]. Acta Mater.2008,56(3):387-394.
    [69] Y.Chino, M.Kado, M.Mabuchi. Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2wt% (0.035at%) Ce[J]. Mater.Sci.Eng.A, 2008,494 (1-2):343-349.
    [70] Kubota K, Mabuchi M, Higashi K. Review processing and mechanical properties of finegrained magnesium alloys[J]. Journal of Materials Science, 1999, 34(10):4311-4320.
    [71] Ding WJ, Li DQ, Wang QD, Li Q. Microstructure and mechanical properties of hot-rolled Mg–Zn–Nd–Zr alloys. Mater Sci Eng A,2008,483–484:228–230.
    [72] Hono K, Mendis CL, Sasaki TT, Oh-ishi K. Towards the development of heattreatable high-strength wrought Mg alloys[J]. Scr Mater,2010,63(7):710-715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700