苏云金芽胞杆菌喷雾干燥工艺和杀虫蛋白纳米材料吸附剂型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统研究了喷雾干燥塔进风口温度、出风口温度和喷头压力对苏云金芽胞杆菌芽胞和伴胞晶体含量的影响。芽胞和伴胞晶体含量均随干燥温度升高而降低,但二者对温度的敏感程度不同,进风口温度引起芽胞和晶体失活的拟Z值参数分别为250℃和740℃;出风口温度引起芽胞和晶体失活的拟Z值参数分别为72.7℃和270℃。根据出风口温度计算的结果,芽胞热失活活化能为112.24 kJ·mol~(-1),晶体热失活活化能为123.88 kJ·mol~(-1)。喷头压力在0.10~0.25 MPa之间变化时,对芽胞和晶体含量的影响不显著,填料对芽胞和晶体具有一定的热保护作用。
     通过正交试验确定了苏云金芽胞杆菌发酵液喷雾干燥过程中影响原粉收率、含水量、晶体蛋白含量、芽胞数和杀虫致死率的主要因素。方差分析表明,对产品收率的影响顺序为:喷头压力>进风口温度>进料速度;对含水量、晶体蛋白含量、芽胞数和杀虫致死率的影响顺序为:进风口温度>进料速度>喷头压力。建立了描述喷雾干燥工艺参数与产率、含水量、晶体蛋白含量、芽胞数和杀虫致死率之间关系的数学模型,该模型可以直观地发映出工艺操作参数对上述指标的影响趋势,调整这些工艺参数就可以达到控制产品性能的目的。根据数学模型确定的最佳操作条件为:进风口温度180℃,进料速度60 ml min~(-1),喷头压力0.1 MPa。验证试验证实,所建立的数学模型具有可靠性。相关研究国内外未见公开报道。
     研究了离心和微滤浓缩处理对苏云金芽胞杆菌发酵液芽胞数、晶体含量、效价和流变特性的影响。经离心和微滤浓缩处理后,发酵液密度、粘度和含固量增加,芽胞数、晶体含量和效价提高,但效价收率一般随浓缩倍数的增加而降低。上清液或浓缩上清液补加到浓缩发酵液中可以提高效价收率,就浓缩方法而言,微滤浓缩比离心浓缩更能保持浓缩发酵液的杀虫活性。浓缩发酵液喷雾干燥后,原粉的效价、晶体含量和芽胞数提高,但浓缩倍数超过2.5倍时,效价收率随浓缩倍数的增加而降低。发酵液加填料直接喷雾干燥可以保持较高的效价收率,是最大程度回收杀虫活性成分的有效办法。
     苏云金芽胞杆菌发酵液中添加0.5%~1.0%(w/v)的适宜填料可以提高喷雾干燥产率,但当填料用量达到3%以上时,产品收率一般呈下降趋势。相关性分析表明,填料的松密度和振实密度与喷雾干燥产率呈高度负相关关系,即密度越大,产率越低;对同一种填料而言,颗粒越细,产率越高。填料的休止角与喷雾干燥产率低度相关。上述规律的发现对专业工厂筛选高效填料具有指导意义。
     国内率先研究了68 kDa和130 kDa杀虫蛋白在纳米级土壤和矿物胶体上的吸附特性、解吸特性和杀虫活性。供试胶体在pH 9.0碳酸盐缓冲体系对苏云金芽胞杆菌68 kDa和130 kDa杀虫蛋白的等温吸附曲线均符合langmuir方程(R~2>0.97),对
    
    68扔a杀虫蛋白饱和吸附量的高低顺序依次为:蒙脱土>红壤胶体>针铁矿>高岭土>
    氧化锌>氧化硅;对130 kDa杀虫蛋白饱和吸附量的高低顺序依次为:蒙脱土>氧化
    锌>红壤胶体>氧化硅>高岭土>针铁矿。供试胶体在磷酸盐体系pH6一7的吸附量最
    高,在碳酸盐体系的吸附量随pH值升高而降低。与碳酸盐相比,磷酸盐具有抑制针
    铁矿、蒙脱土、氧化锌和红壤胶体吸附杀虫蛋白的作用。
     杀虫蛋白很容易被供试胶体吸附,0.5一3h就能达到或接近最饱和吸附量。随着
    杀虫蛋白与胶体质量比例增加,胶体对杀虫蛋白的吸附量增加,而吸附百分率降低。
    1。一50℃内,温度对供试胶体吸附杀虫蛋白的影响不大。透射电镜分析表明,本研究
    所使用的土壤矿物胶体水中分散粒径在100 nm以下,吸附杀虫蛋白后粒径没有明显
    变化,仍属于纳米颗粒范畴。X-射线衍射分析显示,蒙脱土吸附杀虫蛋白后没有引
    起片层间距扩张。红外光谱分析证实,吸附的杀虫蛋白己结合在胶体上。
     纯化毒素与供试胶体吸附的毒素对棉铃虫幼虫均具有杀虫活性,且后者的LC50
    低于前者。紫外光降解试验表明,蒙脱土和红壤胶体具有减轻紫外光对杀虫蛋白的
    降解作用,氧化锌和高岭土则起加速降解的作用。胶体一杀虫蛋白复合物冷冻干燥和
    喷雾干燥后,杀虫活性有较大程度下降。
     被蒙脱土、红壤胶体、氧化硅、氧化锌、针铁矿和高岭土吸附的68 kDa杀虫
    蛋白经去离子水三次洗涤后,总解吸率分别为28.55%、32.38%、40.54%、24.66%、
    24.72%和31.10%;pHg碳酸盐缓冲液三次洗涤后的总解吸率相应为21.69%、
    18·43%·38·81%、15.37%、16.34%和24.64%,解吸能力低于去离子水。被上述胶
    体吸附的130 kDa杀虫蛋白去离子水三次解吸率为17.79卜64.90%,pHg碳酸盐缓
    冲液三次解吸率为16.61卜59.05%。
The effects of inlet air temperature, outlet air temperature and atomizing air pressure on the spores and crystal protein content of Bacillus thuringiensis were studied. The spores and crystal protein content decreased with the drying temperature and their sensitivity to the temperature was different. The pseudo-z value ( a temperature increase needed for one log cycle reduction) of spores and crystal protein content caused by inlet air temperature was 250C and 740C respectively; the pseudo-z value of spores and crystal protein content caused by outlet air temperature was 72.7C and 270 C respectively. The activation energy of spore and crystal protein calculated by the outlet air temperature was 112.24 kJ mol-1 and 123.88 kJ mol-1 respectively. No obvious changes were found for the spores and crystal protein content as the atomizing air pressure increased from 0.10 MPa to 0.25 MPa. The filler gave some protection to the spores and crystal protein from heat.
