花生花粉管通道法转基因育种的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子育种就是定向、有目的地对农作物品种的遗传进行改良和修饰,更有效地培育植物新品种。在多种抗植物虫害、耐除草剂基因中,豇豆蛋白酶抑制剂基因(cowpea trypsin inhibitor,CpTI)和耐除草剂基因(bar)因其抗虫和耐除草剂的广谱性而成为效果最为理想的外源基因,被广泛地应用于农作物抗虫、耐除草剂基因的改良上。本论文研究了用花粉管通道法将CpTI和bar基因转入花生品种“汕油523”和“汕油21”的实验方法,初步探讨了花粉管通道法转化花生的机理,并分析了花生品种间生化成分的变化及和RAPD聚类的遗传距离的关系,以期为花生分子育种提供依据。
     本实验进行了两次RAPD分析,每次选用19个花生品种。结果表明,花生具有丰富的多态性,第一次RAPD分析中的多态性条带达到90.5%,19个花生品种共分为5大类,后代品种和亲代品种基本聚在一类;第二次分析中的多态性条带达到83.5%,19个品种共分为5大类,汕油系列基本聚在一类,后代品种和亲代品种基本也是在一类。两次分析说明聚类的树状图和品种间亲缘关系的一致性。花生品种间的遗传差异比较小,两次分析中品种间的平均遗传距离分别为0.313和0.261。利用RAPD技术的多态性可以为鉴定花生品种提供依据,也可以对花生转基因后代进行初步的检测。本实验根据RAPD分析结果和品种株型特征为汕头市农业科技园鉴定了三个不确定亲缘关系的花生品种:“五菲四”和“粤选58/1”、“粤选58/14”,确定了“粤选58/1”是“五菲四”的亲代品种。
     但是在两次RAPD分析中,有4个品种重复,两次聚类矩阵中,相同品种之间的遗传距离差别较大,如“湛油30”和“NCAC17090”先后两次的距离分别是0.3617和0.2561,“汕油523”和“狮头企”分别是0.2319和0.1847;两次聚类的树状图中,这4个品种的归类也不相同。这说明在本实验中RAPD分析的重复性较差。
     第一次聚类的19个花生品种中,“金花1012”和距离最远的“天津豆”在蛋白质、粗脂肪和主要脂肪酸的含量之间有显著性差异,但是和距离最近的“粤油256”之间只有粗脂肪的含量接近;第二次聚类的19个花生品种中“汕油27”和距离最远的“NCAC17090”在蛋白质、油酸之间差异
    
    汕头大学硕士论文
    不显著,和距离最近的“狮油15”之间只有粗脂肪接近。所以RAPD聚类结
    果中,花生品种间遗传距离的远近和生化成份的差异性没有完全一致的关
    系。
     为了提高花粉管通道法的转化效率,探索分析了“汕油523”和“汕油
    21”两个品种的开花规律。两个品种的盛花期平均都是8一10d,盛花期平均
    每天每株开花3朵以上。春季开花数量波动较大,秋季开花数量波动较小。
    秋季开花数量比春季明显增多,而且同一个季节,“汕油 523”比“汕油
    21”的单株开花数要多。由此可见,秋季利用“汕油523”进行花粉管通道
    法转化操作比较合适。
     用改良的注射法和涂抹法分别在3个不同季节进行了花粉管通道法转
    基因操作,共处理了3998朵花,得到了861株D。代植株。对这些植株进行
    PCR检测,结果共有4株呈阳性反应,品种上“汕油523”和“汕油21”各
    两株,方法上注射法和涂抹法各两株;三次转基因操作的转化率分别是0.49
    %、0.42%和 0.48%。DI代一共得到35株植株,PCR检测结果,只有1株
    D。代转基因植株在D;代中检测到2株有目的基因片断的遗传。
     本实验结果还表明,转基因操作对花生单株果针数和结果数的影响较
    大,都比对照明显减少:座果率和对照相比较,没有明显的变化。可见花
    粉管通道法操作对果针的发生和种子形成的影响比较一致。单株结果数和
    座果率的统计中,方差总体上都比对照要大,说明花粉管通道法操作对花
    生性状的整齐性影响较大。
Molecular breeding is to breed new plant variety via improving or modifying genetic character of crop. The cowpea trypsin inhibitor (CpTI) gene and the bar gene discovered in recent years are found to be used for insect-resistant and anti -herbicide respectively because of their broad spectrum and are used in gene improvement of many crops widely now. Using the peanut (Arachis hypogaea L. cv. Shanyou 523 and Arachis hypogaea L. cv. Shanyou 21) in this report, method of transforming the CpTI and bar gene to peanut with pollen tube pathway technique was studied, the mechanism of the technique in the peanut was discussed; biochemic ingredient changing among the peanut cultivars was analyzed, and genetic distance was studied with RAPD analysis, we hope that these study will be useful to crop breeding.
