结构整体可靠度方法及RC框架非线性整体抗震可靠度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的地震工程(Performamance-Based Earthquake Engineering, PBEE)和基于性能的抗震设计(Performance-Based Seismic Design, PBSD)是美国太平洋地震工程研究中心(Pacific Earthquake Engineering Research, PEER)提出的新一代抗震设计理念、方法与技术,得到了全球地震工程界的研究者和工程师们的热烈响应。由于地震的发生在时间、空间和强度上具有强烈的随机性,地震地面运动具有随机过程和随机场特性;另外,工程结构的地震需求和抗震能力方面都存在大量的不确定性,因此将PBEE和PBSD建立在基于结构可靠度理论的概率设计方法之上非常必要,基于可靠度理论的概率抗震性能评估也成为PBEE和PBSD的主要研究内容之一。
     结构体系的抗震可靠度是对结构概率地震风险评定的定量衡量,近年来出现了利用结构整体极限状态来近似计算结构体系可靠度的趋势,新一代PBEE也将基于结构整体可靠度的地震风险作为主要的研究目标。基于上述原因,本文分别从基本变量模型和状态变量模型入手,发展了两类高效的整体可靠度方法——广义一次可靠度方法(first order reliability method, FORM)和改进高阶矩法(higher order moment method, HOMM);然后以按我国规范设计的钢筋混凝土框架结构为研究对象,以结构整体抗震可靠度为主要研究内容,以结构整体抗震安全性评估为研究目的,分别针对承载能力、变形能力、地震损伤和连续倒塌四种整体极限状态方程,采用所提出的广义FORM和改进HOMM方法,对结构整体的抗震可靠性和鲁棒性进行了系统深入的研究。本文的主要研究内容如下:
     1)将基于正态分布的Nataf变换拓展到基于Copula函数的广义Nataf变换,提出了基于广义Nataf变换的扩展一次可靠度方法(Extended FORM,EFORM),该方法可以有效地考虑随机变量之间的非线性相关性;在此基础上,提出了考虑参数不确定性的模糊一次可靠度方法(Fuzzy FORM,FFORM);针对结构整体可靠度的基本变量模型,在MATLAB平台和OpenSees软件上实现了基于广义FORM(EFORM和FFORM)的结构整体可靠度分析。算例分析表明,本文提出的广义FORM法可以有效地考虑随机变量之间的非线性相关性和随机变量参数的不确定性。
     2)基于广义Nataf变换,提出了一种考虑随机变量边缘分布和相关性信息的改进点估计法;将改进点估计法与最大熵方法相结合,提出了改进的高阶矩法(HOMM);针对结构整体可靠度的状态变量模型,实现了基于改进HOMM的结构整体可靠度分析。算例分析表明,本文提出的改进HOMM法不仅具有与FORM相同的精度,而且计算效率比FORM高。
     3)按照我国规范,在同一设防烈度下设计了三个不同高度的钢筋混凝土框架结构作为研究对象,并在OpenSees中对结构进行了有限元建模。通过与钢筋混凝土构件(柱)和结构整体的实验结果对比,验证了本文所建立OpenSees模型的合理性。对此三个结构进行了确定性的抗震性能分析,得到了其主要的抗震性态特征。
     4)建立了钢筋混凝土框架结构的整体承载能力极限状态方程;将广义FORM和改进HOMM方法分别与确定性Pushover方法相结合,提出了基于FORM的设计点Pushover方法和基于改进点估计法的随机Pushover方法,对比分析表明,两种方法具有较好的一致性;将两种方法应用于钢筋混凝土框架结构整体承载能力极限状态的非线性静力抗震可靠度分析,得到了结构整体承载能力极限状态抗震可靠度指标及灵敏度指标的变化规律,获得了基于整体承载能力的静力地震易损性曲线。
     5)建立了钢筋混凝土框架结构的整体变形能力极限状态方程;将广义FORM和改进HOMM方法分别与确定性能力谱法相结合,提出了基于FORM的设计点能力谱法和基于改进点估计法的随机能力谱法,对比分析表明,两种方法具有较好的一致性;将两种方法应用于钢筋混凝土框架结构整体变形能力极限状态的非线性静力抗震可靠度分析,得到了结构整体变形能力极限状态抗震可靠度指标及灵敏度指标的变化规律,获得了基于整体变形能力相应于不同破坏状态的静力地震易损性曲线。
     6)建立了钢筋混凝土框架结构的整体地震损伤极限状态方程,提出了基于点估计法的结构动力反应概率密度演化方法;采用20条实际地震动和两种人工地震动,同时考虑地震动和结构的随机性,采用点估计法进行了结构整体动力反应分析及其参数灵敏度分析,得到了结构整体变形反应和整体损伤指标的概率密度演化曲线,采用改进HOMM方法、首次超越准则以及累积损伤准则,对基于整体损伤指标的地震损伤极限状态进行了非线性动力抗震可靠度分析,得到了结构整体地震损伤极限状态抗震可靠度指标的变化规律。
     7)从“偶然事件”、“局部损伤”、“不成比例破坏”和“失效后果”四个方面给出了结构鲁棒性的新定义;建立了钢筋混凝土框架结构的整体连续倒塌极限状态方程;提出了基于构件抗震可靠度分析的结构最可能失效构件识别方法;将改进点估计法分别与确定性的静力Pushdown分析(PDA)和竖向增量动力分析(incremental dynamic analysis,IDA)方法相结合,提出了随机Pushdown分析方法和随机竖向IDA方法,采用此两种方法分别对完好结构和损伤结构的概率抗竖向连续倒塌能力及参数灵敏度进行了分析,采用全概率公式得到了考虑地震危险性的结构连续倒塌失效概率;在此基础上,利用基于条件可靠度和整体可靠度的鲁棒性指标,研究了结构整体抗震鲁棒性指标的变化规律,定量地揭示了结构的抗震鲁棒性与结构局部损伤之间的相互关系。
Performance-based earthquake engineering (PBEE) and performance-basedseismic design (PBSD), proposed by the Pacific Earthquake Engineering ResearchCenter (PEER), are a new-generation seismic design concept, method and technique.They have been warmly responded by the world-wide earthquake engineeringresearchers and engineers. Due to the strong randomness in occurring time, spaceand intensity of earthquakes, and also because of a lot of uncertainties in bothseismic demand and seismic capacity of civil engineering structures, it is necessaryto build a probabilistic framework of PBEE and PBSD based on structuralreliability theory. Nowadays, the probabilistic seismic performance evaluationbased on reliability has become one of the main research points of PBEE and PBSD.