    The effects of inlet air temperature, liquid feed rate and atomizing air pressure on the yield, moisture content, crystal protein content, spores and lethality of Bacillus thuringiensis powder during the spray drying of Bacillus thuringiensis fermentation liquor were studied by an orthogonal experiment. The results of variance analysis indicated that the extent of influence of factors on the yield of Bacillus thuringiensis was in the order: atomizing air pressure> inlet air temperature> liquid feed rate; and on the moisture content, crystal protein content, spores and lethality of Bacillus thuringiensis was in the order: inlet air temperature> liquid feed rate> atomizing air pressure. The mathematical models describing the relationship between spray drying parameters and the yield, moisture content, crystal protein content, spores and lethality of Bacillus thuringiensis were established. The influential trends of operation parameters to the product properties could be shown directly by these models, and the
    performance of the production could be controlled by adjusting these parameters. The optimum spray drying conditions determined by these mathematical models were: inlet temperature 180C, liquid feed rate 60 ml min", atomizing air pressure 0.1 MPa. The results of the validation experiment showed that these mathematical models established by the orthogonal experiment were reliable. Available data showed that this important post-treatment technology was seldom reported up to now.
    The effects of centrifugation and micro-filtration concentration of the fermentation
    
    
    liquor on the spores, crystal protein content, titer and rheological properties were studied. After concentration of the fermentation liquor, the density, viscosity, solid content, spores, crystal protein content and titer increased, but the titer yield decreased. The addition of supernatant or concentrated supernatant to the concentrated fermentation liquor leaded to the increase of the titer yield. By comparison of both concentration methods, the micro-filtration concentration was more favorable for increasing the titer yield of the concentrated fermentation liquor than the centrifugation concentration. The titer, spores and crystal protein content of spray dried powder of concentrated fermentation liquor were higher than those of spray dried powder of fermentation liquor without concentration, but the titer yield decreased if the concentration times was more than 2.5. The spray drying of fermentation liquor added by filler without concentration was a effective method for recovering bioactive components.
