中医元气理论与培元固本法治疗老年性痴呆作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     中医元气理论是中医理论体系的重要内容,其取材于哲学元气学说,在《黄帝内经》、《难经》多有阐发,历代医家都十分重视人体元气在防治疾病中的重要作用。重视中医元气理论相关研究是老年病、慢性疾病防治的客观要求,也是实现由医疗向保健和预防转变的需要。本课题从中医元气理论自身发展的脉络出发,梳理中医元气理论的基本概念和理论内涵,对中医元气理论文献及培元固本学术流派进行了考证归纳。并结合课题组前期的研究基础,以老年性痴呆这一老年退化性疾病为切入点,探讨了元气与老年性痴呆发病的关系和培元固本法防治老年性痴呆的机理。以APP/PS1双转基因痴呆小鼠作为动物模型,观察了培元固本中药复方治疗老年性痴呆的作用及其机制。旨在为更深入的中医元气理论研究,以及培元固本治法延缓衰老及防治老年病应用研究等提供理论基础和实验依据
     方法:
     1、理论探讨:分析整理有关中医元气的古今文献,归纳中医学对元气基本概念、理论内涵、生成、分布、功能等内容的认识。整理研究中医元气理论形成和发展的学术脉络,以及培元固本学术流派的形成、发展和影响。探讨元气与人体脑部功能的相关性,阐释元气损伤与老年性痴呆发病的关系、以及培元固本防治老年性痴呆的治则治法。本文研究认为中医元气理论具有鲜明的中医特色,具有极强的哲学积淀,内涵丰富、实践性强。历代医家在《黄帝内经》、《难经》有关元气的理论指导下,在长期卓有成效的临床实践的过程中,不断丰富和发展中医元气理论,并形成了培元固本学术流派,为人类延缓衰老、防治老年疾病积累了十分宝贵的经验。
     2、实验研究:选用APP/PSI双转基因痴呆小鼠模型,以Aβ生成、沉积为靶点,研究培元固本中药复方对AD的作用及机制。Morris水迷宫实验、跳台试验、自主活动分析等方法检测小鼠行为学改变。ELISA法检测AD转基因小鼠海马Aβ含量,Western Blot法观察Aβ主要生成分泌酶和降解酶(BACE1、NEP、IDE)的表达及其上游β淀粉样前体蛋白(APP)的表达,比色法测定小鼠血清和脑组织中GSH-Px,SOD活力和MDA含量。
     结果:
     Morris水迷宫实验显示,与空白组比较,模型组小鼠的上平台潜伏期和游泳总路程明显延长(P<0.01);与模型组比较,其余各给药组小鼠的上平台潜伏期和游泳总路程明显缩短(P<0.01,P<0.05)。与西药多奈哌齐对照组比较,中药Ⅰ组和中药Ⅱ组小鼠的上平台潜伏期和游泳总路程无明显差异(P>0.05)。与空白组比较,模型组小鼠的穿越平台次数、目标象限时间明显减少及第1次抵原平台时间明显延长(P<0.01);与模型组比较,各给药组小鼠的穿越平台次数、目标象限时间明显增加及第1次抵原平台时间明显缩短(P<0.01,P<0.05);与西药多奈哌齐对照组比较,中药Ⅰ组和中药Ⅱ组小鼠目标象限时间及第1次抵原平台时间无明显差异(P>0.05),穿越平台次数减少(P<0.05)。与空白组比较,模型组小鼠的潜伏期明显缩短和出错次数明显增加(P<0.01);与模型组比较,其余各给药组小鼠的潜伏期明显延长和出错次数明显减少(P<0.01);与西药多奈哌齐对照组比较,中药Ⅰ组和中药Ⅱ组小鼠的潜伏期和出错次数无显著差异(P>0.05),避暗实验等其他行为学实验显示出相似的趋势。ELISA检测结果显示,培元固本中药复方治疗后能够显著减少脑组织内可溶性Aβl-40和可溶性Aβl-42浓度。Western blotting结果显示,培元固本中药复方治疗后可以促进脑部APP降解过程,增加NEP、IDE的表达,而对APP和BACE1的表达量没有影响。
     结论:
     1、元气充沛、髓充神旺是脑部功能的物质基础;元气亏虚、髓海失养、元神不藏是老年性痴呆发病的病理基础;元气亏虚、因虚致实、痰浊阻窍是老年性痴呆发病的重要环节;培元固本、化痰醒脑益智是防治老年性痴呆的重要治法。
     2、培元固本法能够改善痴呆小鼠认知功能和自主活动能力。
     3、培元固本法治疗老年性痴呆的作用机制与通过增强Aβ降解酶NEP、IDE表达减少海马组织Aβ沉积,促进Aβ降解,减轻Aβ神经毒性有关。
Objective:
     Traditional Chinese medicine Qi theory is an important content of thetheoretical system of traditional Chinese medicine, which is based onthe philosophy ofprimordial qi theory, which mentioned some times inthe "Huang Di Nei Jing" and Nan Jing, and ancient physicians haveattached great importance to the prevention and treatment of diseases ofthe human spirit. it is the objective requirement of senile disease, chronicdisease prevention, that Emphasis on the theory of traditional Chinesemedicine research strength. at the same time, it is also the needs tochange from a medical to health care and prevention. This topic set out fromthe Chinese medicine Qi theory of its own context that developed byitself. has carried on the research and induction of the theory of traditionalChinese medicine literature and vigor vitality and reinforce academic schools.Combining the previous research of the group, take senile dementia anddegenerative diseases of the elderly as the breakthrough point to explore themechanism of strength with the Alzheimer disease relationships and cultivatea solid Prevention Act of senile dementia. With APP/PS1double transgenicmice as an animal model, to observe the Pei yuaneffective herbal tonic yuan Decoction in treating senile dementia and itsmechanism of action. Aimed at providing a theoretical basis and experimentalevidence for further more depth research from theory of TCM study, andvitality injury pathogenesis and elderly population strength loss research, thedevelopment research of the product and the system of health care in peiyuansolid methods, also about the mechanism of experimental study andanti-aging therapies and application of prevention and treatment of geriatric onthe basis of the peiyuan solid.