    In the two analyses different 19 peanut cultivars were analyzed by RAPD technique respectively. The result shows there are plenty of polymorphism among the peanut cultivars. In the first analysis, rate of polymorphic fragments is 90.5%, 19 peanut cultivars is classified in 5 categories, the parent and filial generation cultivars is classified in the same categories approximately; In the second analysis, rate of polymorphic fragments is 83.5%, 19 peanut cultivars is classified in 5 categories approximately, the series of cv. Shanyou are classified in a category, the parent and filial generation cultivars is classified in the same category approximately too. The two analyses show the UPGMA tree is accord with the relationship of the cultivars. The differences among the peanut cultivars are small. The mean genetic distance of the two analyses is 0.313 and 0.261 respectively. It may provide the identification of the peanut cultivars or transgenic plant with proof via RAPD polymorphism. In this report we identifi
    ed three questionable peanut cultivars via RAPD analysis, the result shows that the cv.Yuexuan58/l is parent of the cv.Wufeisi.
    But in two analyses, there is 4 repeat cultivars. In the two RAPD distance
    
    
    
    matrix, between the same pairs the difference of distance is significant, for example, the distance between the pair of the cv.Zhanyou 30 and cv.NCAC 17090 is 0.3617 and 0.2561 respectively, between cv.Shanyou 523 and cv. Shitouqi is 0.2319 and 0.1847 respectively; in the two RAPD trees ,the four cultivars lies in different categories. It shows that repeat of the RAPD analysis is poor.
    Biochemic ingredient data and morphological data of the cv.Zhanyou 30 and its parents cv.Shanyou 523 and cv.Yueyou 223 was analyzed, the mean value difference was tested by Ttest. The result shows that protein, raw fat and morphological data between the cv.Zhanyou 30 and its one of two parents always is different significantly except the fatty acid data. These indicate that biochemic ingredient and morphological character can be inherited steadily via crossbreeding.
    Comparing the result of the first RAPD analysis with the result of the biochemic analysis ,the difference of the pair(cv.Jinhual012 and cv.Tianjindou) which distance is longest is significant in the protein ,raw fat and the main fatty acid ,but only in the raw fat the difference between the cv.Jinhua!012 and cv.Yueyou 256(distance between the pair is very close) is not significant; In the second RAPD analysis, the difference of the pair(cv.Shanyou27 and cv. NCAC 17090)which distance is longest is not significant in the protein and oleic acid, only in the raw fat the difference between the cv.Shanyou27 and ev.Shiyou!5 (distance between the pair is very close) is not significant .From all above ,we thought that the long distance is not consonant with the biochemic ingredient difference.
