位移—力反馈轴向变量柱塞泵控制特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文章以博世力士乐公司生产的A4VSG750-HD型斜盘式柱塞变量泵变量机构为研究对象,通过分析柱塞泵的变量机构内部结构与工作原理,建立A4VSG-HD型液压轴向柱塞泵双向变量机构的数学模型;基于AMESim建立轴向柱塞泵的变量机构模型,分析控制性能与弹簧刚度、预压缩量等关键参数的关系,并在试验装置上对仿真模型的正确性进行验证。具体研究顺序如下:
     首先以A4VSG750-HD斜盘式轴向柱塞泵为实体建立三维模型。通过分析柱塞泵的变量机构的内部结构与工作原理,建立A4VSG-HD型液压轴向柱塞泵双向变量机构的数学模型,得出影响柱塞泵控制特性的决定性因素。在UG三维设计软件建立的斜盘式柱塞泵装配模型基础上,联合液压系统仿真软件AMESim和多体系动力分析仿真软件ADAMS,通过两者之间的接口,建立整个柱塞泵的联合仿真模型,利用模型之间的数据传递,建立了斜盘式柱塞泵的机液一体化模型。
     其次在AMESim中,对A4VSG750-HD型轴向柱塞泵的变量机构进行仿真,分析变量机构中各个部件对控制特性和动态特性的影响,并通过四组阀芯中心复位弹簧验证数学模型的正确性。
     最后在试验装置上,对A4VSG750-HD型轴向柱塞泵的变量机构进行实验验证。得到如下结论:
     A4VSG-HD型轴向柱塞泵的控制装置对泵的排量调节与先导控制压力有关,泵的排量与先导控制压力成比例关系;伺服阀中心复位弹簧的参数和阀芯端面面积,为变量机构控制范围主要决定因素;系统负载压力、伺服阀左右复位弹簧的刚度以及先导控制压力对变量机构的动态特性有比较明显的影响;本文仿真研究结果与实验结果基本一致,说明本文所建立的变量机构模型是正确的,所得出的结论也具有普遍性,有利于以后斜盘式变量泵变量机构的设计与优化。
The research object in this paper is the variable-displacement device of A4VSG750-HD series hydraulic swashplate axial piston pump, which is produced by REXROTH. Mathematical model of variable-displacement device is developed by analyzing the internal structures and the operating principles of the servo valve and the variable-displacement cylinder. A simulation model for the variable-displacement device is established based on AMESim, and the relationship between the control performance and the key parameters as spring rate and pre-compression stroke. The correctness of the simulation model is tested by experiment through the test device. The specific work in the following order:
     First, a three-dimensional model of the A4VSG750-HD series swashplate axial piston pump is established. Mathematical model of variable-displacement device within A4VSG-HD series hydraulic axial piston pump is established by analyzing the internal structures and the operating principles of the servo valve and the variable-displacement cylinder, and the determining factor influencing the control characteristic is found out. The swashplate axial piston pump assembly model is established in the UG three-dimensional design software. Hydraulic system simulation software AMESim and multi-system dynamic analysis and simulation software ADAMS are combined together. The co-simulation model of axial piston pump is established through the interface between the two softwares.
     Second, simulations are performed for the variable-displacement device within A4VSG750-HD series hydraulic axial piston pump in AMESim, analyzing the influences of the control characteristics and dynamic characteristics from the components of the variable-displacement device. At the same time, test the Mathematical model by four group of central return-springs in valve plug.
     Finally, test the variable-displacement device within A4VSG750-HD series hydraulic axial piston pump by experiment through the test device, then get the following conclusions:
     The control hydraulic pressure is connected to output volume when the variable-displacement device of hydraulic axial piston pump operates. The output volume of the pump is proportional to the control hydraulic pressure. The parameters of central return-spring in servo valve and the area of the head face at servo value are the determining factors. They determine the control range of the variable-displacement device. The dynamic characteristic is remarkably affected by load pressure of the system, the parameters of the left and right sides return-springs of the servo value and The control hydraulic pressure. In this paper, the simulation results are basically in accordance with the experimental results. It means that the simulation model of the variable-displacement device is correct. The conclusions drawn by this paper are universal. It helps to the design and the optimization of the variable-displacement device.