     Method:
     1、 Theoretical discussion:
     Collate the ancient and modern literature about the strength of Chinesemedicine, summarized the basic concepts of strength, the theoreticalconnotation of Medicine,generation,distribution,cognitive function andother content.Study of the formation and development of traditional Chinesemedicine theory vitality academic context,and the formation of Pei-Yuanconsolidate academic schools,the development and impact. To investigate thecorrelation between Qi and the human brain function,explain the relationshipbetween the strength damage and Alzheimer's disease pathogenesis, aswell as Peiyuanpreventing senile dementia therapy.
     This paper considers the Qi theory of TCM has a distinctive strengthcharacteristics of Chinese,with a strong philosophical heritage,richnessin content and with enough practical movements. Ancient physicians enrichedand developed the theory of traditional Chinese medicine,vitality and vigorformed consolidate academic schools with the guidance of Qi theory in theHuangdi Neijing,and in the course of long-term fruitful clinical practice,which has accumulated valuable experience for human delay aging,prevention and treatment of age-related diseases.
     2、 Experimental study:
     Using APP/PSI double transgenic mouse model of dementia, with A βgeneration, deposited as target to study the role and mechanism of thetraditional Chinese medicine Nourishing strength Da Bu Yuan Jian which wasused for Reinforcing primordial qi for AD. Using morris water mazetest,step-down test,shuttle box test method,dark avoidance test to checkthe ability of learning and memory in mice. with electron microscopy andCongo red staining to test the effect of Dabu yuan Decoction on ADtransgenic mice pathological injury of hippocampal neurons. ELISA method to detect A β content in AD transgenic mouse hippocampal, WesternBlot method is mainly observed expression of Aβ generation and secretion ofenzymes degrading enzyme (α-secretase enzyme:ADAM-10, β-secretaseenzyme:BACE1, γ-secretase:PS-1, degradation enzyme:NEP, IDE)and its expression of upstream β-amyloid ‘precursor protein (APP), byimmunohisto chemistry to detect pathological changes in the hippocampal AβAD model mice deposition.
     Results:
     Morris water maze test showed that compared with the control group,Mice in model group has longer total swimming distance and platform latencyand which were significantly (P <0.01);compared with the model group,thetreatment group of mice on the platform latency and swimming distance weresignificantly reduced (P<0.01,P<0.05). Compared with the control group ofWestern medicine in donepezil, Dabu yuan decoct Chinese traditionalmedicine group showed no obvious difference about swimming platformlatency and total distance (P>0.05). Compared with the blank group, modelgroup mice’s number through the platform, the target quadrant timedecreased significantly and the first time reach for the original platform wasobviously prolonged (P<0.01);compared with the model group,the numberthrough the platform and target quadrant time was significantly increased ineach drug-treated group mice,and the first time against the original platformwas significantly shorter (P<0.01,P<0.05);Compared with western medicinedonepezil group,Da Bu Yuan Jian mice target quadrant time and the first timeagainst the time of the original platform was not significantly different (P>0.05), the number of platform cross reducing significantly (P<0.05).Compared with the control group,the latency was significantly shorter and thenumber of errors increased significantly in model mice (P<0.01);comparedwith the model group,the rest of each treatment group mice’s;latency were significantly delayed and error number decreased significantly (P<0.01); compared with western medicine donepezil group, no significantdifferences in latency and error-free number of Da Bu Yuan Jian mice (P>0.05), other behavioral experiments, such as passive avoidance experimentsshowed some similar trends. Pathological observation showed that the numberof senile plaques in hippocampus and areas were reduced in model mice,while after the treatment of western medicine and Da Bu Yuan Jian, the micehippocampus neuropathy reduced. ELISA test results showed that Da Bu YuanJian’s therapy can significantly reduce the soluble Aβl-40and Aβl-42concentration of soluble brain tissue. Western blotting results showed thatafter the treatment of Da Bu Yuan Jian, brain APP degradation waspromoted, increased expression ofNEP、IDE, while expression levels ofBACE1and APP were not affected.
     Conclusion
     1、Full of vigor and vitality,pulp filling and Shan fulled is the materialbasis of brain function; Qi deficiency, God not reservoir is theimportant link of senile dementia, and also is the pathological basis of seniledementia. Pei-Yuan consolidate, Xingnaoyizhi is the important therapies forAlzheimer's prevention and treatment.