     Seismic reliability of structural systems is a quantitative measure ofprobabilistic seismic risk of civil infrastructures. Recently, a new trend of systemreliability analysis based on structural global limit states has emerged. Furthermore,the new-generation PBEE also takes the systematic seismic risk based on structuralglobal reliability as the main research objective. Based on the above considerations,in this dissertation, two efficient global reliability methods, i.e. the generalized firstorder reliability method (FORM) and the improved higher order moment method(HOMM), are developed from the viewpoint of the basic variable model and thestate variable model, respectively. And then, three reinforced concrete (RC) framestructures are designed according to Chinese codes, which are taken as the researchobjects of case studies in this dissertation. The seismic reliability of these RCframes is the main research contents of this dissertation, and the assessment ofseismic safety of these RC frames is the ultimate research goal of this thesis. Usingthe developed generalized FORM and improved HOMM, the global reliability androbustness of the case-study RC frames are systematically and deeply studied fromthe aspects of four global limit states, i.e., global load carrying capacity, globaldeformation capacity, global seismic damage and global progressive collapse,respectively. The main research contents of this dissertation are summarized asfollows:
     1) The traditional Nataf transformation based on normal distributions isextended to the generalized Nataf transformation based on Copula functions. Thenan extended first order reliability method (EFORM) using the generalized Nataftransformation is developed to consider the nonlinear dependence among therandom variables. Furthermore, a fuzzy first order reliability method (FFORM)considering parameter uncertainties is put forward. For the basic variable model of structural global reliability, the generalized FORM (EFORM and FFORM) isrealized in the software MATLAB and the FEA platform OpenSees. It isdemonstrated through the numerical examples that the proposed generalized FORMcan effectively take into account the nonlinear dependence among the randomvariables and the epistemic uncertainty of parameters of random variables.
     2) An improved point estimate method (IPEM), which can incorporate themarginal distributions and the correlation information of random variables, ispresented based on the generalized Nataf transformation. And then, an improvedhigher order moment method (IHOMM) is developed by combining the IPEM withthe maximum entropy principle. For the state variable model of structural globalreliability, the improved HOMM is realized in the software MATLAB and the FEAplatform OpenSees. It is demonstrated through the numerical examples that thedeveloped higher order moment method (IHOMM) has the same accuracy as FORM,while the former is more efficient than the latter.
     3) Three RC frame buildings with different floors under the same seismicfortification intensity are designed according to the current Chinese codes. Thesestructures are modeled in the platform OpenSees. Through comparing with the testdata of RC elements (columns) and a global structure shaking table test in TsinghuaUniversity, the developed OpenSees models are verified and validated to beadequate to describe the nonlinear behavior of the case-study structures. Thedeterministic seismic performance analysis is carried out for the three structures,and their main seismic behaviors and properties are obtained.
     4) The global load-carrying capacity limit state equation is established for theRC frame structures. Through the combination of the generalized FORM and theimproved HOMM with the deterministic Pushover analysis, a FORM-based design-point pushover method and a HOMM-based random pushover method aredeveloped, respectively. It is illustrated through the comparative study that the twomethods have a good agreement. The two approaches are then applied to thenonlinear static seismic reliability analysis of structural global load carryingcapacity limit state, and the variation rules of global seismic reliability indices andsensitivity factors are obtained. Furthermore, the static seismic fragility curves arederived for the global load carrying capacity.
     5) The global deformation capacity limit state equation is set up for the RCframe structures. By way of the combination of the generalized FORM and theimproved HOMM with the deterministic capacity-spectrum method (CSM), theFORM-based design-point CSM and HOMM-based random CSM are presented,respectively. Comparative study shows that the two methods have a goodconsistency. The two methods are then applied to the nonlinear static seismicreliability analysis of structural global deformation capacity limit state, and the changing regularities of global seismic reliability indices and sensitivity factors areobtained. Furthermore, the static seismic fragility curves corresponding to differentdamage states are given for the global deformation capacity.
     6) The global seismic damage limit state equation is established for the RCframe structures. A new probability density evolution approach for structuraldynamic responses based on the improved point estimation method (IPEM) isproposed. Using20real earthquake records and2artificial earthquake records asinputs, the global dynamic response and the global parameter sensitivity ofstructures are analyzed using the IPEM, and the probabilistic density evolutioncurves of structural global dynamic responses are derived. Employing the improvedHOMM, the first-passage criteria and the cumulative damage criteria, the nonlineardynamic seismic reliability analysis are implemented for global seismic damagelimit state of structures; and the change rules of global dynamic reliability indicesof structures are discovered.
     7) A new definition of structural robustness is given from four aspects ofoccasional event, local damage, disproportional failure, and failure consequences. Aglobal progressive collapse limit state equation is established for the RC framestructures. A method for identifying the most probable failure members is proposedbased on local seismic reliability analysis of structural members. A randompushdown method and a random vertical IDA method are presented via the couplingof the IPEM with the deterministic pushdown analysis (PDA) and verticalincremental dynamic analysis (IDA). The two methods are used to analyze theprobabilistic progressive collapse resistant capacity and the parameter sensitivitiesof the intact structures and the damaged structures. With the total probabilitytheorem, the progressive collapse probability with the consideration of seismichazard is derived. On the basis of the above computations, the robustness indicesbased on the conditional reliability and the global reliability are evaluatedrespectively, and the changing rules of structural robustness are studied, in whichthe relationships between global robustness and local damage of structures arequantitatively revealed.
引文
[1] Bertero V V. Overview of seismic risk reduction in urban areas: role,importance and reliability of current U.S. seismic code performance-basedseismic engineering [C]. Proceeding of China United States BilateralWorkshop on Seismic Codes, Guangzhou, China,1996.
    [2] FEMA-354. A policy guide to steel moment frame construction [R]. FederalEmergency Management Agency,2000, Washington, D.C.
    [3] Cornell C A. Risk based structural design [C]. Proceedings of Symposium onRisk Analysis, Nowak A., Ed., Department of Civil Engineering, University ofMichigan,1994:37-48.
    [4] Applied Technology Council (ATC). Seismic evaluation and retrofit ofconcrete buildings: Volume1[R]. California Seismic Safety Commission,ATC40.
    [5] FEMA-273. NEHRP guidelines for the seismic rehabilitation of buildings [R].Federal Emergency Management Agency.1997, Washington, D.C.
    [6] Housner G W. Limit design of structures to resist earthquake [J]. Proceedingof First World Conference on Earthquake Engineering. Berkeley,1956:109-129.
    [7]周云,周福霖.耗能减震体系的能量设计方法[J].世界地震工程,1997,13(4):7-13.
    [8] Park Y J, Ang H S, Wen Y G. Damage limiting seismic design buildings [J].Earthquake Spectra.1987,3(1):1-26.