    The yield of spray dried powder increased if .the fermentation liquor added by 0.5%~1.0%(w/v) filler, however, the yield of spray dried powder decreased as the filler content was more than 3.0%(w/v). The results of correlation analysis showed that there was a highly negative correlation between the density of filler and spray drying yield, the higher the density, the lower the yield; as far as the same filler was concerned, the finer the particle size, the higher the yield. The above laws can give
引文
1.马井玉,刘志海,王江春.苏云金杆菌颗粒剂的研制和应用.莱阳农学院学报,1994,11(增刊):231-234
    2.马福善,张军,周广增.膨润土端面电荷改性研究.天津大学学报,1999,32(6):758-761
    3.介晓磊,刘凡.磷酸盐吸附对针铁矿表面电化学性质及锌次级吸附的影响.河南农业大学学报,2000,34(2):119-121
    4.方箐,徐博钊,张吉斌,明桂珍.球形芽孢杆菌漂浮颗粒剂毒杀蚊幼虫效能评价.中国媒介生物学及控制杂志,1990,1(5):268-270
    5.王开润.料液物性与喷雾干燥.云南化工,1990,(1):49-51
    6.王文军,钱传范,申继忠.杨韶松.活性氧对苏云金芽孢杆菌胞晶体的损伤作用,微生物学报,1999,39(5):469-474
    7.王文军,钱传范,申继忠,程雪梅.紫外线对Bt伴胞晶体的损伤和腐殖酸的保护作用.植物保护学报,2001,28(1):49-53
    8.王平全,谭敬明,程地奎.用红外光谱确定粘土表面结合水的界限.西南石油学报,2001,23(2):53-55
    9.王安福,桑金隆,辛剑林,陈少莲,韩佩娥.苏云金杆菌制剂芽胞杀灭法试验.生物防治通报,1993,9(1):48-49
    10.王坚称,张强.纳米悬浮液作为颗粒型药物制剂在治疗中的应用及未来展望.国外医学药学分册,2001,28(6):358-361
    11.王宝和,王喜忠.喷雾干燥技术的现状及展望,化工装备技术,1997,18(3):47-49
    12.王建武,骆世明,冯远娇,Cindy N.转Bt基因作物Bt毒素在土壤中的环境去向及其生态效应.生态学报,2003,23(4):797-804
    13.王春艳,李霞.有机蒙脱土的制备与表征.哈尔滨师范大学自然科学学报,2003,19(1):63-65
    14.王海宁,邬开朗,闵向荣.苏云金芽胞杆菌Bt可湿性粉剂应用A型农药填充剂性能研究.中国病毒学,杀虫微生物专刊,2000,15:226-227
    15.王涛.发明专制申请公开说明书,苏云金杆菌发酵液的后处理方法.CNl,111,283.1995-11-08
    16.王喜忠,于才渊,周才召.喷雾干燥.北京:化学工业出版社,2003.60-72
    17.韦园红,虞大红,叶汝强,刘洪来,胡英.聚乙烯醇在Al_2O_3、SiO_2颗粒上的吸附及对Zeta电位的影响.华东理工大学学报,2001.27(1):99-102
    18.卢寿慈.粉体加工技术.北京:中国轻工业出版社.1999.40-43
    19.左雅慧,丁之铨,张杰.苏云金杆菌培养条件及晶体蛋白提纯方法初探.植物保护,1999,25(4):32-34
    
    
    20.申继忠,钱传范.苏云金杆菌杀虫剂增效途径研究进展.生物防治通报,1994,10(3):135-140
    21.任冬伟,王勇.超滤膜法浓缩新型苏云金杆菌杀虫剂.水处理技术1998,24(4):215-219
    22.任俊,卢寿慈.固体颗粒的分散.粉体技术,1998,4(1):25-33
    23.关雄.苏云金杆菌8010的研究.北京:科学出版社,1997.42-43,140-141
    24.刘子铎,喻子牛.苏云金芽胞杆菌及其杀虫晶体蛋白作用机制的研究进展.昆虫学报,2000,43(2):207-213
    25.刘广文.喷雾干燥实用技术大全.北京:中国轻工业出版社,2001.84-97
    26.刘晓文,胡岳华,黄圣生,邱冠周.高岭土的化学成分与表面电性研究.矿物学报,2001,21(3):443-448
    27.刘冬碧,贺纪正,刘凡,李学垣.中南地区几种土壤的表面电荷特性Ⅲ.土壤的电荷量,电荷零点(PZC)和净电荷零点(PZNC).土壤学报,1999,36(3):361-368
    28.刘占杰,华泽利.蛋白质药品冷冻干燥过程中变性机理的研究进展.中国生化药物杂志,2000,21(5):263-265
    29.刘利平,马晓建.小麦粉糖化醪液流变特性研究.科技通报,2003,19(4):306-308
    30.刘明秋,戴经元,喻子牛.苏云金芽胞杆菌杀虫剂的剂型研究进展.见喻子牛主编,微生物农药及其产业化.北京:科学出版社,2000.109-114
    31.孙东坡,胡一桥.蛋白质冷冻干燥制品中的保护剂及其保护机制.药学进展,2003,27(4):201-204
    32.朱建林,张坤,催正刚.表面活性剂在环境保护中的应用.农药微乳剂.日用化学工业,2002,32(4):43-46
    33.阮丽芳.Mel基因在苏云金芽胞杆菌中的克隆、表达及高温诱导产黑色素的研究.[博士学位论文].武汉:武汉大学图书馆,2002
    34.佛明义,马明.喷雾干燥过程中粘壁问题研究.石油化工设备,1989,18(5):35-37
    35.吴东升,金磊.食品工业中的喷雾干燥法微胶囊化.食品工业科技,1997,(1):78-82
    36.吴刚,尤民生,赵士熙,江树人.苏云金杆菌预处理小菜蛾对有机磷和氨基甲酸酯杀虫剂的增效作用.昆虫学报,2001,44(4):454-461
    37.张小宁.中药纳米新技术微射流纳米药物制剂的生产.流程工业,2002,(6):36-37
    38.张立钦,王满禾,刘进 李周直.苏云金杆菌油烟雾剂脉冲式烟雾载药技术的研究.林业科学,2000,36(1):71-75
    39.张吉斌,明桂珍,袁方玉,徐博钊.苏云金芽胞杆菌以色列变种发泡块剂灭白纹伊蚊幼虫的效果研究.中国媒介生物学及控制杂志,1997,8(3):169-172
    40.张严峻,谭军,林玉清.低温和几丁质酶处理对棉铃虫围食膜的影响.中国生物防治.2000,16(4):152-155
    41.张俊亭,李治祥,张克强,黄士忠.苏云金杆菌液体剂型的研制,农业环境保护,1998,17(4):158-161
    
    
    42.李玉洋,赵路.徐兆明,细菌(Bt)杀虫剂火箭抛撒剂型生物活性的研究.苏州大学学报(自然科学)2001,17(2):95-97
    43.李育民.黄原胶雾化性能及喷雾干燥的实验研究.化工机械,1997,24(5):258-260