     2、 Peiyuan method can improve the abilities about learning andmemory of dementia mice.
     3、The mechanism of Peiyuan consolidate method in the treatmentof senile dementia was related to the decrease of hippocampal A β depositionand promotion of the degradation of A β.
引文
[1]曹承楼,孙克伟.树突状细胞与中医元气的关系初探.[J]湖南中医药大学学报,2013,33(1):76-78.
    [2] Greig NH,Lahiri DK.Editorial:advances in understanding Alzhei-mer's disease,and the contributions of current Alzheimer research:ten yearson and beyond.Curr Alzheimer Res.2014Feb;11(2):107-9.
    [3] Pudlo M,Luzet V,Isma li L,Tomassoli I,Iutzeler A,RefouveletB.Quinolone-benzylpiperidine derivatives as novel acetylcholinesteraseinhibitor and antioxidant hybrids for Alzheimer Disease.Bioorg Med Chem.2014Mar7. pii:S0968-0896(14)00152-7.
    [4] Lathe R,Sapronova A,Kotelevtsev Y.Atherosclerosis and Alzheimer-diseases with a common cause? Inflammation,oxysterols,vasculature.BMC Geriatr.2014Mar21;14(1):36.
    [5]胡玉萍,王平,孔明望,袁德培,石和元.补肾化痰益智法对阿尔茨海默病细胞模型NF-κB表达的影响.[J]中国老年学杂志,2013,33(24):6190-3.
    [6]王平.中医元气论.[M]北京,中医古籍出版社,2010:21.
    [7]刘安.淮南子.[M]上海,上海古籍出版社,1989:26-27.
    [8]黄志杰.浅谈元气学说在中医学中的运用.[J]湖北中医学院学报,2001,3(2):5-7.
    [9]周桂锢,朋星,等中国儒哲十大名著一春秋繁露.[M]济南,山东友谊出版社,2001:175.
    [10]李泽恩.元气名实及其临床意义.[J]中华中医药杂志,2006,21(6):379-381.
    [11]邢玉瑞.关于中医元气论研究的思考[J].陕西中医学院学报,2011,34(5):1-2.
    [12]付国兵.从元气的阶梯转输论振腹疗法的基本原理[J].北京中医药,2013,32(4):282-284.
    [13]印会河.中医基础理论[M].上海:上海科学技术出版社,2005:2.
    [14]王洪图总主编.黄帝内经研究大成[M].北京:北京出版社,1997.437-441.
    [15]烟建华.略论《难经》命元三焦系统[J].北京中医学院学报,1987,5(10):19-21.
    [16]杨红英.元气论及其应用初探[J].江苏中医,2001,22(4):5-6.
    [17]烟建华.难经讲义[M].北京:中国科学文化出版社,2002.132-179.
    [18]魏凤琴.命门的理论研究[J].山东中医药大学学报,2000,24(5):376-380.
    [19]陆广莘.命门学说源流考[J].中国中医基础医学杂志,1997,3(3):3-7.
    [20]刘玉芹,等.“命元三焦系统”与慢性肾炎的中医辨证.北京中医学院学报1992;15(1):13-15
    [21]刘玉芹,等.保元生血饮治疗肾性贫血的体会.北京中医药大学学报1997;20(1):62-63
    [22]烟建华.略论《难经》的学术成就.北京中医学院学报1987;10(1):14-16
    [23]凌耀星.难经校注.北京:人民卫生出版社,1991
    [24]杨维益等.关于中医“证”研究的思考.中国医药学报1996;11(1):4-6
    [25]张俊龙.中医气学说[M].北京:科学出版社,2003:105-137.
    [26]杨凤珍.艾滋病元气虚损证机的研究[D].北京中医药大学,2004,7.
    [27]孟琳升.元气的“始合布散终”规律浅识.中国中医药报,2008,0319,第4版.
    [28]黄志杰.用现代科学认识中医元气[J].湖北中医学院学报,2002,4(1):10-12.
    [29]凌耀星校注.难经校注[M]第一版.北京:人民卫生出版社,1991.125.
    [30]烟建华.略论《难经》命元三焦系统[J].北京中医学院学报,1987.5(0l):19-21.
    [31]萧京.轩岐救正论[M].第一版.北京:中医古籍出版,1983.6.
    [32]曹征.元气学说在明代发展的特点[J].江西中医学院学报,2011,23(5):20-21.
    [33]范新六.明代医家萧京脾肾元气论学术思想研究[D].福建中医学院,2006:18.
    [34]高树中,衣华强,马玉侠,等.从脐调元气论脐疗的机制[J].山东中医药大学学报,2009,33(4):272-274.
    [35]吴中秋,梁玉磊,徐江红,等,“益气调血,扶本培元”针法对快速老化痴呆小鼠脑组织海马细胞凋亡的影响,河北中医药学报,2013,28(1):35-37.
    [36]黄庙奇,毛杏芳.论针灸神方“培元固本”法.世界针灸学会联合会成立20周年暨世界针灸学术大会论文摘要汇编,341.
    [37]李杲.脾胃论[M].第一版.沈阳:辽宁科技出版社。1997.1.