    [9]欧进萍,何政,吴斌,邱法维.钢筋混凝上结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
    [10] Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonrybuildings [M]. New York: John Wiley&Sons, Ins.1992.
    [11]叶列平.体系能力设计法与基于性态/位移抗震设计[J].建筑结构,2004,34(6):10-14.
    [12] Newmark N M, Hall W J. Earthquake spectra and design [M]. EarthquakeEngineering Research Institute in Berkeley,1982.
    [13]吕大刚,宋鹏彦,于晓辉,贾明明,王光远.土木工程结构抗震可靠度理论的研究与发展[J].第二届结构工程新进展国际论坛论文集,2008:775-787.
    [14] Bertero R D, Bertero V V. Performance based seimic engineering: the need fora reliable conceptual comprehensive approach [J]. Earthquake Engineeringand Structural Dynamics,2002.31(7):627-652.
    [15] CECS160.建筑工程抗震性态设计通则(试行)[S].北京:中国工程建设标准化协会,2004.
    [16] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [17] FEMA-350. Recommended seismic design criteria for new steel momentframe buildings [R]. Federal Emergency Management Agency,2000.Washington, D.C.
    [18]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社,2001.
    [19] Gorman M R, Moses F. Direct estimates of structural system reliability [C].Proceeding ASCE7th Conference on Electronic Computation, Missouri,1979:432-445.
    [20] Nowak A S, Zhou J H. System reliability models for bridges [J]. StructuralSafety,1990,7(2-4):247-254.
    [21] Zhao Y G, Ono T. System reliability evaluation of ductile frame structures [J].ASCE Journal of Structural Engineering,1998,124(6):678-685.
    [22] Sigursdon G, Skjong R, Skallerud B, et al. Probabilistic collapse analysis ofjackets [C]. Proceeding of the13th International Conference on OffshoreMechanics and Arctic and Engineering, Houston,1994,2:367-379.
    [23] Onoufriou T, Forbes V J. Developments in structural system reliabilityassessments of fixed steel offshore platforms [J]. Reliability Engineering andSystem Safety,2001,71:189-199.
    [24]欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用[J].建筑结构学报,2001,22(6):81-86.
    [25]欧进萍,段忠东,肖仪清.海洋平台结构安全评定—理论、方法与应用[M].北京:科学出版社,2003.
    [26]李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2004.
    [27] Li G Q, Li J J. A semi-analytical simulation method for reliability assessmentsof structural systems [J]. Reliability Engineering and System Safety,2002,78:275-281.
    [28]李国强,刘玉姝,赵欣.钢结构框架体系高等分析与系统可靠度设计[M].北京:中国建筑工业出版社,2006.
    [29] Li J J, Li G Q. Reliability based integrated design of steel portal frames withtapered members [J]. Structural Safety,2004,26(2):221-239.
    [30]吕大刚,宋鹏彦,于晓辉,王光远.结构整体抗震可靠度分析的三类模型与求解方法[J].土木建筑与环境工程,2010,32(Sup.II):676-680.
    [31] Lin H Z. Methods for structural system reliability analysis [D]. Ph.D.Dissertation, University of California, Berkeley, USA,1990.
    [32] Bucher C G, Schueller G I. Software for reliability based analysis [J].Structural Safety,1994,16(1):13-22.
    [33] Borri A, Speranzini E. Structural reliability analysis using a standarddeterministic finite element code [J]. Structural Safety,1997,19(4):361-382.
    [34] Au S K, Beck J L. First excursion probabilities for linear systems by veryefficient importance sampling [J]. Probabilistic Engineering Mechanics,2001,16(3):193-207.
    [35] Au S K, Beck J L. Importance sampling in high dimensions [J]. StructuralSafety,2002,25(2):139-163.
    [36] Au S K. Probabilistic failure analysis by importance sampling Markov Chainsimulation [J]. Journal of Engineering Mechanics,2004,130(3):303-311.
    [37] Au S K, Beck J L. Subset simulation and its application to seismic risk basedon dynamic analysis [J]. Journal of Engineering Mechanics,2003,129(8):901-917.
    [38] Koutsourelakis P S, Pradlwarter H J, Schueller G I. Reliability of structures inhigh dimensions, part I: Algorithms and applications [J]. ProbabilisticEngineering Mechanics,2004,19(4):409-417.
    [39] Koutsourelakis P S. Reliability of structures in high dimensions, part II:Theoretical validation [J]. Probabilistic Engineering Mechanics,2004,19(4):419-423.
    [40] Der Kiureghian A, aylor R L. Numerical methods in structural reliability [C].The Fourth International Conference on Applications of Statistics andProbability in Soil and Structural Engineering (ICASP4). Florence, Italy, June1983:769-784.
    [41] Haldar A, Zhou Y. Reliability of geometrically nonlinear PR frames [J].Journal of Engineering Mechanics, ASCE,1992;118(10):2148-2155.
    [42] Haldar A, Mahadevan S. Reliability assessment using stochastic finite elementanalysis [M]. Wiley, New York.2000.
    [43] Kiyohiro Imai, Dan M. Frangopol. Geometrically nonlinear finite elementreliability analysis of structural systems I–theory [J]. Computers&Structures,2000,(77):677-691.
    [44] Hissada T, Nakagiri S. Stochastic finite element method developed forstructural safety and reliability [C]. Proceeding3th International Conferenceon Structural Safety and Reliability,1981.
    [45] Vanmarcke E, Shinozuka M, Nakagiri S. Random fields and stochastic finiteelement [J]. Structural Safety.1986,(3):143-166.
    [46] Ghanem R G, Spanos P D. Spectral stochastic finite element formulation forreliability analysis [J]. ASCE, EM,1991,117(10):2351-2372
    [47]吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990.
    [48]陈虬,刘先斌.随机有限元法及其工程应用[M].成都:西南交大出版社,1993:1-40.
    [49]秦权.随机有限元及其进展I.—随机场的离散和反应矩的计算[M].工程力学,1994,11(4):1-10.
    [50]秦权,林道锦,梅刚.结构可靠度随机有限元─理论及工程应用[M].北京:清华大学出版社,2006.
    [51]刘宁.可靠度随机有限元法及其工程应用[M].北京:中国水利水电出版社,2001.
    [52] Cornell C A, et al. The probabilistic basis for the2000SAC/FEMA steelmoment frame guidelines [J]. Journal of Structural Engineering, ASCE,2002,128(4):526-533.
    [53] Jalayer F. Direct probabilistic seismic analysis: implementing nonlineardynamic assessments [D]. Ph.D. Dissertation. Department of Civil andEnvironmental Engineering, Stanford University, Stanford, CA,2003.