    In order to increase the translation efficiency of the pollen tube pathway technique, comparing the shanyou523 with shanyou21 in the blossom rule. The result shows that the two cultivars' full-blossom stage is about 8-10 days respectively, in this stage every peanut blossom out more than 3 flowers. In the spring, the flower number per peanut plant is fluctuant widely; but in the
引文
·陈洁辉等,生物化学实验,汕大生物学系 1999.2
    ·陈绪清 等,马铃薯 RAPD标记的PCR技术影响因素的探讨,马铃薯杂志,1999,13(4):195~200
    ·陈游 等,检测转基因水稻中PPT抗性表达的快速简便方法,植物生理学通讯,2000,20(1):50~52
    ·陈有志,刘成明,龙眼品种RAPD鉴别及分析,中国果树,2001,4:28-29C
    ·陈章良,植物基因工程研究,1993,北京:北京大学出版社,23~32C
    ·陈章良,中国生物,2000,(4):6~7
    ·崔凯,肖刚,姚卫蓉,花生食品脂肪酸组成含量分析,花生科技,1997(4):34~37
    ·丁明忠,潘光堂,大豆总DNA直接导入法培育优质高蛋白玉米材料研究,西南农业学报,2001,14(1):8~12
    ·丁群星,谢友菊等,用子房注射法将Bt毒蛋白基因导入玉米的研究[J]中国科学B辑,1993,23(7):707~713
    ·董文召,汤丰收,我国花生优质育种的研究进展及育种策略探讨,中国农学通报,2002,4(2):77~80
    ·段淑芬,胡文广,李秀平等,世界花生生产现状分析。花生科技,1999增刊:27~32
    
    
    ·段晓岚,陈善葆,外源DNA导入水稻引起的性状变异。《中国农业科学》,1985,(3):6~0
    ·段晓岚,陈善葆,外源DNA直接引入水稻的方法与结果,《中国的遗传学研究—中国遗传学会第三次代表大会暨学术讨论会论文摘要汇编》,湖南科学技术出版社,1987,176~177
    ·方小平,许泽永,张宗义 等,花生小叶外植体植株再生及农杆菌介导的基因遗传转化.中国油料,1996,18(4):52~56
    ·傅容昭,孙勇如,贾士荣,植物遗传转化技术手册,中国科学技术出版社,1994
    ·龚蓁蓁,沈慰芳,周光宇等,授粉后外源DNA导入植物技术,中国科学(B),1978,(2):16~20
    ·郭凤英,沙广乐。蛋白酶抑制剂研究进展。河南职技师范学报,1997,25(4):5~7
    ·郭培懿,陈向东,谢志雄,沈萍,一种简便、快速的大肠杆菌质粒转化方法,遗传1999,21(4):48~51
    ·郭三堆 等,双价抗虫转基因棉花研究[J] 中国农业科学,1999,32(3):1~7
    ·郝贵霞,朱桢,豇豆蛋白酶抑制剂基因转化毛白杨的研究。植物学报,1999,41(12):1276~1283
    ·侯学文,姜悦,郭勇,转基因植物中的标记基因,生物学通报,1997,32(1):19~21
    ·胡胜武,赵惠贤,于澄宇,用RAPD标记分析中国和捷克甘蓝型油菜的遗传多样性中国油料作物学报,2001,23(1):23-26
    ·胡志昂,王洪新,蛋白质多样性和品种鉴定,植物学报,1991,(33):556~564
    ·胡忠,博士论文,宁夏枸杞离体培养及农杆菌介导的遗传转化研究,2000.6,68
    ·黄建中,农田杂草抗药性。中国农业出版社,1995
    ·惠东威,庄炳昌,陈受宜,RAPD重建的大豆属植物的亲缘关系,遗传学报,1996,23(6):460~68.
    ·蔡良琬 主编,核酸研究技术(上册),科学出版社,1987,259~260
    
    
    ·J.萨姆布鲁克,E.F弗里奇,T.曼尼阿第斯著,金东雁,黎孟枫 等译,分子克隆实验指南[M].北京,科学出版社,1992
    ·贾士荣,转基因植物的环境及食品安全性,生物工程进展 1997,17(6):37-42
    ·贾士荣,转基因植物食品中标记基因地安全性评估,中国农业科学,1997,30(2):1~15
    ·金惠淑,梁月荣,陆建良,中、韩两国主要茶树品种基因组DNA多态性比较研究,茶叶科学,2001,21(2):103~107
    ·李长缨,简元才,花粉管通道法在植物遗传转化中的应用,生物学杂志,2000,17(1):9~10
    ·李国圣等,玉米丛生芽体系的建立及抗除草剂转基因植株的再生,中国科学(C辑),2001,31(5):85-391
    ·李钧,杨余,李瑞娴 等,应用花粉植物匀浆物质诱导花生遗传性状变异的初步研究[J].遗传学报,1991,18(5):452~456.