引文
[1]徐国俊.大容量轴向柱塞泵的变量机构[J].CMET.锻压装备与制造技术,1977:(2)
    [2]李新平,刘静.机械反馈式比例泵变量特性分析与仿真[J].机床与液压,2002:(1)
    [3]邓斌.水压轴向柱塞泵的特性研究与分析[D].西南交通大学2004
    [4]翟培祥.斜盘式轴向柱塞泵设计[M].煤炭工业出版社,1978
    [5]丛庄远,刘震北.液压技术基本理论[M].哈尔滨工业大学出版社,1989:62-63
    [6]王占林,焦守夏.变量机构主要参数的优化设计[J].机床与液压,1993:(6)
    [7]鲍春燕,王海栓.新型轴向柱塞液控伺服变量泵[J].矿业快报,2000:(9)
    [8]路甫样.液压气动设计手册[M].机械工业出版社2002
    [9]许福玲,陈尧明.液压与气压传动[M].机械工业出版社,2001
    [10]范政武.位移-弹簧-力反馈流量控制元件的设计和参数研究[D].太原理工大学,2008
    [11]王国志.电液比例轴向变量柱塞泵的特性研究[D].西南交通大学,2009
    [12]Osama Gad, M. Galal Rabie, Refaat M. El-Taher, Prediction and Improvement of Steady-State Performance of a Power Controlled Axial Piston Pump. Journal of Dynamic Systems, Measurement, and Control,2002, Vol.124, No.3
    [13]范政武,权龙.位移-力反馈原理斜轴式变量柱塞泵特性研究[J].第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集,2008
    [14]卢堃,李开玫.新型径向柱塞泵液控伺服变量机构的研究[J].甘肃工业大学学报,1999:25(3)
    [15]安高成,王明亮.泵变量机构的模块化设计研究[J].太原科技大学学报.2006:27(5)
    [16]李泽松,寇子明.A4VG系列变量泵伺服机构动态特性分析[J].煤矿机电.2005(5)
    [17]Alessandro Roccatello, Salvatore Manco, Nicolas Nervegna. Modelling a Variable Displacement Axial Piston Pump in a Multibody Simulation Environment[J]. Journal of Dynamic Systems, Measurement, and Control,2007:129(4)
    [18]陈鹰,谢英俊,徐立.液压仿真技术的新进展[J].液压与气动,1997:(1)152-154
    [19]李伯虎,柴旭东.信息时代的仿真软件[J].系统仿真学报,1999:(11)97-98
    [20]Anthon Espoide. Fluid Power with Application. Englewood CliffN. J. Prentice Hall, 1988.1-29
    [22]TB Krik. Computer Imagine Analysis of Wearde bris for Machine Condition Monitoringan Fault Diagnosis Wear,1995,18:717-722
    [23]Geoffrey. Gordon System Simulation Prentice-HallEn glewoodlifs, New Jersey:2-5
    [24]Wiliam. Reeves The Technology of fluid Power Englewood Clifs, N. J. Prentice. Hall 1987:37
    [25]Hitchcox A. Software Aids Fluid Power System Design. Hydraulics&Pneumatics,1991
    [26]杨智炜,徐兵,张斌.基于虚拟样机技术的轴向柱塞泵特性仿真[J].液压气动与密封,2006:(3)
    [27]苏东海,于江华.液压仿真新技术AMESim及应用[J].计算机应用技术,2006:33(11)
    [28]江玲玲.基于AMESim的液压系统动态特性仿真与优化[D].西南科技大学,2007
    [29]王占森.AMESim系统建模和仿真从入门到精通[M].北京航空航天大学出版社,2005
    [30]施康.基于AMESim仿真的电液伺服系统故障诊断研究[D].武汉科技大学,2009
    [31]郭勇,王勇刚.基于AMESim轴向柱塞泵的建模与仿真研究[J].现代制造工程,2008:(11)
    [32]贾旭.斜盘式轴向斜柱塞泵动力学关键特性研究[D].西南交通大学,2008
    [33]徐绳武.柱塞式液压泵[M].机械工业出版社,1985
    [34]Rexroth. RC92080/01.06[Z]
    [35]何明,周聚.A4VSO_LRGF变量泵的静特性分析[J].鞍钢技术,1992:(11)
    [36]冯世波.A4V系列变量泵的开发与应用.液压气动与密封[J].1999(4):16—19.
    [37]刘健.A4V变量泵伺服变量原理及试验研究[J].矿山机械.2007(10):128—130.
    [38]明仁雄.机液伺服控制系统的综合仿真模型[J].液压气动与密封,2001:(4)
    [39]江国耀.力土乐AV系列高压柱塞泵发展概况[J].建筑机械,2003(7):6-9
    [40]李永堂.液压系统建模与仿真.冶金工业出版社[M],2005
    [41]张弓.超高速电液比例阀的研究[D].西南交通大学,2008
    [42]张甲林,宋宇.斜盘式轴向比例变量泵控制系统建模与仿真[J].科技信息.2007(2):26—28.
    [43]杨华勇,张斌,徐兵.轴向柱塞泵/马达技术的发展演变[J].机械工程学报,2008(10)
    [44]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].浙江大学2009
    [45]MSC. ADAMS interface Version4.2-summer 2004. IMANGINE S. A.,2004
    [46]刘仙船.基于虚拟样机的斜柱塞泵仿真研究[D].西南交通大学,2009
    [47]郑建荣.ADAMS虚拟样机技术入门与提高[M].机械工业出版社,2002
    [48]王国强等.虚拟样机技术及其在ADAMS上的实践[M].西北工业大学出版社,2002
    [49]NOVOtechnik. Angle Sensor Touchless Technology Transmissive, Series RFC4800 Model 600.
    [50]HYDAC. Electronic Pressure Transmitter HDA 3700[Z].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700