    [54] Lupoi G, Lupoi A, Pinto P E. Seismic risk assessment of RC structures withthe “2000SAC/FEMA” method [J]. Journal of Earthquake Engineering,2002,6(4):499-512.
    [55] Kim T, Foutch D A. Application of FEMA methodology to RC shear wallbuildings governed by flexure [J]. Engineering Structures,2007,29(10):2514-2522.
    [56] Jalayer F. Direct probabilistic seismic analysis: implementing nonlineardynamic assessment [D]. Ph.D. Dissertation, Stanford University, USA,2003.
    [57]吕大刚,于晓辉,潘峰,王光远.基于改进云图法的结构概率地震需求分析[J].世界地震工程,2010,26(1):23-32.
    [58]于晓辉,吕大刚,王光远.多级力控制随机Pushover方法[J].工程力学,2010,27(Sup. I):6-10.
    [59] Vamvatsikos D, Cornell C A. Incremental dynamic analysis [J]. EarthquakeEngineering and Structural Dynamics,2002,31(3):491-514.
    [60]吕大刚,于晓辉,王光远.基于改进点估计法的结构整体概率抗震能力分析[J].世界地震工程,2008,24(4):7-14.
    [61]吕大刚,李晓鹏,王光远.土木工程结构地震易损性分析的有限元可靠度方法[J].应用基础与工程科学学报,2006,14(Sup I):264-272.
    [62]吕大刚.结构抗震可靠度二种简化解析表达式的一致性证明[J].地震工程与工程振动,2009,29(5):59-65.
    [63] Lu D G, Jia M M, Yu X H, and Wang G Y. Probabilistic seismic riskassessment of structures based on analytical formulation of seismic reliability[C]. In Li J. et al (Eds.), Proceedings of the International Symposium onReliability Engineering and Risk Management (ISRERM2010),2010:367-377.
    [64] Grigoriu M. Approximate analysis of complex reliability problems [J].Structural Safety,1983,1(4):277-288.
    [65] Li K S. Point estimate method for calculating statistical moments [J]. ASCEJournal of Engineering Mechanics,1992,118(7):1506-1511.
    [66] Winterstein S, Bjerager P. The use of higher moments in reliability estimation[J]. Proceeding International Conference Application on Statistics andProbability,1987:1027-1036.
    [67] Zhou J H, Nowak A S. Integration formulas to evaluate functions of randomvariables [J]. Structural Safety,1988,5(4):267-284.
    [68] Zhao Y G, Ono T. Moment methods for structural reliability [J]. StructuralSafety,2001,23(1):47-75.
    [69] Zhao H L, Zhao Y G. Applicable range of the third moment method and anexplicit third moment reliability index for structrral reliability assessment [C].APSSAP2008:202-207.
    [70]吕大刚,宋鹏彦,于晓辉,王光远.基于矩法的结构非线性整体抗震可靠性分析[J].建筑结构学报,2010.31(增刊2):119-124.
    [71] Rosenblueth E. Point estimates for probability moments [C]. Proceeding of theNational Academy of Science of the United States of America,1975,72(10):3812-3814.
    [72] Zhao Y G, Ono T. New point estimates for probability moments [J]. ASCEJournal of Engineering Mechanics,2000,126(4):433-436.
    [73]李洪双,吕震宙,袁修开.基于Nataf变换的点估计法[J].科学通报,2008,53(6):627-632.
    [74]吕大刚,于晓辉,王光远.基于改进点估计法的结构整体概率抗震能力分析[J].世界地震工程,2008,24(4):7-14.
    [75] Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics [J]. Probabilistic EngineeringMechanics,2004,19(4):393-408.
    [76] Zhang Z, Damnjanovic I. Applying method of moments to model reliability ofpavements infrastructure [J]. ASCE Journal of Transportation Engineering,2006,132(5):416-424.
    [77] Li Gang, Zhang Kai. A combined reliability analysis approach with dimendionreduction method and maximum entropy method [J]. Structural andMultidisciplinary Optimization,2011,43:121-134.
    [78]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用[J].地震工程与工程振动.1994,14(1):14-23.
    [79]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,3(1):13-22.
    [80]高小旺,沈聚敏.大震作用下钢筋混凝土框架房屋变形能力的抗震可靠度分析[J].土木工程学报,1993,26(3):3-12.
    [81]欧进萍,段宇博.高层建筑结构的抗震可靠度分析与优化设计[J].地震工程与工程振动,1995,15(1):1-13.
    [82]马宏旺.钢筋混凝土框架结构抗震可靠度分析与设计研究[D].博士学位论文,大连理工大学,2002:22-97.
    [83] Lee S Y. Static and dynamic reliability analysis of frame and shear wallstructural systems [D]. Ph.D, the University of Arizona,2000.
    [84] Magdy S L R, Meyer C. Reliability of concrete frames damaged by earthquake[J]. Structural Engineering,1987,115(3):445-457.
    [85] Der Kiureghian A, Haukaas T, Fujimura K. Structural reliability software atthe University of California, Berkeley [J]. Structural Safety,2006,28:44-67.
    [86] Haukaas T, Der Kiureghian A. Methods and object oriented software for FEreliability and sensitivity analysis with application to a bridge structure [J].ASCE Journal of Computing in Civil Engineering,2007,21(3):151-163.
    [87] Haukaas T. Finite element reliability and sensitivity methods for performancebased engineering [D]. Ph.D. Dissertation. University of California, Berkeley,2003.
    [88] Conte J P, Barbato M, Gu Q. Finite element response sensitivity, probabilisticresponse and reliability analyses [M]. Taylor&Francis Group,2008:21-42.
    [89] Gu Q, Conte J P, Barbato M. OpenSees command language manual responsesensitivity analysis based on the direct differentiation method (DDM)[R].University of California, Berkeley,2010.
    [90] Gu Q. Finite element response sensitivity and reliability analysis of soil-foundation structure interaction (SFSI) systems [D]. Ph.D. Dissertation. USA:University of California,2008.
    [91] Hamutcuo lu O M, Scott M H. Finite element reliability analysis of bridgegirders considering moment shear interaction [J]. Structural Safety,2009,31(5):356-362.
    [92] Barbato M, Conte J P. Finite element structural response sensitivity andreliability analyses [J]. Reliability and Safety,2006,1(1/2):3-39.
    [93]李晓鹏.基于FORM的钢框架结构抗震可靠度与地震易损性分析[D].硕士学位论文,哈尔滨工业大学,2005.
    [94]常泽民.钢筋混凝土结构非线性抗震可靠度及地震易损性分析[D].硕士学位论文,哈尔滨工业大学,2006.