    ·李乃坚 等,抗菌肽B基因转化烟草及转基因植株抗青枯病的鉴定,农业生物技术学报,1998,6(2):178~184
    ·李旭刚 等,DNA甲基化对转基因表达的影响,科学通报,2001,23(4):322~326
    ·李远新,王关林,葛晓光,黄瓜授粉后外源基因直接导入技术研究,华北农学报 2000,15(2):89~94
    ·梁炫强等,外源DNA导入技术在花生选育种中的应用研究,广东省农业科学 1995,6:15~17
    ·梁炫强,黎穗临,叶维霖,廖小妹,李一聪,国外花生种质资源的引进、鉴定和利用,花生科技,1999年增刊
    ·梁雪莲,王引斌,卫建强 等。作物抗除草剂转基因研究进展。生物技术通报,2001,2:17~21
    ·林加涵,魏文玲,彭宣宪 主编,现代生物学试验(下册),高等教育出版社,施普林格出版社,2001年10月第1版
    ·刘得璞 等,导入外源DNA获得抗SMV大豆品系,大豆科学,1997,16(4):277~282
    ·刘凤珍 等,国槐DNA导入花生栽培品种引起性状变异的研究,中国油料作物学报,
    
    1999,4:17~9
    ·刘杰 等,向日葵种质资源的随即多态性DNA(RAPD)研究,植物学报,2001,43(2):151~157
    ·刘小勇,田素忠 等,提取植物和微生物DNA的SDS-CTAB改进法[J].北京林业大学学报,1997,19(3):100~103
    ·刘振中,王西平,随机扩增多态DNA在果树上的应用(综述),河北职业技术师范学院学报,2000,14(4):39~43
    ·卢圣栋 主编,现代分子生物学实验技术,高等教育出版社,1993,96~104
    ·卢圣栋 主编,现代分子生物学实验技术[M],北京,高等教育出版社,1993.
    ·陆时万 等,植物学(上册) 高等教育出版社,1982年第二版 229~230
    ·吕祝章,韩启秀,姜天新 等,外源 DNA导入方法在花生育种上的应用[C].新千年国际花生学术研讨会论文摘要,2001.
    ·罗云波,关于转基因食品的安全性,食品工业科技,2000,21(5):5~7
    ·毛加宁,段世华,李绍清,朱英国,利用RAPD分子标记对三组三系杂交水稻及亲本的遗传分析和鉴定遗传,2002,24(3):283~287
    ·缪芳心,黄鹏林,利用花粉管导入法建立甘蓝基因转殖系统之研究[J]中国园艺,1995,41(3):201~214
    ·牟红梅,刘树骏 等,慈菇蛋白酶抑制剂通过花分管途径对小麦的导入及转基因植株分析,遗传学报 1999,26(6):634~642
    ·NelsonR.grosso等,厄瓜多尔花生栽培种籽仁的脂肪、蛋白质、灰分、脂肪酸及甾醇含量,花生科技,1997年第4期
    ·潘瑞炽,董愚得,植物生理学,高等教育出版社,1995年5月第三版:292
    ·彭仁旺,周雪荣,王峻岭等,表达barstar基因及bar基因的转基因油菜的研究。遗传学报,1998,25(1):74~79
    ·邱庆树 等,花生品质的影响因素研究,花生学报,2001,30(3):21~26
    
    
    ·邵丽,李毅,杨美珠等,查儿酮酶基因对转基因植物花色和育性的影响,植物学报,1996,38(7):517~524
    ·申馥玉,王传堂等,牛胸腺DNA与酪蛋白基因导入花生栽培种引起性状变异的研究[J].花生科技,1995,(3):1~3
    ·申馥玉,朱忠学,吕祝章等,外源DNA导入技术在花生育种上的应用研究初报[J].花生科技,1990,(4):5~6
    ·苏少泉,除草剂作用机制定生物化学与生物技术的应用。生物工程进展,1993,14(2):30~34
    ·田颖川,抗虫转基因欧洲黑杨的培育。生物工程学报,1993,9(4):291~297
    ·万士梅 等,外源基因(bar)在转基因燕麦(Avena sativaL. )后代中的遗传与表达,复旦学报,1998,37(4):450~454
    ·万勇善,谭忠,范晖,李向东,张高英,刘风珍,王溯,花生脂肪酸组分的遗传效应研究国油料作物学报,2002,24(1):45~47
    ·王传堂,赵双宜,苗华荣,李正超,徐建芝,通过花萼管注射法获得转基因植株花生研究初报,花生科技,1999增刊,261~263
    ·王大宇,抗除草剂基因在作物杂种优势中的利用及进展。作物杂志,1998,6:33~34
    ·王道杰,王灏,李殿荣,生物技术在油菜遗传改良种的作用,西北农业大学学报,1999,27(2):90~95
    ·王关林,方宏筠主编,植物基因工程原理与技术,科学出版社,1998
    ·王树凤,徐礼根,抗虫转基因植物研究进展。农药,2000,39(9):6-9
    ·王晓娟,李兴林,倪建福,王亚馥,高粱DNA导入小麦后代的和面仪曲线变化,中国农业科学,2000,33(1):53~56
    ·吴迪 等,转基因植物中外延基因沉默机制及防治对策,生物技术通讯,2002,21(3):228~232
    ·吴绮,韩碧文.植物病理通讯,1981(4):40~41
    ·向文胜,肖振平,赵长山。抗除草剂转基因作物。东北农业大学学报,1998,29(2)1:201~208
    
    
    ·肖昌珍,吴渝,甘冬生,童春霞,刘桂梅,中国花生种质主要生化品质分析花生科技,1999,增刊:161~166
    ·谢道昕,倪万潮 等,苏云金杆菌(Bacillus huringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株。中国科学,1991(4):367~373
    ·邢树平,花生生殖生物学研究,花生科技,1997,1:7~10
    ·许泽永,国外植物基因工程在花生改良上的应用研究进展概述。花生科技,1994,2:1~3
    ·严杰,现代微生物学实验技术及其应用,北京:人民卫生出版社,1997
    ·阎新甫,刘文轩等,大麦DNA导入小麦产生抗白粉病变异的遗传研究[J]遗传,1994,16(1):26~30
