水杨酸对梨(Pyrus L.)授粉受精及酚类物质代谢影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水杨酸是植物体内普遍存在的内源信号分子之一,已被确认为是一种新型的植物激素,具有重要的生理生化作用。良好的授粉受精是生产优质果品的基础,而酚类物质代谢会直接对果实品质产生重要影响,因此研究水杨酸对二者的作用,对提高果品质量具有重要的意义,同时还可进一步揭示水杨酸的生物学意义。本试验以鸭梨和雪梨为试材,研究了水杨酸在授粉受精及果实酚类代谢过程中的作用。主要研究结果如下:
     1.鸭梨花器官中含有SA,并且在其开花过程中,SA的含量有一显著高峰,出现在开花第二天,最高值达266.58μg·g~(-1) FW,而后呈逐渐下降的趋势,在第五天略有升高,但幅度不大。
     2.盛花期喷施0.02 mmol·L~(-1) SA处理可显著提高鸭梨的座果率。0.0002、0.2 mmol·L~(-1) SA处理可提高鸭梨花后两周的座果率,但六月落果后与对照差异不显著。
     3.鸭梨开花期间,乙烯的释放速率为跃变型,跃变高峰出现在开花的第二天,外源喷施0.0002、0.002 mmol·L~(-1) SA处理可降低这一高峰,0.02、0.2 mmol·L~(-1) SA处理可完全抑制乙烯高峰,使其释放速率始终维持在一个较低的水平。
     4.在花期喷施不同浓度SA均可提高鸭梨雌蕊中GA_3的含量,0.0002、0.002、0.02 mmol·L~(-1) SA处理可降低鸭梨雌蕊中ABA的含量,0.0002、0.002 mmol·L~(-1) SA处理可降低IAA的含量,仅有0.2 mmol·L~(-1)SA处理可提高IAA、ABA的含量。
     5.用SA液体培养鸭梨花枝研究表明,0.002、0.02 mmol·L~(-1)SA处理可提高雌蕊中POD、SOD的活性,降低MDA、O_2~-·的积累,延缓其衰老;0.0002 mmol·L~(-1)SA处理对POD、SOD有短期的促进作用,可暂时缓解MDA、O_2~-·的积累;0.2 mmol·L~(-1)SA处理抑制SOD、POD的活性,提高MDA、O_2~-·的水平,从而加速雌蕊衰老。
     6.0.0002、0.002、0.02mmol·L~(-1)SA处理均可提高鸭梨及雪梨花粉生活力,并且促进花粉的萌发及花粉管的伸长。
     7.0.0002、0.002、0.02 mmol·L~(-1)SA处理可显著拮抗EGTA对花粉萌发及花粉管生长的抑制作用,而且与正常情况相比,其花粉的萌发率高,花粉管生长速度快,采用LaCl_3与SA培养花粉有同样的效果。采用CaCl_2与SA共同培养可湮没SA对花粉的促进作用,仅有个别SA浓度处理,花粉的萌发率及花粉管的生长速度仍显著高于对照。
     8.0.0002、0.002、0.02 mmol·L~(-1)SA处理可显著拮抗LiCl及新霉素对花粉萌发及花粉管生长的抑制作用,在LiCl及新霉素浓度较高的情
    
    况下更为显著。
     9.在果实采收前一个半月,连续喷施0.02 mmol·L-’sA处理可降
    低果实中酚类物质的含量,抑制PPO的活性,减少木质素含量、果点
    数量和减小石细胞大小。0.002、O.OZmmol·L’’SA处理可提高果实中
    POD酶的活性。
Salicylic acid (SA) is an endogenous signal substance that exists universally in the plant, which has been confirmed as a new hormone, and plays a crucial role in regulation of physiology and biochemistry action. Good pollination and fertilization is the basis of high-quality fruit; On the other hand, metabolism of phenols can directly affect the fruit quality. Therefore it has an important significance to improving the quality of fruit and revealing biology sense of salicylic acid by studying the effect of SA on the two aspects. This experiment studied the effects of SA on pollination, fertilization and phenol metabolism in Ya-li pear and Xue-li pear. The main results were as follows:
    1. SA existed in the flower of Ya-li pear. With blooming there was a marked peak of SA content and it appeared at the day after blooming, the maximal value attained 266.58 μg.g-1 FW. Then the content of SA dropped gradually, and ascended within a narrow range at the fifth day after blooming.