    [38]萧京.轩岐救正论[M].第一版.北京:中医古籍出版,1983,6.
    [39]萧京.轩岐救正论[M].第一版,北京:中医古籍出版,1983.41.
    [40]王纶著,薛己注.明医杂著[M].第一版.南京:江苏科学技术出版社,1985.31.
    [41]王纶著,薛己注.明医杂著[M].第一版.南京:江苏科学技术出版社,1985.2.
    [42]萧京.轩岐救正论[M].第一版.北京:中医古籍出版,1983.52.
    [43]张介宾.类经图翼[M].第一版.北京:人民卫生出版社,1965.444-452
    [44]张介宾.景岳全书[M].第一版.上海:上海科学技术出版社,1959.18-20
    [45]张介宾.类经.第一版.[M].北京:人民卫生出版社,1965.270.
    [46]黄辉.新安医学家徐春圃(一).[J]中医药临床杂志,2011,23(7):645-648
    [47]萧京.轩岐救正论[M].第一版.北京:中医古籍出版,1983.1.
    [48]王新华.中医基础理论[M].第一版.北京:人民卫生出版社,2002.351.
    [49]郭蔼春校释.黄帝内经灵枢校注语释[M].第一版.天津:天津科学技术出版社,1989.204.
    [50]郭蔼春校释.黄帝内经素问校注语释[M].第一版.天津:天津科学技术出版社,1989.30.
    [51]王纶著,薛己注,明医杂著[M].第一版.南京:江苏科学技术出版社,1985.51
    [52]孙一奎.孙一奎医学全书·医旨绪余[M].第一版.北京:中国中医药出版社,1999.650.
    [53]Jean-Charles Lambert. Genetic heterogeneity of Alzheimer’s disease:Complexity and advances. Psychoneuroendocrinology2013;32(1):S62–S70.
    [54]Jennifer L. Mazzola MAS. Subcellular analysis of aberrant proteinstructure in age-related neurodegenerative disorders. Journal of NeuroscienceMethods2004;137(2):241–246.
    [55]X.G. Huang,B.K. Yee,S. Nag. Behavioral and neurochemicalcharacterization of transgenic mice carrying the human presenilin-1genewith or without the leucine-to-proline mutation at codon235. ExperimentalNeurology2003;183(2):673–681.
    [56]杨秀丽,张文高,郑广娟,刘美霞. ApoE基因敲除小鼠认知功能障碍的Morris水迷宫观察.中国康复医学杂志2006;21(2):121-123.
    [57]LaFerla FM. An array of genes implicated in Alzheimer’s disease.Neurobiology of Aging2006;27(8):1078–1080.
    [58]武强,李露斯,范文辉. APP/PS1双转基因AD小鼠学习记忆功能与超微结构的对照研究.重庆医学,2007;36(9):8181-8822.
    [59]Antonella Caccamo SO. Age-and region-dependent alterations inAβ-degrading enzymes:implications for Aβ-induced disorders.Neurobiology of Aging2005;26(5):645–654.
    [60]Camilla A. Hansson SF. Nicastrin,Presenilin,APH-1,and PEN-2FormActive γ-Secretase Complexes in Mitochondria. The Journal of BiologicalChemistry2004;279(49):51654–51660.
    [61]洪良利,田东萍,苏敏,沈秀娜,高玉霞.低硒对F344纯系大鼠子代神经行为发育和学习记忆能力的影响.卫生研究2006;35(1):54-58.
    [62]ITO Shingo,OHTSUKI Sumio,TERASAKI Tetsuya. Functionalcharacterization of the brain-to-blood efflux clearance of human amyloid-βpeptide (1–40) across the rat blood–brain barrier. Neuroscience Research2006;56(3):246–252.
    [63]Haddad JJ. Mitogen-activated protein kinases and the evolution ofAlzheimer’s:a revolutionary neurogenetic axis for therapeuticintervention? Progress in Neurobiology2004;73(5):359–377.
    [64]Salvatore Oddo,2Lauren Billings. Aβ Immunotherapy Leads toClearance of Early,but Not Late,Hyperphosphorylated Tau Aggregates viathe Proteasome. Neuron2004;43(3):321–332.
    [65]Marianne Abildgaard Oerum CB. Porcine APP cDNAs:Molecular cloning and characterization, expression analysis,chromosomal localization and SNP analysis. Biochimica et BiophysicaActa2006;1759(7):378–384.
    [66]Hsiu-Chiung Yang XC. Biochemical and kineticcharacterization of BACE1:investigation into the putativespecies-specificity for b-and b¢-cleavage sites by human andmurine BACE1. Journal of Neurochemistry,2004;91(6):1249–1259.
    [67]Orly Lazarov GAM. Axonal Transport,Amyloid Precursor Protein,Kinesin-1,and the Processing Apparatus:Revisited. Neurobiology ofDisease2005;25(9):2386–2395.
    [68]Michael G. Kornacker ZL. An Inhibitor Binding Pocket Distinctfrom the Catalytic Active Site on Humanα-APP Cleaving Enzyme.Biochemistry2005;44(34):11567-11573.