    ·叶冰莹,陈由强 等,花生DNA快速简便提取方法的研究,花生科技.1999,3:1~4
    ·叶冰莹,陈由强 等,应用RAPD技术分析花生品种遗传变异,中国油料作物学报,1999,21(3):15~18
    ·叶冰莹,陈由强,朱锦懋,庄伟建,花生RAPD反应条件的研究,花生科技,2000,(1):4~6
    ·易自力,刘选明,周朴华。植物抗虫基因的研究与应用。高技术通讯,1999,6:23~28
    ·于洪欣,柳建军,冯兆礼等,抗虫基因CpTI导入小麦的研究简报。中国农学通报,1998,14(4):40~41
    ·余传隆主编 生命科学进展——理论、技术、应用 北京:中国医药科学技术出版社,1993,456~468
    ·俞志华,抗虫基因地抗虫原理及其应用现状和展望。生物学通报,2000,35万(7):8~10
    ·禹山林,T G Isleib,美国大花生脂肪酸的遗传分析中国油料作物学报,2000,22(1):23~25
    ·袁卫明 等,抽提大豆各组织DNA方法的比较研究,生物化学杂志,1997,13(6):719~720
    
    
    ·曾君祉,吴有强,王东江等,花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨[J].科学通报,1998,43(6):561~566
    ·曾君祉,吴有强,王东江,等,花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨[J] 科学通报,1998,43(6):561~566
    ·张广辉,巩振辉等,大白菜和油菜真空渗入遗传转化法初报,西北农业大学学报,1999,27(3):6~8
    ·张恒庆,安利佳,祖元刚,红松RAPD实验中各组成成分含量对实验结果的影响,植物研究,1999,19(2):183~188
    ·张龙翔,张庭芳,李令嫒主编,生物化学试验方法和技术,人民教育出版,1981年11月第1版
    ·张晓东,李冬梅,徐文英等,用基因枪将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株。华北农学报,1997,12(1):133~136
    ·张中林,山松,陈曦等,除草剂抗性基因Bar导入烟草叶绿体。作物学报,1999,25(5):574~78
    ·赵世绪等,花生受精过程及胚胎发育的观察,花生科技,1978,(2):13~14
    ·郑红军,于元杰,尹承佾,张力思,李勃,外源DNA导入小麦的RAPD验证及遗传分析西北植物学报,2002,22(4):758-765
    ·周光宇,陈善葆,黄骏麒主编,农业分子育种研究进展,中国农业科技出版社,1993,20
    ·周光宇,从生物化学角度探讨远缘杂交的理论,中国农业科学,1978,(2):16~18
    ·周涵韬,林鹏,中国红树科7种红树植物遗传多样性分析水生生物学报,2001,25(4):35~37
    ·周泽杨 等,分子系统学研究中分子位点与遗传差异信息可靠性的关系,遗传,1998,:13~15
    ·周兆斓 等,生物工程学报,1994,14(4):18
    ·朱莉 等,我国部分白菜型油菜RAPD的研究,生物多样性,6(2):99~104
    ·朱新产,赵文明等,豌豆种子发育过程中DNA和RNA含量的动态变化 西北农业学报1995.4(2):77~80
    ·Baker CM, Durham RE, Burns JA, et al. High frequency so matic embyo genes is in peanut
    
    (ArachishypogaeaL.) using mature, dryseed. Plant Cell Report, 1995, 15: 38~42
    ·Barton K A, Whitely H R, Yang N S. Bacillus thuringiensis -endotoxin expressed in transgenic Nicobana tabacum provides resistance to lepidopteran insects. Plant physiol, 1987, 85: 1103~1107
    ·BrarGS, CohenBA,VickCL, Johnson GW. Recovery of transgenic peanut (ArachishypogaeaL.) plants from elite cultivars utilizing ACCELL technology. The Plant Journal, 1994, 5(5): 745~753
    ·Cheng alrayan K, Sathaye SS, Hazra S. Somatic embryo genes is from mature embryo-derived leaf lets of peanut (ArachishypogaeaL.). Plant Cell Reports, 1994, 13(10): 578~581
    ·Cheng alrayan K, Smhaska VB, Hazra S. High-frequency conversion of abnormal peanut so maticem-bryos. Plant Cell Reprots, 1997, 16: 783~786
    ·ChengM,JarretRL, LiZ, Demski JW. Expression and inheritance of foreign genes in transgenic peanut plants generated by Agrobacterium-mediated transformation. Plant Cell Reports, 1997, 16: 541~544