    2. It improved the rate of fruit setting by spraying 0.02 mmol.L-1 SA in florescence. Spraying 0.002 and 0.2 mmol.L-1 SA can only improve the rate of fruit setting after two weeks of bloom, yet there was unobvious divergence between treatments and control after June drop.
    3. The releasing rate of ethylene was a jump pattern in florescence, the peak appeared at the day after blooming. It was reduced by spraying 0.0002 and 0.002 mmol.L-1 SA, and was inhibited and maintained in a low level all along by 0.02 and 0.2 mmol.L-1 SA.
    4. Spraying SA of different concentrations in florescence resulted in the increase of endogenous GAs content of Ya-li pear pistil. ABA content was reduced with spraying 0.0002, 0.002, 0.02mmol.L-1 SA. IAA content was also reduced by 0.0002 and 0.002 mmol.L-1 SA. Only spraying 0.2 mmol.L-1 SA that improved the contents of IAA and ABA in the pistil.
    5. With 0.002, 0.02mmol.L-1 SA liquid cultivating Ya-li pear flower branchs, it prolonged the life of pistils, enhanced the activity of peroxidase (POD), supereoxide dismutase (SOD) and decreased the content of malondialdehyde (MDA), superoxide anion radical (O2-). There was only a short-term increasing effect on 0.0002 mmol.L-1 SA on the two enzymes, so the accumulation of MDA and O2 was relieved temporarily. Pistil apolexising was accelerated under the concentration of 0.2 mmol.L-1 SA treatments, meanwhile the POD and SOD activity were inhibited, MDA and O2 contents were raised.
    6.The treatments of 0.0002,0.002,0.02 mmol.L-1SA improved the pollen activity of Ya-li pear and Xue-li pear, moreover accelerated germinating of pollen and extending of pollen tube.
    7.0.0002, 0.002, 0.02 mmol.L-1 SA treatments antagonized the inhibition of EGTA on germination of pollen and extending of pollen tube, and the same to LaCl3. But the accelerating action of SA on pollen was neglected by using CaCl2; only individual
    
    
    
    treatment of SA was obviously higher than control.
    8. The inhibitions of LiCl and Neomycin on germination and extending of pollen tube were antagonized by 0.0002, 0.002, 0.02mmol.L-1 SA, it was more marked at the situation of higher concentration of LiCl and Neomycin.
    9.The result showed that successive spraying 0.02mmol.L-1 SA inhabited polyphenoloidase (PPO) activity during mature period of fruit and decreased the number of fruit spots, the size of stone cell, content of phenols and lignin. But 0.002 and 0.02 mmol.L-1 SA treatments improved the activity of POD in fruit.
引文
[1] 刘林德,姚敦义.植物激素的概念及其新成员[J].生物学通报,2002,37(8):18~20.
    [2] 潘瑞炽.水杨酸——一种新的植物激素[J].生物学通报,1995,30(5),7.
    [3] 曾襄.果树生理[M].科学出版社,1989,51~57.
    [4] 黄卫东,原永兵,彭宜本.温带果树结实生理[M].北京:北京农业大学出版社.1994,163~179.
    [5] 蔡永萍,聂凡,张鹤英等.水杨酸对月季切花的保鲜效果和生理作用[J].园艺学报,2000,27(3):228~230.
    [6] 李雪萍,庞学群,张昭其等.水杨酸对玫瑰切花保鲜机理的研究[J].福建农业学报,1999,14(3):38~42.