    [69]Kwang Hun Lim,Hilary H. Collver. Characterizations of distinctamyloidogenic conformations of the Aβ(1–40) and (1–42) peptides.Biochemical and Biophysical Research Communications2007;353(2):443–449.
    [70]Debomoy K. Lahiria,Yuan-Wen Gea. Characterization of two APP genepromoter polymorphisms that appear to influence risk oflate-onset Alzheimer’s disease. Neurobiology of Aging2005;26(10):1329–1341.
    [71]Frank M. LaFerla KNGaSO. Intracellular amyloid-β inAlzheimer’s disease. neuroscience2007;8(7):499-509.
    [72]Spray.A MURRaDC. simple RT-PCR-based strategy forscreening connexin identity Braz J Med Biol Res1999;32(8):1029-1037.
    [73]Kumar NM GN. The gap junction communication channel. cell1996;84:381-388.
    [74]Mindaugas Rackauskas MMK, z Mindaugas Pranevicius,yKlaus Willecke,z Vytas K. Verselis, Bukauskas FF. GatingProperties of Heterotypic Gap Junction Channels Formed ofConnexins40,43, and45. Biophysical Journal2007;92(3):1952–1965.
    [75]Alexander C. Jackson GLY,and Bruce P. Bean. Mechanism ofSpontaneous Firing in Dorsomedial Suprachiasmatic NucleusNeurons. Cellular/Molecular2004;24(37):7985–7998.
    [76]Herzog SJAaED. Come Together, Right.Now:MinireviewSynchronization of Rhythms in a Mammalian Circadian Clock. Neuron2005;48(12):531–534.
    [77]Thomas C.Clarke DT,J rgen S.Peters en,W.Howard Evan,Patricia E.M.Martin. The antiarrhythmic peptide rotigaptide (ZP123) increasesgap junction intercellular communication in cardiac myocytes and HeLacells expressing connexin43. British Journal of Pharmacology2006;147(5):486–495.
    [78]Susan Herrmann MS, Hanne Cathrine Bisgaard, Ole Vang.Indolo[3,2-b] carbazole inhibits gap junctional intercellularcommunication in rat primary hepatocytes and acts as a potential tumorpromoter. Carcinogenesis2002;23(11):1861–1868.
    [79]Shalini Mitra LA,Souvik Chakraborty,Kristen Johnson,,Xiao-HongSong SKB,and Parmender P. Mehta. Androgen-regulated Formation andDegradation of Gap Junctions in Androgen-responsive HumanProstate Cancer Cells. Molecular Biology of the Cell2006;17(12):5400–5416.
    [80]Elke De Vuyst ED,Liesbet Cabooter,George R Dubyak,Christian CNaus,W Howard Evans. Intracellular calcium changes triggerconnexin32hemichannel opening. The EMBO Journal2006;25(1):34–44.
    [81]Isabelle Plante DGC, Michel Charbonneau. Involvement of theIntegrin-Linked Kinase Pathway in Hexachlorobenzene-InducedGender-Specific Rat Hepatocarcinogenesis. Toxicological Sciences2005;88(2):346–357.
    [82]Gilula NMKaNB. The Gap Junction Communication Channel. Cell1996;84(3):381-388.
    [83]John O’Brien RB, Thomas W. White, et al. Cloning andExpression of Two Related Connexins from the Perch Retina Define aDistinct Subgroup of the Connexin Family The Journal of Neuroscience1998;18(19):7625-7637.
    [84]Michael R. Deans BV,Daniel A. Goodenough,et al. Connexin36IsEssential for Transmission of Rod-Mediated Visual Signals in theMammalian Retina. Neuron2002;36(4):703-712.
    [85]Loan Dang SP,Alan J. Mears,et al. Connexin36in photoreceptor cells:studies on transgenic rod-less and cone-less mouse retinas.Molecular Vision2004;10:323-327.
    [86]Keiji Oguro TJ,Hidenobu Tanaka,et al. Global Ischemia-InducedIncreases in the Gap Junctional Proteins Connexin32(Cx32) andCx36in Hippocampus and Enhanced Vulnerability of Cx32Knock-Out Mice The Journal of Neuroscience2001;21(19):7534–7542.
    [87]C. Frisch MADS-S, G. S hl, et al. Stimulus complexitydependent memory impairment and changes in motor performance afterdeletion of the neuronal gap junction protein connexin36inmice. Behavioural Brain Research2005;157(1):177-185.
    [88]Magalie A. Ravier MGl,Anne Charollais, et al. Loss ofConnexin36Channels Alters β-Cell Coupling, Islet Synchronization ofGlucose-Induced Ca2+and Insulin Oscillations,and Basal InsulinRelease. Diabetes2005;54(6):1798-1807.
    [89]Sabine Le Gurun DM,Andrea Formenton, et al. Connexin-36Contributes to Control Function of Insulin-producing Cells THEJOURNAL OF BIOLOGICAL CHEMISTRY2003;278(39):37690–37697.
    [90]Efimov IR,Nikolski VP,Rothenberg F,Greener ID,Li J,DobrzynskiH,Boyett M. Structure-Function Relationship in the AV Junction.THE ANATOMICAL RECORD PART2004;280(2):952-969.