    [95]吕大刚,李晓鹏,胡晓琦等.钢框架结构的非线性静力抗震可靠性分析I.有限元反应及其灵敏度[J].地震工程与工程振动,2007,27(5):55-60.
    [96] Rice S O. Mathematical analysis of random noise [M]. Bell System, Tech. J.1944:22-24.
    [97] Housner G W. Characteristics of strong motion earthquakes [J]. BSSA,1947,16(3):193-207.
    [98] Kanai, K. Semi empirical formular for the seismic characteristics of ground
    [C]. University of Tokyo Bull. Earthquake Research Institute,1957,35(2):309-325.
    [99] Clough R W, Penzien J.王光远,等译.结构动力学[M].北京:科学出版社,1983.
    [100]Der Kiureghian A, Crempien J. An evolutionary model for earthquake groundmotion [J]. Structural Safety,19896:235-246.
    [101]Rezaeian S, Der Kiureghianb A. A stochastic ground motion model withseparable temporal and spectral nonstationarities [J]. Earthquake Engineeringand Structural Dynamics,2008,37(7):1565-1584.
    [102]Rezaeian S. Stochastic modeling and simulation of ground motions forperformance based earthquake engineering [D]. Ph.D. Dissertation. Universityof California, Berkeley,2010.
    [103]Dabaghi M, Rezaeian S, Der Kiureghian A. Stochastic simulation of near faultground motions for specified earthquake and site characteristics [C].11thInternational Conference on Applications of Statistics and Probability in CivilEngineering, ETH Zurich, Switzerland, August2011.
    [104]Hao H, Oliveria C S, Penzien J. Multiple station ground motion progressingand simulation based on SMART-1array data [J]. Nuclear Engineering andDesign111,1989.
    [105]Deodatis G. Simulation of ergodic multivariate stochastic processes [J].Journal of Engineering Mechanics,1996,122(8):778-787.
    [106]Shrikhande M, Gupta V K. Synthesizing ensembles of spatially correlatedaccelerograms [J]. Journal of Engineering Mechanics1998,124(11):1185-1192.
    [107]Abrahamson N A. Generation of spatially incoherent strong motion timehistories [J]. Earthquake Engineering, Tenth World Conference, Balkema,Rotterdam,1992:845-850.
    [108]Shama A. A simple method to produce artificial spatially correlated groundmotions [C]. The8th National Conference on Earthquake Engineering, SanFrancisco.2006.
    [109]Goldberg J E, Bogdanoff J L, Sharpe D R. The response of simple nonlinearstructure to a random disturbance of earthquake type [J]. Bull. Seismol. Soc.Am.,1964:263-276.
    [110]Shinozuka M, Deodatis G. Simulation of stochastic processes by spectralrepresentation [J]. Applied Mechanics Reviews,1991,44(4):191-203.
    [111]Barbato M. Finite element response sensitivity probabilistic response andreliability analyses of structural systems with applications to earthquakeengineering [D]. Ph.D. Dissertation. University of California, San Diego,2007.
    [112]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[C].地震工程研究报告集.科学出版社,北京:33-35.
    [113]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-54.
    [114]杜修力,胡晓,陈原群.强震地运动随机过程模拟[J].地震学报,1995,17(1):104-110.
    [115]欧进萍,王光远.抗震结构的模糊随机振动与模糊动力可靠性分析[J].哈尔滨建筑工程学院学报,1986.
    [116]张跃,王光远.模糊随机动力系统理论[J].科学出版社,1993.
    [117]Lin Y K, Cai G Q. Probabilistic structural dynamics: advanced theory andapplication [M]. New York: McGraw Hill,1995.
    [118]Sarkar A, Khajehpour S. Response level crossing rate of a linear systemexcited by a partially specified gaussian load process [J]. ProbabilisticEngineering Mechanics,2002,(17):85-95.
    [119]Zhang Y, Der Kiureghian A. First excursion probability of uncertain structures[J]. Probabilistic Engineering Mechanics1994;9(1/2):135-143.
    [120]Lai S-S P. Overall safety assessment of multi story steel buildings subjected toearthquake loads [R]. Department of Civil Engineering, Research Report R80-26,1980.
    [121]Der Kiureghian A. The geometry of random vibrations and solutions byFORM and SORM [J]. Probabilistic Engineering Mechanics,2000(15):81-90.
    [122]Koo H. FORM, SORM and simulation techniques for nonlinear randomvibration analysis [D]. Ph.D. thesis in progress, University of California,Berkeley, Department of Civil&Environmental Engineering, Berkeley, CA,2002.
    [123]Kooa H, Der Kiureghianb A, Fujimura K. Design point excitation fornonlinear random vibrations [J]. Probabilistic Engineering Mechanics,2005,20(5):136-147.
    [124]Der Kiureghianb A, Fujimura K. Nonlinear stochastic dynamic analysis forperformance based earthquake engineering [J]. Earthquake Engineering andStructural Dynamics,2009,38(2):719-738.
    [125]Fujimura K, Der Kiureghianb A. Tail-equivalent linearization method fornonlinear random vibration [J]. Probabilistic Engineering Mechanics,2004,130(2):63-76.
    [126]Franchin P. Reliability of uncertain inelastic structures under earthquakeexcitation.[J]. Journal of Engineering Mechanics,2009,31(5):180-191.
    [127]Gupta S. Reliability analysis of randomly vibrating structures with parameteruncertainties [D]. Ph.D. Dissertation. Indian Institute of Science,2004.
    [128]欧进萍.非线性体系受调优非平稳随机干扰的反应分析[J].武汉建材学院学报,1983:73-89.
    [129]李桂青,欧进萍.非线性体系受平稳随机荷载的首次通过问题[J].地震工程与工程振动,1982,2(3):43-58.
    [130]欧进萍,王光远.基于模糊破坏准则的抗震结构动力可靠性分析[J].地震工程与工程振动,1986,6(1):1-11.
    [131]朱位秋.非线性随机动力学与控制-Hamilton理论体系框架[M].北京:科学出版社,2003.
    [132]朱位秋.非线性随机动力学与控制研究进展及展望[J].世界科技研究与发展,2005,1:1-4.
    [133]朱位秋,雷鹰.能量包线随机平均法在双线性迟滞系统随机响应分析中的应用[J].航空学报,1989,10(1):28-34.
    [134]朱位秋,雷鹰.随机载荷作用下结构疲劳损伤的累积[J].固体力学学报,1993,14(1):9-17.
    [135]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [136]Lin J H, Zhao Y, Zhang Y H. Accur ate and highly efficient algorithms forstructural stationary/nonstationary random responses [J]. Computer Methodsin Applied Mechanics and Engineering,2001,191:103-111.