    44.李青,吴继星,谢天健,王开梅.苏云金杆菌GC-91发酵上清液的增效作用.中国生物防治,1997,13(4):166-168
    45.李荣森,戴顺应,李小刚,罗成.化学助剂对苏云金芽胞杆菌的影响及新型悬浮剂的研制.微生物学报,1991,18(2):68-71
    46.李萍,刘丰茂.苏云金芽胞杆菌晶体毒素的分离与纯化.农药,1996,35(12):13-16
    47.李强,高濂,栾伟玲,严东生.纳米ZnO制备工艺中ξ电位与分散性的关系.无机材料学报,1999,14(5):813-817
    48.李璐.Zwittermicm A的活性研究.[硕士学位论文].武汉:华中农业大学图书馆,2001
    49.杨自文,王开梅,吴继星,镇达,张志刚,钟连胜,岳书奎.苏云金杆菌可容性增效物质的回收工艺.中国生物防治,2001,17(3):129-132
    50.杨自文,岳书奎.苏云金杆菌MP-342菌株发酵工艺技术.东北林业大学学报,2001,29(1):138-146
    51.苏善强,甘保吉,陈惟吾,王炎业,郑促伟.苏云金杆菌H—14块状缓释剂控制家庭积水容器中埃及伊蚊幼虫的效果观察.中国媒介生物学及控制,1995,6(6):404-407
    52.邱思鑫,黄志鹏,黄必旺,关雄.添加剂对苏云金杆菌发酵液杀虫效果的影响。中国生物防治,2002,18(2):62-64
    53.邹先琼,夏立秋,孙运军,陈宇.苏云金杆菌4.0718菌株杀虫晶体性质的研究.生命科学研究,2001,5(3):242-245
    54.邹华娇,邱思鑫,赵士熙.添加剂对苏云金杆菌制剂杀虫效果的影响.华东昆虫学报,2002,11(2):105-109
    55.陆现彩,尹琳,赵连泽,熊飞.常见层状硅酸盐的表面特征.硅酸盐学报,2003,31(1):60-65
    56.陈卫东,孙彦.吸附密度对蛋白质在离子交换吸附剂中孔扩散系数的影响.化工学报,2003,54(2):215-220
    57.陈建武,余健秀,胡晓晖,庞义.苏云金芽胞杆菌营养期杀虫蛋白的研究.中国生物工程杂志,2002,22(3):33-36
    58.陈福良,王仪,郑斐能,梁文平.微乳剂低温稳定性的研究.物理化学学报,2002,18(7):661-664
    59.陈锦权,何静,高日霞,傅坤仁.应用超滤技术分离Bt 8010发酵液.福建农业大学学报,1995,24(2):218-222
    60.陈颖,林尾妹.盛宏.苏云金芽胞杆菌8010粉剂对流干燥的研究.福建农业大学学报,1995,24(3):348-352
    61.周学永,陈守文,喻子牛.医药和农药纳米剂型研究和应用.化学与生物工程,2004,(1):
    
    4-7
    62.周学永,陈守文.我国生物农药Bt下游技术开发中的问题及对策.农业环境保护,2002,21(5):480
    63.周学永.聚乙烯/碳酸钙复合降解薄膜的研制.[硕士学位论文].武汉:华中农业大学图书馆,2001
    64.孟祥贤,张志光,陈作红.古尼虫草对苏云金杆菌抗紫外辐射的保护作用.湖南师范大学自然科学学报,2001,24(1):66-68
    65.易求实.均匀沉淀法制备纳米碱式硫酸铜杀菌剂的研究.农药,2001,40(8):20-21
    66.欧阳立明,吴宏文,喻子牛.害虫对转Bt基因植物抗性治理策略.植物保护学报,2001,28(2):183-187
    67.范明霞,张吉斌,徐博钊.几种改进的漂浮颗粒剂灭中华按蚊和致倦库蚊的效果.中国媒介生物学及控制杂志,1999,10(2):102-104
    68.金浩,江体乾.生物大分子吸附分离的数学模型.化工学报,2000,51(1):102-107
    69.胡庆轩,郑怀玉,林文娟,陈朴民.有机粉体流动性的测定.中国粉体技术,1999,5(5):11-14
    70.赵振华,黄巧云,李学垣,郭学军.磷酸盐对土壤胶体和矿物表面吸附酸性磷酸酶的影响.土壤学报,2003,40(3):353-359
    71.赵振国.氨基酸在固腋界面的吸附作用.化学研究与应用,2001,13(6):599-610
    72.徐建敏,庞义.添加剂对Bt-ICPs杀斜纹而夜蛾效果的影响.昆虫天敌,1998,20(2):49-55
    73.徐莉,杨红,彭建新,洪华珠.荧光增白剂对苏云金杆菌毒力的增效作用及其紫外防护功效的研究.中国生物防治,2001,17(2):63-66
    74.袁志明,张用梅,刘蛾英.温度对苏云金杆菌芽胞和毒力的影响.杀虫微生物(第4卷).武汉:武汉大学出版社,1994.222-224
    75.崔云龙,冈部宗一,浅野昌司.苏云金杆菌液体培养物上清液中杀虫活性物质研究.微生物学报,1993a,33(1):62-68
    76.崔云龙,田明,邵宗泽.紫外线使苏云金芽孢杆菌伴胞晶体失活机理的研究.微生物学通报,1993b,20(4)):193-195
    77.崔云龙,邵宗泽,田明.干燥温度对苏云金芽孢杆菌伴胞晶体的结构及杀虫活性的影响.微生物通报,1994,(5):264-267
    78.章大翊,王广元.灭蚊球孢胶悬剂的研制.农药,1997,36(4):12-14
    79.黄建忠,梁宗琦,刘爱英.粉被虫草无性型对苏云金杆菌抗紫外辐射的保护效应.西南农学报.1992,5(2):63-66
    80.喻子牛.苏云金芽孢杆菌制剂的生产和应用.北京:农业出版社.1993.86-93,144-151
    81.喻子牛.苏云金芽胞杆菌.北京:科学出版社.1990.253-267
    82.彭可凡,林开春.农药助剂对苏云金杆菌毒力的影响及新液剂研制.微生物学通报,2000,27(4):242-245
    
    
    83.彭可凡,戴顺英,李荣森.广谱重组苏云金杆菌的生产工艺研究.中国病毒学,2000,15(杀虫微生物专刊):192-195
    84.董彩虹,吴方元.苏云金杆菌淀粉包囊制剂的研究.农药,1998,37(7):16-19
    85.刘玉萍,欧鲁.苏云金芽胞杆菌微胶囊粉剂和悬浮剂.CN1,144, 039.1997-03-05
    86.蔡启良,刘子铎,喻子牛.苏云金芽胞杆菌生物活性成分研究进展.应用与环境生物学报,2003,9(2):207-212
    87.镇达,吴继量,钟连胜,王开梅,周荣华,杨自文.苏云金杆菌超低容量油剂的研制.中国生物防治,2001,17(4):167-169
    88. Aronson A I, Han U S , McGaughey W. The solubility of inclusion protein from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insect. Appl Environ Microbiol, 1991, 57(4): 981-986
    89. Asano S, Nukumiza Y, Bando H, Iizuka T, Yamamoto T. Cloning of novel exterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol, 1997, 63(3): 1054-1057