    [7] 田志喜,张玉星,于艳军等.水杨酸对离体鸭梨花序衰老的影响[J].果树学报,2001,18(6):372~373.
    [8] Greoenewald EG. The metabolism of inhibitor of flowering and prostaglandin biosynthesis, acetylsalicylic acid in pharbitis nil cotyledons[J]. Biologia Plantarum, 1998, 41 (3): 475~479.
    [9] Charles A. Inhibition of ethylene biosynthesis by salicylic acid[J]. Plant physiol, 1988: (88): 833~8378.
    [10] 张玉星.水杨酸在苹果、梨果实成熟衰老中的效应分析[D].山东农业大学,1998.
    [11] 范晖,何成顺.水杨酸对采后苹果果实乙烯生成的抑制作用[J].植物生理学通讯.1998,34(4):248~251.
    [12] 莱谢姻著,胡文玉译.植物衰老过程和调控[M].沈阳:辽宁出版社,1990,150~165.
    [13] 朱诚,刘飞燕,郭达初等.桂花开花和衰老过程中乙烯及脂质过氧化水平初探[J].园艺学报,1998,25(3):275~279
    [14] Suttle JC, H Kende. Ethlene and senescence in petals of Tran descantia [J]. Plant Physiol, 1978, 62: 267~271.
    [15] 李德红,潘瑞炽.水杨酸在植物体内的作用[J].植物生理学通讯,1995,31(2):144~149.
    [16] 原永兵.水杨酸在植物体内的作用[J].植物学通报,1994,11(3):1~9.
    [17] Anandhis-s, Ramanujam-ME Effect of SAliylie acid on blank gram cultuars[J]. Indian Journal of Plant Physiology, 1997, 2 (3): 138~141.
    [18] 任红旭,陈雄,赵晓俊等.低氮素和水杨酸对黄瓜子叶离体培养中花芽分化的影响[J].园艺学报,1999,26(3):105~109.
    [19] Handro W, Mello CM, Manzano-MA, Floh-eis. Enhancement of stem elongation and flower bud regenration by Salicylic acid[J]. Plant Physiology, 1992 (2): 139~145.
    [20] 蔡新忠,郑重.水杨酸在植物抗病中的作用[J].植物生理学通讯,1998,34(4):297~304.
    [21] 沈文飚,徐郎莱,叶茂炳.水杨酸诱导植物抗病性的新进艘[J].生物化学与生物物理进展,1999,26(3):237~240.
    [22] Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S. Salicylic Acid Induces Extracellar Superoxide Generation Followed by an Increase in Cytosolic Calcium Ion in Tobacco Suspension Culture: The Earliest Events in Salicy Acid Signal Transduction[J]. Plant Cell Physiol, 1998, 39 (7): 721~730.
    [23] 韩涛,李丽萍,冯双庆.外源水杨酸处理采后番茄和黄瓜果实抗冷性的影响[J].中国农业科学,2002,35(5):571~575.
    [24] 孙燕,崔鸿文,胡荣等.水杨酸对黄瓜幼苗壮苗的形成及抗低温胁迫能力的生理效应[J].西北植物学报,2000,20(4):616~620.
    [25] 张士功,高吉寅,宋景芝.水杨酸和阿司匹林对小麦盐害的缓解作用[J].植物生理学报,1999,25(2):159~164.
    
    
    [26] Raskin.Salicylic. A new plant hormone[J]. Plant Physiol, 1992 (99): 799~803.
    [27] 张玉星,田志喜,郗荣庭等.水杨酸对鸭梨幼果酚类物质代谢调节作用的研究[J].河北农业大学学报,2002,25(3):33~36.
    [28] 高夕全,刘爱荣,叶梅荣等.水杨酸对水稻幼苗硝酸还原酶活性和根系生长的影响[J].安徽农业技术师范学院学报,2000,14(1):13~15.