    [91]Stephanie Urschel THh, Timm Schubert,et al. Protein KinaseA-mediated Phosphorylation of Connexin36in Mouse Retina Results inDecreased Gap Junctional Communication between AII Amacrine Cells.THE JOURNAL OF BIOLOGICAL CHEMISTRY2006;281(44):33163–33171.
    [92]PARK M-sSJ-S. Expression of MAP Kinases and Connexins in theDifferentiation of Rat Mammary Epithelial Cells. Physiology2006;6(86):567-571.
    [93]David Martin TT, Laure Meylan, et al. Critical Role ofthe Transcriptional Repressor Neuron-restrictive Silencer Factor in theSpecific Control of Connexin36in Insulin-producing Cell Lines. TheAmerican Society for Biochemistry and Molecular Biology2003;278(52):53082–53089.
    [94]A. PEREDA JOB,J. I. NAGY,et al. Short-Range Functional InteractionBetween Connexin35and Neighboring Chemical Synapses Cell CommunAdhes2003;10(4-6):419-423.
    [95]Martin Güldenagel J,Andreas Feigenspan,et al. Visual TransmissionDeficits in Mice with Targeted Disruption of the Gap Junction GeneConnexin36he Journal of Neuroscience2001;21(16):6036–6044.
    [96]Dustin Baldridge FL, Chan-Soo Shin, Joseph Stains andRoberto Civitelli Sequence and Structure of the Mouse Connexin45GeneBioscience Reports2005;21(5):1573-4935.
    [97]R. Dermietzel YG,E. Scemes,D. Vieira,M. Urban,M. Kremer,M.V.L.Bennetta,and D.C. Spray. Connexin43null mice reveal thatastrocytes express multiple connexins. Brain Res Brain Res2000;32(1):45-56.
    [98]Birgit E.J. Teunissen HJJ,Marti F.A. Bierhuizen. Regulation ofmyocardial connexins during hypertrophic remodelling. EuropeanHeart Journal2004;25(22):1979–1989.
    [99]Hideo Hoshi JOB,and Stephen L. Mills. A Novel Fluorescent Tracerfor Visualizing Coupled Cells in Neural Circuits of Living Tissue. JHistochem Cytochem2006;54(10):1169–1176.
    [100]Zhi-Qian Zhang YH, Bing-Jing Wang,Zhong-Xiang Lin,Christian C.G.Naus andBruce J.Nicholson. Effective asymmetry ingap junctional intercellular communication between populations ofhuman normal lung fibroblasts and lung carcinoma cells.Carcinogenesis2004;25(4):473--482.
    [101]XING LI, AJMS. Connexin45gap junction channels inratcerebral vascular smooth muscle cells Am J Physiol Heart Circ Physiol2001;281:1890–1898.
    [102]Sébastien Alcoléa MT-R,Thérèse Jarry-Guichard. Downregulation ofConnexin45Gene Products During Mouse Heart Development.circulation research1999;84(12):1365-1379.
    [103]Brenda R. Kwakt,MMPH,Hugo R. De Jonge. Differential Regulation ofDistinct Types of Gap Junction Channels by SimilarPhosphorylating Conditions. Molecular Biology of the Cell1995;6(12):1707-1719.
    [104]Regulation of the Epithelial–Mesenchymal Transformation through GapJunction Channels in Heart Development Trends in CardiovascularMedicine2001;11(6):213-218.
    [105]Ashe,K.H.,and Zahs,K.R. Probing the biology of Alzheimer's diseasein mice. Neuron.2010;66(5):631-45.
    [106]LaFerla FM,Green KN,Oddo S. Intracellular amyloid-beta inAlzheimer's disease. Nat Rev Neurosci.2007;8(7):499-509.
    [107]Pomara N,Sidtis JJ. Alzheimer's disease.N Engl J Med.2010;362(19):1844.
    [108]Hardy J,Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science.2002;297(5580):353-6.
    [109]Vassar R,Bennett BD,Babu-Khan S,et al. Beta-secretase cleavage ofAlzheimer's amyloid precursor protein by the transmembrane aspartic proteaseBACE. Science.1999;286(5440):735-741.
    [110]Dominguez D,Tournoy J,Hartmann D,et al. Phenotypic andbiochemical analyses of BACE1-and BACE2-deficientmice. J Biol Chem.2005;280(35):30797-806.
    [111]SelkoeDJ,SchenkD. Alzheimer's disease:Molecular understandingpredicts amyloid-based therapeutics. AnnuRev Pharmacol Toxicol.2003;43:545-584.
    [112]Zhang YW,Thompson R,Zhang H,et al. APP processing in Alzheimer'sdisease. Mol Brain.20ll;4:3.
    [113]Kim HJ,Chae SC,Lee DK,et al.(2003) Selective neuronal degenerationinduced by soluble oligomeric amyloid beta protein. FASEB J.2003;17(1):118-20.
    [114]Resende R,Ferreiro E,Pereira C,et al. Neurotoxic effect of oligomericand fibrillar species of amyloid-beta peptide1-42; Involvement ofendoplasmic reticulum calcium release in oligomer-induced cell death.Neuroscience.2008;155(3):725-37.
    [115]Jin M,Shepardson N,Yang T,et al. Soluble amyloid beta-protein dimersisolated from Alzheimer cortex directly induce Tau hyperphosphorylation andneuritic degeneration. Proc Natl Acad Sci USA,2011,108(14):5819-24.