    90. Asano S, Ogiwarak, Indrasith LS. Synergism of the spore on insecticidal activity of δ-endotoxin of Bacillus thuringiensis against the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) is not observed at late stage in bioassay. Appl Entomol Zool, 2000, 35 (4): 583-590
    91. Baker C A, Brooks A A, Greenley R Z. Encapsulation of biological agrochemicals in nonionic polymer. Eur Pat Appl EP 320, 483. 1989 -06-14
    92. Bietlot H, Carey P R, Choma C, Kaplan H, Lessaard T, Pozsgay M. Facile preparation and charaterization of the toxin from Bacillus thuringiensis var. kurstaki. Biochem J, 1989, 260: 87-91
    93. Brian C S T, Mark K E. Survival of Brevibacterium linens (ATCC 9174) after spray drying, freeze drying, or freezing. J Food Sci, 1997, 62(1): 167-170
    94. Broderick N A, Goodman R M, Raffa K F. Synergy between Zwittermicin A and Bacillus thuringiensis subsp, kurstaki against Gypsy moth (lepidoptera: lymantriidae). Environ Entomol, 2000, 29: 101-107
    95. Bulla L A J, Kramer K J, David J C. Purification and characterization of the entomocidal protoxin of Bacillus thuringiensis. J Biol chem, 1981, 256(6): 3000-3004
    96. Chamberlain P, Langley J G. Cationic polyelectrolytes for enhanced adhension of agrochemical to leaf and soil surfaces. Eur Pat Appl EP365, 279. 1990-04-25
    97. Chevallier T, Muchaoneyerwa P, Chenu C. Microbial utilisation of two proteins adsorbed to a vertisol clay fraction: toxin from Bacillus thuringiensis subsp, tenebrionis and bovine serum albumin. Soil Biol Biochem, 2003, 35: 1211-1218
    98. Crecchio C, Stotzky G. Biodegradable and insecticidal activity of the toxin from Bacillus thuringiensis subsp kurstaki bound on complexes of montmorillonite-humic acids-Al
    
    hydroxypolymers. Soil Biol Biochem, 2001, 33: 573-581
    99. Crecchio C, Stotzky G Insecticidal activity and biodegradation of toxin from Bacillus thuringiensis subsp, kustaki bound to humic acids from soil. Soil Biol Biochem, 1998, 30(4): 463-470
    100. Dunlde B L, shasha B S. Response of starch-encapsulated Bacillus thuringiensis containing ultraviolet screens to sunlight. Environ Entomol, 1989, 18(6): 1035-1041
    101. Estruch J J, Wairen G W, Mulings M A, Nye G J, Craig J A, Koziel M G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Nail Acad Sci USA, 1996, 93: 5389-5394
    102. Faille C, Fontaine F, Membre J M. Factors influencing recovery of heat-injured Bacillus thuringiensis spores. J Food Sci, 1999, 64(2): 363-366
    103. Garke G, Hartmann R, Papamichael N, Deckwer W D, Anspach F B. The influence of protein size on adsorption kinetics and equilibria in ion-exchange chromatography. Sep Sci Technol, 1999, 34: 2521
    104. Gaviria R A M, Granum P E and F G Priest. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol Lett, 2000, 190(1): 151-155
    105. Granados R R, Fu Y, Corsaro B, Hughes P R, Enhancement of Bacillus thuringiensis toxicity to Lepidopterous species with the enhancing from Trichoplusia ni granulovirus. Biol Control., 2001, 20: 155-159
    106. Guttomann D M, Ellar D J. Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative Bacillus thuringiensis virulence factors. FEMS Microbiol Lett, 2000, 188(1): 7-13