    ·ChengM,JarretRL, LiZ, XingA, DemskiJW. Production of fertile transgenic peanut (Arachishy-pogaeaL.) plant using Agrobacterium tumefaciens. Plnat Cell Reports, 1996, 15: 653~657
    ·Chong K, Tan K H. Functiuon analysis of ver 203 gene through antisense transgenic winter wheat plants. Plant Physiology(Subpplamant), 1995, 108(2): 475
    ·ClementeTE, Robert son D, etal. Evaluation of peanut (ArachishypogaeaL.) leaf lets from maturezy-goticem bryosas recipien ttissue for biolistic gene transfer. Trangenic research, 1992(1): 275~284
    ·de Carvalho Niebel F, Frerdop, Van Monlagu M, Cornellissen M. Post-transcriptional co-suppreession of β-1, 3-glue anase gene nuclear mRNA[1]. Plant Cell. 1995, 7: 347
    ·De-block M, Botterman J, Vandew iele M, et al. EMBOJ, 1987, 6: 2513~2518
    ·Dong J, BiY, XiaL, etal. Teratoma induction and nopaline synthase gene transfer in peanut. ActaGe-netica Sinica, 1990, 17(1): 13~16
    ·Dougherly WG, Park TD. Transgenes and gene suppression. Tellingus something
    
    new[J], Curr Opin Cell Biol, 1995,7:399
    ·Eapen S, Geoge L. Agrobacterium tumefaciens-mediated gene transfer in peanut (ArachishypogaeaL.). Plant Cell Reports,1994,13: 582~586
    ·Eapen S, George L. Plant rgeneration from leaf discs of peanutand pigeonpea: influnce of benzyladenine, indoleacetic acid and indoleacetic acid amino acid conjugates. Plant Cell, Tissue and Organ Culture,1993, 35(3): 223~227
    ·FinneganJ. Transgene inactivation Plant light back[J]. Biotechnology. 1994, 12(9): 883
    ·Franklin CI, Shorrosh KM, TrieuAN, et al. Stable transformation of peanut callus via Agrobacteri-um-mediated DNA transfer. Transgenic Research, 1993, 2: 31~34
    ·Fujimoto H, Itoh K, Yamamoto M. Insect resistance rice generated by introduction of a modified -endotoxin gene of Bacillus thuringiensis. Biology technology, 1993, 11: 1151~1155
    ·Gathehouse A M R, Hilder V A, Boulter D. CAB international: Plant genetic manipulation for crop protection. 1992, 155~181
    ·Gathehouse A M R. Assessment of the antimetabolic effects of trypsin inhibitors from cowpea (Vigna ungaicularor) and other legumes on development of the beetle Callosobruchvs maculatus. Scinence food agriculture, 1983, 33: 345~350
    ·Gathehouse A M R. Molecular biology in crop protection, 1994, 177~201
    ·Hazra S, et al. Direct somatic embryogenesis in penaut(Arachis hypogea). Biotechnology,1989, 7: 949~951
    ·Hess E. Investigationson the intra and inter specific transfer of anthocyanin genes using pollen as vector[J]. Z. P flanzen physiol, 1980, 321~327
    ·Hilder V A, Gatehouse A M R, Sheerman S E et al. A noval machinism of insect resistance engineered into tobacco. Nature, 1987, 300: 160~163
    ·Hilder VA, etal. Plant Molecular Biology, 1989,13: 701