    [137]李杰,陈建兵.随机结构非线性动力响应的概率密度演化方法[J].力学学报,2003,35(6):716-722.
    [138]Li J, Chen J B. The principle of preservation of probability and thegeneralized density evolution equation [J]. Structural Safety,2008,30:65-77.
    [139]Jian-Bing Chen, Jie Li. Dynamic response and reliability analysis of nonlinearstochastic structures [J]. Probabilistic Engineering Mechanics,2005,(20):33-44.
    [140]Li J, Chen J B. Dynamic response and reliability analysis of structures withuncertain parameters [J]. International Journal for Numerical Methods inEngineering,2005,62:289-315.
    [141]Li J, Fan W L. On system reliability analysis of reinforced concrete frames [J].APSAR2008:401-406.
    [142]李杰,范文亮.钢筋混凝土框架结构体系可靠度分析[J].土木工程学报,2008,11(41):7-12.
    [143]彭勇波,陈建兵,李杰.广义密度演化方程与经典随机振动分析的比较研究[J].力学季刊,2010,31(2):152-159.
    [144]Au G M, Bech J L. On the first excursion failure problem for linear systemsby effcient simulation [R]. Technical Report EERL2000, California Instituteof Technology, Pasadena California,2000.
    [145]Au G M, Bech J L. First excursion probabilities for linear systems by veryeffcient importance samplina [J]. Probabilistic Engineering Mechanics,2001,19(4):393-408.
    [146]Katafygiotis L S, Cheung S H. On the calculation of the failure probabolitycorresponding to aunion of linear failure domains [C]. In Probabilistic of4thInternational Conference on Computational Stochastic Mechanics,2003:301-309.
    [147]Koo H, Der Kiureghian A. Importance sampling of first excursion probabilityfor nonlinear systems [M]. CA USA, ICASP9. San Francisco. Millpress,2003.
    [148]陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006,38(1):134-140.
    [149]王超.结构非线性整体抗震可靠度与动力可靠度分析[D].硕士学位论文,哈尔滨工业大学,2006.
    [150]Lupoi G, Franchin P, Lupoi A, Pinto P E. Seismic frgility analysis of structuralsystems [C]. In Probabilistic of13th World Conference on EarthquakeEngineering, Vancouver B C, Canada,2004.
    [151]Zareian F, Krawinkler H. Assessment of probability of collapse and design forcollapse safety [J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1901-1914.
    [152]Ellingwood B R, Kinali K. Quantifying and communicating uncertainty inseismic risk assessment [J]. Structural safety,2009,31(2),179-187.
    [153]Lupoi A, Franchin P, Schotanus M. Seismic risk evaluation of RC bridgestructures [J]. Earthquake Engineering and Structural Dynamics,2003,32(8):1275-1290.
    [154]于晓辉.钢筋混凝土框架结构的概率地震易损性与风险分析[D].博士学位论文,哈尔滨工业大学,2012.
    [155]陈志恒.钢筋混凝土框架结构的倒塌失效模式、风险与鲁棒性分析[D].硕士学位论文,哈尔滨工业大学,2009.
    [156]王丹.钢框架结构的地震易损性及概率风险分析[D].硕士学位论文,哈尔滨工业大学,2006.
    [157]万正东. RC框架结构基于概率损伤模型的地震易损性与风险分析[D].硕士学位论文,哈尔滨工业大学,2009.
    [158]Griffiths H. Pugsley A, Saunders O. Collapse of flats at ronan point, canningtown [R]. Ministry of Housing and Local Government Report. London: HerMajesty’s Stationery Office,1968:10-16.
    [159]Pearson C, Delatte N. Ronan point apartment tower collapse and its effect onbuilding codes [J]. Journal of Performance of Constructed Facilities, ASCE,2005,19(2):172-177.
    [160]CP110. Code of practice for the structural use of concrete, design, materialsand workmanship [S]. London, England, British Standards Institution,1972.
    [161]NBS-GCR75-48. The avoidance of progressive collapse: regulatoryapproaches to the problem [S]. Washington, D C, USA: National Bureau ofStandards,1975.
    [162]NRCC. National building code of Canada [S]. Ottawa, Canada: NationalResearch Council of Canada (NRCC),1975.
    [163]EN1991-1-1:2002Eurocode-1. Actions on structures: part-1basis of design
    [S]. Brussels (Belgium): Comite European de Normalization,2002.
    [164]Ellingwood B R, Leyendecker E V. Approaches for design against progressivecollapse [J]. Journal of Structural Division, ASCE,1978,104(3):413-423.
    [165]Corley W G, Mlakar P F, Sozen M A, Thornton CH. The Oklahoma citybombing: summary and recommendations for multihazard mitigation [J].Journal of Performance of Constructed Facilities,1998,12(3):100-112.
    [166]NIST Recommendations. Final report on the collapse of the world trade centertowers [R]. Washington DC: National Institute of Standards and Technology,2005:1-48.
    [167]Canisius T D G, S rensen J D, Baker J W. Robustness of structural systems: anew focus for the joint committee on structural safety (JCSS)[C]. Proceedingof the10th International Conference on Applications of Statistics andProbability in Civil Engineering (ICAPS10). London: Taylor&Francis Group,2007:5-10.
    [168]Canisius T D G, Baker J, Diamantidis D, Ellingwood B, et al. Structuralrobustness design for practising engineers [R]. COST Action TU0601-Rbustness of Structures: ETH Zurich: European Cooperation in Science andTechnology,2011.
    [169]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(6):1-8.
    [170]叶列平,程光煜,陆新征,冯鹏.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(4):42-50.
    [171]叶列平,程光煜,陆新征,冯鹏.论结构抗震的鲁棒[J].建筑结构,2008,38(6):11-15.
    [172]黄兴棣.工程结构可靠性设计[M].北京:人民交通出版社,1989.
    [173]李继华,林忠民,李明顺等.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社,1990.
    [174]International Standard. General principles on reliability for structures [S].ISO2394:1998(E),1998.
    [175]Moan T. Development of accidental collapse limit state criteria for offshorestructures [J]. Structural Safety,2009,31(2):124-135.
    [176]Gurley C. Progressive collapse and earthquake resistance [J]. PracticePeriodical on Structural Design and Construction, ASCE,2008,13(1):19-23.
    [177]Bertero R D, Bertero V V. Redundancy in earthquake resistant design [J].Journal of Structural Engineering, ASCE,1999,125(1):81-88.
    [178]Liao K W, Wen Y K, Foutch D A. Evaluation of3D steel moment framesunder earthquake excitations. II: Reliability and redundancy [J]. Journal ofStructural Engineering, ASCE,2007,133(3):471-480.