    107. Hobbs D G, Campbell B J, lidster W D. Ultraviolet radiation protected pesticidal composition. PCT Int Appl WO97 15, 187. 1997- 05- 01
    108. Huang T K, Wang P M, Wu WT. Cultivation of Bacillus thuringiensis in an airlift reactor with wire mesh draft tubes. Biochem Eng J, 2001, 7: 35-39
    109. Huber H E, Lüthy P, Ebersold H R. The subunits of the parasporal crystal of Bacillus thuringiensis: size, linkage and toxicity. Arch Microbiol, 1981, 129: 14~18
    110. Jones D R, Karunakaran V. Burges H D, Hacking A J. Ultraviolet resistant mutants of Bacillus thuringiensis. J Appt Bacteriol, 1991, 70: 460-463
    111. Kim S S, Bhowmik S R. Survival of lactic acid becteria during spray drying of plain yogurt. J Food Sci, 1990, 55 (4): 1008-1010
    112. Kincaid D C. Sprinkler pattern radius. Transactions of ASAE, 1982, 25(6): 1668-1672
    113. Knight A T, Anderson T P, Ahmertagic M A. Biodegredable controlled release amylaceous material matrix. US 5, 741, 521. 1998-04-21,
    114. Koller C N, Banser L S, Hollingworth R M. Characterization of the pH-mediated solubility of
    
    Bacillus thuringiensis var. san diego native δ -endotoxin crystals. Biochem Biophy Res Com, 1992, 184(2): 692-699
    115. Koskella J, Stotzky G. Microbial utilization of free and clay-bound insecticidal toxins from Bacillus thuringiensis and their retention of insecticidal acticity after incubation with microbes. Appl Environ Microbiol, 1997, 63(9): 3561-3568
    116. Kurate A, Okamoto M, Ohmori I. Purifiction and characterization of a thermostable serine protein from Bacillus thuringiensis. Agric Biolchem, 1989, 53: 3251-3256
    117. Lai CY, Tysld S, Wu SL, et al. Purification and characterization of Bacillus thuringiensis insecticidal toxin. Federations Proceedings, t985, 44(4-5): 1803
    118. Lee J. Drug nano- and microparticles processed into solid dosage forms: physical properties. J Pharm Sci, 2003, 92 (10): 2057-2068
    119. Lereclus D AH, Gominet M, Chaufaux J. Over production of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spoOA mutlatant. Biotechnol, 1995, 13: 67-71
    120. Liu B L, Tzeng Y M Wei C T. Recovery of solubilized δ-endotoxin from Bacillus thuringiensis subsp kurstaki fermentation broth. Pest Manage Sci, 2000, 56: 448-458
    121. Liu C M, Tzeug Y M. Quantitative analysis of parasporal crystal protein from Bacillus thurmgiensis by capillary electrophoresis. J Food Drug Analysis, 2001, 9(2): 79~83
    122. Liu Y B, Tabashmk B E, Moar W J. Synergism between Bacillus thuringiensis spore and toxins against resistant and susceptible Diamondback moths (Plutella xylostella). Appl Environ Microbiol, 1998, 64(4): 1385-1389
    123. Luckham P L. The physical stability of suspension concentrates with particular reference to pharmaceutical and pesticide formulations. Pestic Sci, 1989, 25: 25-34
    124. Maa Y F, Nguyen P A, Sit K, Hsu C C. Spray-drying performance of a Bench-Top spray dryer for protein aerosol powder preparation. Biotech Bioeng, 1998, 60(3): 301-309
    125. Madkour M A, El-sherbeing G A, Abdel A R M. Submerged fermentation of Bacillus thuringiensis delt-endotoxin as a biocontral agent against Spodoptera littoralis. J Microbiol, 2000, 48: 123-134