    [29] 杨军,秦跟基,杨琴等.表油菜系内酯和水杨酸对小麦花药培养的影响[J].植物生理通讯,1999,35(4):288~289.
    [30] Serek M. Does SA effect the post-harvest characteristics of Campanula carpatical[J]. Garten busissens chaft, 1992, 57(3): 112~114.
    [31] 侯智霞,张玉星,田志喜.水杨酸对新红星苹果果实乙烯合成酶的影响[J].果树学报,2002,19(2):83~86.
    [32] Kende H. Ethylene biosynthesis[J]. Annu. Rev. Plant Physiol Plant Mol Biol, 1993, 44: 283~307.
    [33] Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants[J]. Annu Rev Plant Mol Biol, 1984, 35: 155~189.
    [34] 范晖,何承顺.水杨酸对采后苹果果实乙烯生物生成的抑制作用[J].植物生理通讯,33(4):248~251.
    [35] Leslie CA, Romani RJ. Salicylic: A new inhibitor of ethylene biosynthesis[J]. Plant Cell Rep, 1986, 5: 144~146.
    [36] Liberman M, Wang SY. Influence of Ethylene Biosynthesis related P69 Preteinase in tomato during aging of potato tuber slices[J]. Acta Phytophysiol Sin, 24 (1): 11~16.
    [37] 龚明,杨中汉,曹宗巽.钙对花粉萌发的启动和对花粉管生长的调节作用(英文)[J].北京大学学报(自然科学版),1995,31:238~249.
    [38] 范六民,杨宏远,周嫦.外源Ca~(2+)对烟草花粉管生长和生殖核分裂的调节作用[J].植物学报,1997,34(10):899~904.
    [39] 龚明,曹宗巽.钙和钙调素对花粉萌发和花粉管生长的调控[J].植物生理学通讯,1995,31(5):321~328.
    [40] Steer MW, Steer JM. Pollen tube tip growth. New Phytol[J] , 1989, 111: 323~358.
    [41] 关军峰,马智宏,张晓敏等.Ca~(2+)与苹果花粉萌发和花粉管生长的关系[J].果树科学,1999,16(3):176~179.
    [42] Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S. Salicylic acid induces extracellular superoxide generation followed by an increase in calcium ion in tobacco suspension culture: the earlist events in salicylic acid signal transduction[J]. Plant Cell Physiol, 1998, 39(7): 721~730.
    [43] Raz V, Fluhr R. Calcium requirement for ethylene-dependent responses[J]. Plant Cell, 4: 1123~1130.
    [44] 刘新,孟繁霞,张蜀秋等.Ca~(2+)参与水杨酸诱导蚕豆气孔运动时的信号转导[J].植物生理与分子生物学学报,2003,29(1):59~64.
    [45] Mori IC, Iida H, Tsuji FI, Isobe M, Uozumi N, Muto S. Salicvlic acid induces a cvtosolic Ca~(2+) elevation in yeast[J]. Biotechnol Biochem, 62: 986~989.
    [46] Brewbaker JK, Kwack BH. The essential role of calcium ion in pollen germination and pollen growth[J]. Amer J Bol, 1963, 50: 859.
    [47] 关军峰,马智宏,陈星.肌醇磷脂信息传递系统在苹果花粉萌发和花粉管生长的作用[J].果树科学,1999,16(4):250~254.
    
    
    [48] 李兆亮,原永兵,刘成连等.黄瓜细胞中水杨酸的信号传递研究[J].植物学报,1998,40(5):430~436.
    [49] 李兆亮,张崇浩,李杰芬.2,4-D和GA_3对绿豆黄化幼苗肌醇磷脂代谢的影响[J].植物生理学报,1993,19(2):117~123.
    [50] Zonia L, Tupy J. Lithium-sensitive calcium activity in the germination of apple (Malus domestica Brokh.), tobacco(Nicotiana tabacum L.)and potato (Solanumtub erosum L.)pollen[J]. J Exp Bot, 1995, 46: 973~979.