    [116]Oddo S,Caccamo A,Shepherd JD,et al. Triple-transgenic model ofAlzheimer's disease with plaques and tangles:Intracellular Abeta and synapticdysfunction. Neuron.2003;39(3);409-21.
    [117]Zhang Y,McLaughlin R,Goodyer C,et al. Selective cytotoxicity ofintracellular amyloid beta peptide1-42through p53andBax in culturedprimary human neurons. J Cell Biol.2002;156(3):519-529.
    1. Ashe, K.H., and Zahs, K.R. Probing the biology of Alzheimer's disease inmice. Neuron.2010;66(5):631-45.
    2. LaFerla FM,Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer'sdisease. Nat RevNeurosci.2007;8(7):499-509.
    3. Pomara N, Sidtis JJ. Alzheimer's disease.N Engl J Med.2010;362(19):1844.
    4. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problemson the road to therapeutics. Science.2002;297(5580):353-6.
    5. Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage ofAlzheimer's amyloid precursor protein by the transmembrane aspartic proteaseBACE. Science.1999;286(5440):735-741.
    6. Dominguez D, Tournoy J, Hartmann D, et al. Phenotypic and biochemicalanalyses of BACE1-and BACE2-deficientmice. J Biol Chem.2005;280(35):30797-806.
    7. SelkoeDJ, SchenkD. Alzheimer's disease: Molecular understandingpredicts amyloid-based therapeutics. AnnuRev Pharmacol Toxicol.2003;43:545-584.
    8. Zhang YW,Thompson R, Zhang H, et al. APP processing in Alzheimer'sdisease. Mol Brain.20ll,4:3.
    9. Kim HJ,Chae SC, Lee DK, et al.(2003) Selective neuronal degenerationinduced by soluble oligomeric amyloid beta protein. FASEB J.2003;17(1):118-20.
    10. Resende R, Ferreiro E, Pereira C, et al. Neurotoxic effect of oligomericand fibrillar species of amyloid-beta peptide1-42; Involvement ofendoplasmic reticulum calcium release in oligomer-induced cell death.Neuroscience.2008;155(3):725-37.
    11. Jin M, Shepardson N, Yang T,et al. Soluble amyloid beta-protein dimersisolated from Alzheimer cortex directly induce Tau hyperphosphorylation andneuritic degeneration. Proc Natl Acad Sci USA,2011,108(14):5819-24.
    12. Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model ofAlzheimer's disease with plaques and tangles: Intracellular Abeta and synapticdysfunction. Neuron.2003;39(3):409-21.
    13. Zhang Y, McLaughlin R, Goodyer C, et al. Selective cytotoxicity ofintracellular amyloid beta peptide1-42through p53andBax in culturedprimary human neurons. J Cell Biol.2002;156(3):519-529.
    14. Gouras GK, Tsai J, Naslund J, et al. Intraneuronal Abeta42accumulationin human brain. Am J Pathol.2000;156(1):15-20.
    15. Allaman1, Gavillet M, Belanger M, et al. Amyloid-P aggregates causealterations of astrocytic metabolic phenotype: Impact on neuronal viability. JNeurosci,2010,30(9):3326-38.
    16. Nunoinura A, Tamaoki T, Tanaka K,et al. Intraneuronal amyloid betaaccumulation and oxidative damage to nucleic acids in Alzheimer disease.Neurobiol Dis.2010;7(3):731-7.
    17. Dermaut B,Kumar-Singh S, Rademakers R, et al. Tau is central in thegenetic Alzheimer-frontotemporal dementia spectrum. Trends Genet,2005,21(12):664-72.
    18. Hanger DP, Anderton BH,Noble W. Tau phosphorylation: the therapeuticchallenge for neurodegenerative disease. Trends Mol Med,2009,15(3):112-9
    19. Reddy PH.Abnormal tau, mitochondrial dysfunction, impaired axonaltransport of mitochondria, and synaptic deprivation in Alzheimer's disease.Brain Res.2011;1415:136-48.
    20. Hoover, B.R., Reed, M.N., Su, J., et al. Tau mislocalization to dendriticspines mediates synaptic dysfunction independently of neurodegeneration.Neuron.2010;68(6):1067-1081.
    21. Morris, M.,Maeda, S.,Vossel,K.,and Mucke,L. The many faces of tau.Neuron.2011;70(3):410-426.
    22. Zempel, H.,Thies, E., Mandelkow, E., et al. Abeta oligomers causelocalized Ca(2+) elevation,missorting of endogenous Tau into dendrites, Tauphosphorylation, and destruction of microtubules and spines. J. Neurosci.2010;30(36):11938-50.
    23. Bertram, L., Lill, C.M., and Tanzi, R.E. The genetics of Alzheimer disease:back to the future.Neuron.2010;68(2):270—281.
    24. Andrews-Zwilling, Y_, Bien-Ly, N., Xu, Q.' et al. Apolipoprotein E4causes age-and Tau-dependent impairment of GABAergic interneurons,leading to learning and memory deficits in mice. J. Neurosci.2010;30(41):13707-17.