    126. Manasherob R, Ben-Dov E, Xiaoqiang W, Boussiba S, Zaritsky A. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp, israelensis expressedin Anabaena PCC 7120. Curr Microbiol, 2002, 45(3): 217-230
    127. McGaughey W H, Whalon M E. Managing resistance to Bacillus thuringiensis. Science, 1992, 299: 193-195
    128. McGuire M R. Shasta B S, Lewis L, Bartelt R J, Kinney K. Field evaluation of granular starch formulations of Bacillus thuringiensis against Ostrmia nubilalis (Lepidoptera: Pyralidae). J Econ Entomol, 1990, 83(6): 2207-2210
    129. Medvecky B A, Zalom F G. Conventional and alternative insecticides, including a granular
    
    formulation of Bacillus thuringiensis var. kurstaki, for the control of Busseola fusca(Fuller) (Lepidoptera: Noctuidae) in Kenya. Trop pest manage, 1992, 38(2): 186-189
    130. Miller L K, Lingg A J, Bulla L A J. Bacterial, viral, and fungal insecticides. Science, 1983, 219: 715-721
    131. Mulrooney J E, Elmore C D. Rainfastening of bifenthrin to cotton leaves with selected adjuvants. J Environ Qual, 2000, 29: 1863-1866
    132. Myasnik M, Manasherob R, Ben-Dov E. Comparative sensihvity to U-V-radiation of two Bacillus thuringiensis subspcies and other Bacillus sp. Current Microbiol, 2001, 43: 140-143
    133. Ogram A V, Mathot M L, Harsh J B, Boyle J, Pettigrew C A. Effects of DNA polymer length on its adsorption on soils. Appl Environ Microbiol, 1994, 60(2): 393-396
    134. Oppert B, Kramer K J, Johnson D E. Altered protoxin activation by midgut enzymes from a Baciluss thuriugieusis resistant strain of Plodia interpunctella. Biochem Biophy Res Com, 1994, 198(3): 940: 947
    135. Park H W, Kim H S, Lee D W. Expression and synergistic effect of three types of crystal protein genes in Bacilhts thuringiensis, Biochem Biophy Res Com, 1995, 214: 602-607
    136. Pramanik A, Somchoudhury A K, Khatua D C. Persistence toxicity of Bacillus thuringiensis var. kurstaki in combination with some chemical additive under field conditions. Environl Ecol, 2000, 18: 114-118
    137. Regev A, Keller M, Strizhoo N, et al. Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodotera littoralis larvae. Appl Environ Microbiol, 1996, 62(10): 3581-3586
    138. Ruan L, huang Y, Zhang G, Yu D, ping S. Expression of the reel gene from pseudonas maltophilia in Bacillus thuringiensis. LettApplMicrobiol, 2002, 34(4): 244-248
    139. Salama H S, Abd-E1-Baset M S, Ragaei M. Mode of action of chemical additives in enhancing the potency of Bacillus thurmgiensis against Lepidopterous insects. J Appl Entomol, 1992, 114(2): 167-173
    140. Sanchis V A H, Chaufaux J. Construction of new insectcidal Bacillus thuringiensis recombiant strains by using the sporulation nondepeudent expression system of CryⅢA and a size specific recombination vector. J Biotechnol, 1996, 48: 81-96
    141. Saxena D, Flores S, Stotzlcy G. Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biol Biochem, 2002a, 34: 133-137
    142. Saxena D, Flores S, Stotzky G. Vertical movement in soil of insecticidal Cry Ⅰ Ab protein from Bacillus thuringiensis. Soil Biol Biochem, 2002b, 34: 111-120