    ·Hilser VA, etal. Nature,1987, 300: 160
    
    
    ·IqbalM J, Raybum A L et al. Identification of the IRS rye chromosomed segment in wheat by RAPD analysis. Theor. Appl. Genet. 1995, 91(6-7): 1048~1053
    ·Kochert G et al. RFLP variability in peanut (Arachis hypogaea L.)cultivars and wild species, Theor Appl Genet, 1991, 81: 565~570
    ·Li Z, Jarret R L, Demski JW. Engineered resistance to tomato spotted wiltvirus in transgenic peanutex-pressing the viral nucleocapsid gene. Transgenic Research, 1997, 6: 297~305
    ·Lacorte C, Mansur E, TimmermanB, etal. Gene transfer into peanut (ArachishypogaeaL.) by A-grobacterium tumefaciens. Plant Cell Reports, 1991, 10: 354~357
    ·Li Z, Jarret R L, Demski J W. Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Research, 1997, 6: 297~305
    ·Luo zhongxun, Wu Ray. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Bio Rep, 1988, 6(3): 165~174
    ·Lush WM, Grieser F, Wolters_Arts M. Directional guidance of Nicotiana alata pollentubes in vitro andon the stigma. Plant Physiol, 1998, 118: 733~741
    ·M, Botterman J, Vandew iele M, et aI. EMBOJ, 1987, 6(25): 132~518
    ·Mansur EA, Lacorte C, Freitas G, et al. Regulation of transformation efficiency of peanut (Arachishy-pogaeaL.) explants by Agrobacterium tumefaciens. Plant Science, 1993, 89: 93~99
    ·Mc Cubbin AG, Kao TH. Molecular recognition and response in pollen and pistil interaction. Annu Rev Cell Dev Biol, 2000, 16: 333~364
    ·Mckently A H, Moore G A, Gardner F P. Regeneration of peanut and perennial peanut from cultured leaf tissue. Crop Science, 1991, 31(3): 833~837
    ·NaqviNaweed 1, Bonman JMichael et al. Identification for RAPD markers linked to a major biast resistanse gene (?)m-1 in tomato. Japan J. Genetics. 1995, 70(2): 179~184
    
    
    ·Nei, Masatoshi. Molecular evolutionary genetics, 1987, 293
    ·Ozias- Akins P, Schnall JA, Anderson W F, et al. Regeneration of transgenic penaut plant from stably transformed embryogenic callus. Plant Science, 1993, 93(1~2): 185~194
    ·Ozias- Akins P. Plant regeneration from immature embryos of peanut. Plant Cell Reports,1989, 8: 217~218
    ·Park Y D, Papp I, Moscone E A, et al. Gene silencing mediated by promoter homology occur at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J, 1996, 9(2): 183~194
    ·Peferoen P. Progress and prospects for field use of Bt genes in crops. Trends in biotechnology, 1997, 15: 173~177
    ·Pittman R N, et al. Plant Science. Canada, 1983, 10: 21~25
    ·Powell A P, Nelson R S, De B et al. Delay of disease development in transgenic plant that express the tobacco mosaec virus coat protein gene. Science, 1986, 232: 738~743