    [51] 马力耕,徐小冬.肌醇磷脂信号途径参与胞外钙调素启动花粉萌发和花粉管伸长[J].植物生理学报,1998,24(2):196~200.
    [52] 关军锋.Li~+、肌醇与Ca~(2+)对苹果、梨、山碴花粉萌发和花粉管生长的影响[J].果树科学,1998,15(4):293~296.
    [53] 关军锋.Li~+、新霉素与Ca~(2+)对苹果花粉萌发与花粉管生长的影响[J].武汉植物学研究,2000,18(1):64~66.
    [54] 李淑菊,马德华等.水杨酸对黄瓜几种酶活性及抗病性的诱导作用[J].华北农学报,15(2):118~122.
    [55] 庞金安,马德华等.水杨酸预处理对提高黄瓜耐低温能力的影响[J].华北农学报,2000,15(1):112~115.
    [56] 陶宗娅,邹琦.彭涛等。水杨酸在小麦幼苗渗透胁迫中的作用[J].西北植物学报,1999,19(2):296~302.
    [57] 张士功,高吉寅等.NaCl胁迫下水杨酸和阿司匹林对小麦幼苗体内ATP含量的影响[J].植物学报,1999,41(6):675~676.
    [58] 孙大业.植物细胞信号研究进展[J].植物生理学通讯,1996(2):81~89.
    [59] 原永兵,刘成连,鞠志国等.水杨酸对苹果叶片中过氧化氢水平的调节及其机制[J].园艺学报,1997,24(3):220~224.
    [60] 廖祥儒,陈敬,周艳芬等.水杨酸对小麦愈伤组织CAT和POD同工酶的影响[J].麦类作物学报,2000,20(2):66~68.
    [61] 宋泽双,江国英,卢迎春等.水杨酸处理导致过氧化氢酶基因mRNA水平的下降[J].科学通报,1998,43(4):422~425.
    [62] 鞠志国,苗德全.莱阳茌梨多酚氧化酶的纯化及其基本性质的研究[J].莱阳农学院学报,1990,7(3):204~209
    [63] 席屿芳,罗自生,程度等.竹笋采后木质化与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活性的关系[J].植物生理通讯,2001,37(4):294~295.
    [64] 刘成连,鞠志国,原永兵等.掐花萼对莱阳茌梨品质的影响[J].莱阳农学院学报,1993,10(2):121~123.
    [65] 李雄彪.植物细胞壁酶的分子结构与生理功能[J].植物生理学通讯,1991,27(4):246~252.
    [66] Lavee S. Involvement of plant growth regulations and endogenous growth substances in the control of alternate bearing[J].Acta Horticulture, 1989, 239:311~322
    [67] 魏建华,宋艳如.术质素生物合成途径及调控的研究进展[J].植物学报,2001,43(8):771~779.
    [68] 谢春艳,宾金华,陈兆平等.多酚氧化酶及其生理功能[J].生物学通报,1999,34(6):11~13.
    [69] 陈晓亚.植物次生代谢及调控.余叔文,汤章城主编.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998,390~401.
    [70] Harborne JB. Plant phenolics. In Bell EA Charlood BV (eds). The Secondary plant produce[J]. Spring-verlag, 1980, 329~402.
    [71] Whetten R W, Mackay J, Sederoff R R. Recent advandes in understanding lignin biosynthesis[J]. Annu. Rev. Plant Physiol. Plant Mol.Biol, 1998 (49): 585~609.
    
    
    [72] Pang A, Catesson A M, Francesch C, et al. On Substrate specificity of peroxidase involved in the lignification process[J]. J. Plant Physiol., 1989 (135): 325~329.
    [73] Richardson A, Stewart D, McDougall G L. Identification and partial characterization of a coniferyl alcohol oxidase from lignifying xylem of sitka spruce (Picea sitchensis) [J]. Plant, 1997, 203: 35~43.