    143. Saxena D, Stotzky. G. Bacillus thuringiensis toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem, 2001, 33: 1225-1230
    
    
    144. Seymour L C W. Fisher K D. Modification of biological elements by counting with multivalent polymers. PCT Int Appl WO00 74, 722. 2000-12-14
    145. Shasha B S, McGuire M R. Adherent pesticide-containing starch granutes. PCT Int Appl WO94 00, 984. 1994-11-20
    146. Stephane A D, Desobry F M, Theodore P L. Comparison of spray-drying, drum-drying, and freeze-drying for β-carone encapsulation and preservation. J Food Science, 1997, 62 (6): 1150-1152
    147. Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and bacterial DNA bound on clays and humic acids. J Environ Qual, 2000, 29: 691-705
    148. Sun G, Ahmed F, Black B C. Coated pesticidal matrixes, a process for their preparation and compositions containing them. Eur Pat Appl EP890, 308. 1999 -01-13,
    149. Tang J D, Shelton A M, Rie J. Toxicity of Bacillus thuringiensis spore and crystal Protein to resistant diamondback moth (Platella xylostella). App l Environ Microbiol, 1996, 62: 564-569
    150. Tapp H, Calamai L, Stotzky G. Adsorption and binding of the insecticidal proteins from Bacilus thuringiensis supsp, kustaki and subsp, tenebrionis on clay minerals. Soil Biol Biochem, 1994, 26(6): 663~679
    151. Venkateswerlu G, Stotzky G. Simple method for the isolation of the antilepidopteran toxin from Bacillus thuringiensis subsp, kurstaki. Biotech Appl Biochem, 1990, 12: 245~251
    152. Venkateswerlu G, Stotzky G. Binding of protoxin and toxin proteins of Bacillus thuringiensis subsp, kurstaki on clay minerals. Current Microbiol, 1992, 25: 225~233
    153. Wan Y F, Mark R E. Spray drying of lactococus lactis ssp. lactis C2 and cellular injury. J Food Sci, 1995, 60(1): 195-200
    154. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm, 2000, 203(1-2): 1-16
    155. Yamamoto T, Iizuka T. Two types of endomocidal toxins in the parasporal crystal of Bacillus thuringiensis kurstaki. Arch Biochem Biophy, 1983, 227(11): 233-241
    156. Yamamoto T. One hundred years of Bacillus thuringiensis research and development, discovery to transgenic crops. J Insect Biotech Sericol, 2001, 70(1): 1-23
    157. Yang C C, Pan I H, Chen M H, et al. Bacillus thuringiensis formulated with anti-ultraviolet agent. US 5, 427, 787. 1995-06-27
    158. Yu C G, Mullins M A, Warren G W, et al. The Bacills thuringiensis vegetative insecticidal protein vip 3A lvses midgut epithelium ceils of susceptible insects. Appl Environ Microbiol, 1997, 63(2): 532-536
    159. Yu ziniu, Sun Ming, Liu Ziduo. The research and application of Bacillus thuringiensis in China. In: Biotechnology of Bacillus thuringiensis. Vol3, 6-13. Edited by Yu Ziniu, Sun Ming, Liu
    
    Ziduo. Science Press, 1999. Beijing
    160. Zomer E, Spieman A, Perrone J B. Encapsulation of Bacillus thuringiensis into a polymer. PCT Int Appl WO89 07, 474. 1989- 08- 24
    161. Zwawlen C, Hilbeck A, Gugerli P, Nentwig W. Degradation of the Cry Ⅰ Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Molecular Ecology, 2003, 12: 765-775

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700