    ·Reiter R S williams J et al. Giobal and localgenome mapping in A rabidopsis thaliane by using recombinatact inbred lines and RAPDs. Proc. Natl. Acad. Sci.U.S.A. 1992, 89: 1477~1481
    ·Singsit C, Adang, Lynch R E et al. Expression of a Bacillus thringiensis cry IA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Research, 1997, 6: 169~176
    ·Singsit C, Adang, Lynch R E, et al. Expression of a Bacillus thringiensis cry IA(c)gene in transgenicpeanut plants and its efficacy aganst lesser cornstalk borer. Transgenie Research,1997, 6: 169~176
    ·Stiles j I,lemme C et al. Using RAPD for evaluating genetic relationshps among papays cultivars. Theor. Appl. Genet, 1993, 85(6-7): 697~701
    ·Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the
    
    control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512~526.
    ·Thompson C J. Characterization of the herbicide resistance gene bar from Streptomyces hygroscopicus. EMBO J, 1987, 6: 2519~2523
    ·Tracy Halward et al. Use of single primer DNA amplifications in genetic sudies of peanut(Arachis hypogaea L.). Plant Molecular Biology, 1992,18: 315; 325
    ·Vaeck M, Peynaerts A, Hofte H et al. Transgenic plants protected from insect attack. Nature, 1987, 328: 33~35
    ·Wang A, Fan H, Sing sit C, etal. Transformation of peanut with a soybean vs pBpromoter-uid A chimeric gene. Physiol Plant arum, 1998, 102: 38~48
    ·White J A. Cassette containing the bar gene of Streptomyces hygroscopicus: aselectable Marker for plant transformation. Nucleic acids research, 1990, 18: 1062
    ·WillemseMTM, Van WentJL. Embryology of angiosperms. Berlin-heidelberg-NewYor k: springer-Verlag, 1984, 159~197
    ·Williams J G K, Kubelik A R, Livak A F etal. DNApolymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18: 6531~6535
    ·Wohlleben W, Amold W, Broer 1, et al. Nucleolide sequence of the phosphinothrioin N-acetyltransferase gene from the Streptomyces hygroscopious Tu 494 and its expression in nicotiana tobacum. Gene, 1988, 70: 25~37
    ·X. Yang and C. Quiros, Identification and classification of celery cultivars with RAPD makers, Theor Appl Genet. (1993), 86: 205~212
    ·Zhu T, Mogensen H L, Smith S E, Quantitive three dimensional analysiss of alfalfa egg cells in two genotypes: implication for biparental plastid inheritance. Planta, 1003,100:143-150
    ·Zinkl GM, Zwiebel BI, Grier DG, PreussD. Pollen_stigma adhesion in Arabidopsis: aspecies_specific interaction mediated by lipophilic molecules in the pollen exine. Development, 1999, 1255: 5431~5440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700