    25. Huang, Y. Molecular and cellular mechanisms of apolipoprotein E4neurotoxicity and potential therapeutic strategies. Curr. Opin. Drug Discov.Devel.2006;9(5):627-641.
    26. Mahley, R.W.,Weisgraber, K.H., and Huang, Y. Apolipoprotein E4: acausative factor and therapeutic target in neuropathology, includingAlzheimer's disease. Proc. Natl. Acad. Sci.USA.2006;103(15):5644-51.
    27. Chen, Y.,Durakoglugil, M.S., Xian,X.,and Herz,J. ApoE4reducesglutamate receptor function and synaptic plasticity by selectively impairingApoE receptor recycling. Proc. Natl.Acad. Sci. USA.2010;107(26):120.
    28. Masliah, E.,Mai lory, M., Ge, N.,et al. Neurodegeneration in the centralnervous system of apoE-deficient mice. Exp. Neurol.1995;136(2):107-22.
    29. Millan Sanchez, M., Heyn, S.N., et al. Neurobiological elements ofcognitive dysfunction in Down Syndrome: Exploring the role of APR Biol.Psychiatry.2011;71(5):403-9.
    30. Brouwers, N.' Sleegers, K., Engelborghs, S.,et al. Genetic risk andtranscriptional variability of amyloid precursor protein in Alzheimer's disease.Brain.2006;129(29):84—91.
    31. Wu, J.,Petralia, R.S., Kurushima, H., et al. Arc/Arg3,l regulates anendosomal pathway essential for activity-dependent-amyloid generation. Cell.2011;147(7):615—628.
    32. Bolmont T, Haiss F, Eicke D,et al. Dynamics of the microglial/amyloidinteraction indicate a role in plaque maintenance. J Neurosci.2008;28(16):4283-4292.
    33. Cameron B, Landreth GE. Inflammation,microglia, and Alzheimer'sdisease. Neurobiol Dis.2010;37(3):503-509.
    34. Mosser DM, Edwards JR Exploring the full spectrum of macrophageactivation. Nat Rev Immunol.2008;8(12):958-969.
    35. Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atheroscleroticplaque alternative macrophages display lowcholesterol handling but highphagocytosis because of distinct activities of the PPARgamma and LXRalphapathways. Circ Res.2011;108(8):985-995.
    36. Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying therapid peroxisome proliferator-activated receptor-y-mediated amyloid clearanceand reversal of cognitive deficits in a murine model of Alzheimer's disease. JNeurosci.2012;32(30):10117-28.
    37. Anandatheerthavarada HK, Devi L. Amyloid precursor proteinandmitochondrial dysfunction in Alzheimer's disease. Neuroscientist.2007;13(6):626-38.
    38. Anandatheerthavarada HK, Biswas G, RobinMA, AvadhaniNGMitochondrial targeting and a novel transmembrane arrest of Alzheimer'samyloid precursor protein impairs mitochondrial function in neuronal cells. JCell Biol.2003;161(1):41-54.
    39. Yao J, Du H, Yan S, et al. Inhibition of amyloid-beta (Abeta)peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abetaaccumulation and improves mitochondrial function in a mouse model ofAlzheimer's disease. J Neurosci.2011;31(6):2313-20.
    40. Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuatesmitochondrial and neuronal perturbation and ameliorates learning and memoryin Alzheimer's disease. Nat Med.2008;14(10):1097-105.
    41. Manczak M, Calkins MJ, Reddy PH.Impaired mitochondrial dynamics andabnormal interaction of amyloid beta with mitochondrial protein Drpl inneurons from patients with Alzheimer's disease: implications for neuronaldamage. Hum Mol Genet.2011;20(13):2495-509.
    42. Caldeira GL, Ferreira IL, Rego AC. Impaired transcription in Alzheimer'sdisease: key role in mitochondrial dysfunction and oxidative stress. JAlzheimers Dis.2013;34(1):115-31.
    43. Alonso E, Vale C, Vieytes MR, et al. The cholinergic antagonistgymnodimine improves Aβ and tau neuropathology in an in vitro model ofAlzheimer disease. Cell Physiol Biochem.2011;27(6):783-94.
    44. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer'sdisease. Arch Pharm Res.2013Feb24.
    45. Selkoe DJ. Alzheimer's disease is a synaptic failure. Science.2002;298(5594);789-91.
    46. Rowan MJ, Klyubin1, Wang Q, Anwyl R. Synaptic plasticity disruptionby amyloid beta protein: modulation by potential Alzheimer's diseasemodifying therapies. Biochem Soc Trans.2005;33(Pt4):563-7.
    47. Du H, Guo L, Yan S, et al. Early deficits in synaptic mitochondria in anAlzheimer's disease mouse model. Proc Natl Acad Sci USA.2010;107(43):18670-5.
    48. Miyashita T, Kubik S, Haghighi N, et al. Rapid activation ofplasticity-associated gene transcription in hippocampal neurons provides amechanism for encoding of one-trial experience. J Neurosci.2009;29(4):898-906.
    49. Reddy PH, Tripathi R, Troung Q,et al. Abnormal mitochondrial dynamicsand synaptic degeneration as early events in Alzheimer's disease: implicationsto mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta.2012;1822(5):639-49.
    50.Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell.2012;148(6):1204-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700