    [179]Husain M, Tsopelas P. Measures of structural redundancy in reinforcedconcrete buildings. I: Redundancy indices [J]. Journal of StructuralEngineering, ASCE,2004,130(11):1651-1658.
    [180]Tsopelas P, Husain M. Measures of structural redundancy in reinforcedconcrete buildings. II: Redundancy response modification factor [J]. Journalof Structural Engineering, ASCE,2004,130(11):1659-1666.
    [181]Zhao Chao. Progressive collapse under abnormal load [D]. Ph.D. LehighUniversity, USA,2009.
    [182]Liu P L, Der Kiureghian A. Finite element reliability of geometricallynonlinear uncertain structures [J]. Journal of Engineering Mechanics1991,117(8):1806-1825.
    [183]吕大刚,李晓鹏,胡晓琦,王光远.钢框架结构的非线性静力抗震可靠性分析I.有限元反应及其灵敏度[J].地震工程与工程振动,2007,27(5):55-60.
    [184]Liu P L, Der Kiureghian A. Multivariate distribution models with prescribedmarginals and covariances [J]. Probabilistic Engineering Mechanics,1986,1(2):105-112.
    [185]Sklar A. Fonctions de repartition an dimensions etleurs marges [M]. Publ InstStatist Univ Paris,1959,8:229-231.
    [186]Nelsen R B. An introduction to copulas [M]. Springer, New York,1999.
    [187]Pirktl V. Copula models and dependence concepts [D]. Ph.D. University ofSouthern California,2007.
    [188]Lebrun R, Dutfoy A. A generalization of the Nataf transformation todistributions with elliptical copula [J]. Probabilistic Engineering Mechanics,2009,24(2):172-178.
    [189]Lebrun R, Dutfoy A. An innovating analysis of the Nataf transformation fromthe viewpoint of copula [J]. Probabilistic Engineering Mechanics.2008,24(3):312-320.
    [190]Lebrun R, Dutfoy A. Do rosenblatt and Nataf iso-probabilistic transformationsreally differ [J]. Probabilistic Engineering Mechanics.2009,24:577-584.
    [191]王光远.工程软设计理论[M].北京:科学出版社,1992.
    [192]吕大刚,宋鹏彦,王光远.考虑统计不确定性的结构可靠度分析方法[J].哈尔滨工业大学学报,2011,43(8):11-15.
    [193]吕大刚,宋鹏彦,王光远.考虑模型不确定性的结构可靠度分析方法[J].哈尔滨工业大学学报,2011,43(10):1-5.
    [194]刘玉斌,王光远.工程结构广义可靠性理论[M].北京:科学出版社,2005.
    [195]辛瑞姣.结构区间模糊随机有限元可靠度分析[D].硕士学位论文,哈尔滨工业大学,2011.
    [196]吕大刚,贾明明,李刚.结构可靠度分析的均匀设计响应面法[J].工程力学,2011,28(7):105-109.
    [197]Guan X L, Melchers R E. Effect of response surface parameter variation onstructural reliability estimates [J]. Structural Safety,2001,23(4):429-440.
    [198]Michele B. Finite element response sensitivity and reliability analyses inearthquake engineering [J]. Structural Safety,2007,53(7):43-50.
    [199]董聪,杨庆雄.现代结构体系可靠性分析理论发展概况及若干应用[J].力学进展,1993,23(2):206-213.
    [200]Zhao Y G, Alfredo H S. System reliability assessment by method of moments[J]. Journal of Structural Engineering, ASCE,2003,129(10):1341-1349.
    [201]Er G K. A method for multi-parameter PDF estimation of random variables [J].Structural Safety,1998,20:25-36.
    [202]Hong H P. An efficient point estimate method for probabilistic analysis [J].Reliability Engineering System Safety,1998,59(3):261-267.
    [203]Chang C H, Yang J C, Tung Y K. Uncertainty analysis by point estimatemethods incorporating marginal distributions [J]. Journal of HydraulicEngineering, ASCE,1997,123(3):244-250.
    [204]Zoppou C, Li K S. New point estimate method for water resources modeling[J]. Journal of Hydraulic Engineering, ASCE,1993,119(11):1300-1307.
    [205]Harr M E. Probability estimates for multivariate analyses [J]. AppliedMathematical Modelling,1989,13(5):313-318.
    [206]Tichy M. First order third moment reliability method [J]. Structural Safety,1994,16:189-200.
    [207]Zhao Y G, Ono T. Third moment standardization for structural reliabilityanalysis [J]. Journal of Structural Engineering,2000,126(6):724-732.
    [208]Zhao Y G, Alfredo H S. Three parameter Gamma distribution and itssignificance in structure [J]. Rnational of Computational StructuralEngineering,2002,2(1):1-10.
    [209]Hong H P, Lind N C. Approximation reliability analysis using normalpolynomial and simulation results [J]. Structure Safety,1996,18(4):329-39.
    [210]Winterstein S R, Bjerager P. The use of higher moments in reliabilityestimation [C]. International Conference on Applications of Statistics andProbabilistic in Soil and Structure,1987,2:1027-1036.
    [211]Zellner A, Highfield R A. Calculation of maximum entropy distributions andapproximation of marginal posterior distributions [J]. Journal of Econometrics,1988,37(2):195-209.
    [212]Jaynes E T. Information theory and statistical mechanics [J]. Physical Review,1957,106(4):620-630.
    [213]Dol ek M, Fajfar P. Effects of masonry infills on the seismic response of afour storey reinforced concrete frame-A probabilistic assessment [J].Engineering Structures,2008,30(11):3186-3192.
    [214]Balendra T, Tan K H, Kong S K. Vulnerability of reinforced concrete framesin low seismic region when Designed according to BS8110[J]. EarthquakeEngineering and Structural Dynamics,1999,28(3):1361-1381.
    [215]Elnashai A S, Mwafy A M. Overstrength and force reduction factors ofmultistory reinforced concrete buildings [J]. The Structural Design of TallBuildings,2002,11(5):329-351.
    [216]吕大刚,宋鹏彦,陈志恒.钢筋混凝土框架结构基于可靠度的最可能倒塌失效模式分析[J].工程力学,2012,29(5):156-173.
    [217]ATC40. Recommended methodology for seismic evaluation and retrorit ofexising concrete buildings [S]. Applied Technology Council. Redwood City,CA,1996.
    [218]PEER StrongMotion Database [M/O]. http://peer.berkeley.edu/smcat.
    [219]李国强,李进军.基于整体承载极限状态的钢结构可靠度设计方法及其在门式刚架设计中的应用[J].建筑结构学报,2004,25(4):94-99.
    [220]吕大刚,于晓辉,王光远.基于Zhou-Nowak数值积分法的结构整体概率抗震能力分析[J].世界地震工程,2008,24(3):8-13.
    [221]Barbato M, Gu Q, Conte J P. Probabilistic pushover analysis of structural andsoil-structure systems [J]. ASCE Journal of Structural Engineering,2010,136(11):1330-1341.
    [222]Koduru S D. Performance based earthquake engineering with the first orderreliability methods [D]. Ph.D. the University of British Colum-bia, Canada,2008.
    [223]高小旺.钢筋混凝土框架结构抗震可靠度分析[D].博士学位论文,清华大学,1990.
    [224]FEMA-440. Improvement of nonlinear static seismic analysis procedures [R].Federal Emergent Management Agency,2005, Washington, D.C.
    [225]韦承基,魏琏,高小旺等.结构抗震弹塑性变形可靠度分析[J].工程力学,1986,3(1):60-70.
    [226]李杰,李国强.地展工程学导论[M].北京地震出版社,1992.
    [227]李桂青等.结构动力可靠性理论及其应用[M].北京地震出版社,1993.
    [228]Porter K A, Bech J L, Shaikhutdinov R V. Sensitivity of building lossestimates to major uncertain variables [J]. Earthquake Spectra,2002,18(4):719-743.
    [229]Park Y J, and Ang AH-S. Mechanistic seismic damage model for reinforcedconcrete [J]. ASCE Journal of Structural Engineering,1985,111(4):722-739.
    [230]Kunnath S K, Reinhorn A M, Lobo R F. IDARC: Inelastic damage analysis ofRC structures-Version3.0[M]. State University of New York at Buffalo,New York,1985, Report: NCEER-92-0022.
    [231]Bommer J J, Acevedo A B. The use of real earthquake accelerograms as inputto dynamic analysis [J]. Journal of Earthquake Engineering,2004,8(1):43-91.
    [232]Gomes R C, Santos J, Oliveira C S. Design spectrum compatible time historiesfor numerical analysis: generation, correction and selection [J]. Journal ofEarthquake Engineering,2006,10(6):843-865.
    [233]Kwon O S, Elnashai A. The effect of material and ground motion uncertaintyon the seismic vulnerability curves of RC structure [J]. Engineering Structures,2006,28(2):289-303.
    [234]Kaul M K. Stochastic characterization of earthquakes through their responsespectrum [J]. Earthquake Engineering&Structural Dynamics,1978,6(5):497-509.
    [235]张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究[J].世界地震工程,2000,16(3):33-38.
    [236]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10.
    [237]崔利杰,吕震宙,赵新攀.矩独立的基本变量重要性测度及其概率密度演化解法[J].中国科学,2010,40(5):557-564.
    [238]黄琳.稳定性与鲁棒性的理论基础[M].北京:科学出版社,2003.
    [239]Starossek U, Haberland M. Measures of structural robustness requirements&applications [C]. ASCE SEI2008Structural Congress Crossing Borders,Vancouver, B C, Canada, USA: ASCE Publication,2008:1-10.
    [240]Lind N C. A measure of vulnerability and damage tolerance [J]. ReliabilityEngineering and System Safety,1995,48(1):1-6.
    [241]Agarwal J, Blockely D, Woodman N. Vulnerability of structural systems [J].Structural Safety,2003,25(3):263-286.
    [242]Faber M H, Maes M A, Straub D, Baker J W. On the quantification ofrobustness of structures [C]. Proceedings of the25th International Conferenceon Offshore Mechanics and Arctic Engineering (OMAE2006), Hamburg,Germany: Hamburg University of Technology,2006:1-9.
    [243]Baker J W, Schubert M, Faber M H. On the assessment of robustness [J].Structural Safety,2008,30(3):253-267.
    [244]吕大刚,宋鹏彦,崔双双,王闽雄.结构鲁棒性及其评价指标[J].建筑结构学报,2011,32(11):44-54.
    [245]Lu Da-Gang, Cui Shuang-Shuang, Song Peng-Yan, and Chen Zhi-Heng.Robustness assessment for progressive collapse of framed structures usingpushdown analysis method [J]. International Journal of Reliability and Safety,2012,6(3-4),15-37.
    [246]Ellingwood B R, Leyendecker E V. Approaches for design against progressivecollapse [J]. Journal of Structural Division, ASCE,1978,104(3):413-423.
    [247]Ellingwood B R. Strategies for mitigating risk to buildings from abnormalload events [J]. International Journal of Risk Assessment and Management,2007,7(6/7):828-845.
    [248]Frangopol D M, Curley J P. Effects of damage and redundancy on structuralreliability [J]. Journal of Structural Engineering, ASCE,1987,113(7):1533-1549.
    [249]Ellingwood B R. Mitigating risk from abnormal loads and progressivecollapse [J]. Journal of Performance of Constructed Facilities.2006,20(4):315-323.
    [250]Bradley B A., et al. Improved seismic hazard model with application toprobabilistic seismic demand analysis [J]. Earthquake Engineering andStructural Dynamics,2007,36(14):2211-2225.
    [251]Zareian F, Krawinkler H. Assessment of probability of collapse and design forcollapse safety [J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1901-1914.
    [252]陆新征,李易,叶列平.混凝土结构防连续倒塌理论与设计方法研究[M].中国建筑工业出版社,2011.
    [253]日本钢结构协会,美国高层建筑和城市住宅理事会,高冗余度钢结构倒塌控制设计指南[M].陈以一,赵宪忠译.上海:同济大学出版社,2007:15-24.
    [254]Khandelwal K, El-Tawil S. Assessment of progressive collapse residualcapacity using pushdown analysis [C]. ASCE Structures Congress: CrossingBorders,2008.
    [255]Kim J K, Park J H. Design of steel moment frames considering progressivecollapse [J]. Steel and Composite Structures,2008,8(1):85-98.
    [256]General Services Administration (GSA). Progressive collapse analysis anddesign guidelines for new federal office buildings and major modernizationprojects [S], USA,2003.
    [257]Vamvatsikos D, Cornell C A. Tracing and postprocessing of IDA curves:Theory and software implementation [R]. Report No. RMS-44, RMS Program,Stanford University, Stanford2001.
    [258]Yin Y J, Li Y. Seismic collapse risk of light frame wood constructionconsidering aleatoric and epistemic uncertainties [J]. Structural Safety,2010,32(4):250-261.
    [259]吕大刚,于晓辉,王光远.单地震动记录随机增量动力分析[J].工程力学,2010,27(增刊):53-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700