    [74] 李兆亮,原永兵,李冬梅.薄层层析和高效液相层析技术结合测定植物叶片中的水杨酸含量[J].植物生理学报,1997,33(2):130~132.
    [75] 徐幼平,马志超,蔡新盅.反相高效液相色谱测定番茄组织中的水杨酸[J].植物生理学通讯,1997,33(2):49~52.
    [76] 陈冠华,张玉星,杨更亮等.胶束电动毛细管电泳色谱法测定植物中的水杨酸[J].分子科学学报,2002,18(1):31~34.
    [77] 曾韶西,王以柔,刘鸿先.低温光照下黄瓜子叶叶绿素降低有关的酶促反应[J].植物生理学报,1991,17:177~182.
    [78] 李合生.植物生理生化试验原理与技术[M].高等教育出版社,2000:23~24.
    [79] Heath R L, L Packer. Photoperoxidation in isolated chloroplasts I. KinetiCs and stoichiometry of fatted acid peroxidation[J].Arch Biochem Biophys, 1986, 25: 89~198.
    [80] 王爱国,罗广华.植物的产氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(6):55~57.
    [81] PAL的提取、纯化及活性测定.现代植物生理学实验指南[M].北京:科学出版社,1999,196~198.
    [82] Janovitz K. Polyphenol oxidase from apple, partial purification and some properties[J]. Phytochemistry, 1989, 28 (11): 2903~2907.
    [83] 晏本菊,李焕秀.梨外植体褐变与多酚氧化酶及酚类物质的关系[J].四川农业大学学报,1998,16(3):310~313.
    [84] Bradford M M. A rapid and sensitive method for the quenofation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248~249.
    [85] 鞠志国,刘成连,原永兵等.莱阳茌梨酚类物质合成的调节及对果实品质的影响[J].中国农业科学,1993,26(4):44~48.
    [86] 刘庆华,王奎玲,周启河等.梨果肉石细胞的形态结构与果实品质的关系[J].莱阳农学院学报,1992,9(4):252~255.
    [87] 郗荣庭.果树栽培学总论(第三版)[M].北京:中国农业出版社,1997.
    [88] 郗荣庭.中国鸭梨[M].北京:中国农业出版社,1999.
    [89] 冯晓东,曹娟云,陈宗礼.水杨酸对枣树组织培养苗几种生理生化指标的影响[J].西北植物学,2003,239:1625~1627
    [90] Yang L. Effects of soaking with salicylic acid under suboptimal temperature conditions on the germination of rice seeds[J]. Plant Physiology Communications, 2001, 37 (4): 288~290.
    [91] 王煜,龙艳.外源水杨酸提高水稻萌发种子抗冷性的生理效应[J].华中师范大学学报(自然科学版),2002,36(2):221~224.
    [92] 张士功,高吉寅,宋景芝.水杨酸和阿司匹林对盐胁迫下小麦种子萌发的作用[J].植物生理学通讯,1999,35(1):29~32.
    
    
    [93] 上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1985:328~330.
    [94] 潘瑞炽.植物的生殖生理.植物生理学(第四版)[M].北京:高等教育出版社,2001:257~258.
    [95] Alexandre J, Lasalleles JP, Kado RT. Opennig of Ca~(2+) channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate[J].Nature, 1990, 343: 56~57.
    [96] Leonard RT, Hepler PK. Calcium in Plant Growth and Development[J]. Rockvile, MD: Amercian Society of Plant Physiologists, 1990.
    [97] Allan AC, Fricker MD, Ward JL, Beale MH, Leng Q, Lawton M. Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K~+ channel KATI alters current parameters in Xenopus laevis oocytes[J]. Plant Cell Physiol, 2000, 41: 785~790.
    [98] Iring HR, Gehring CA, Parish RW. Changes in cytosolic pH and caliun of guard cells precede stomatal movement[J]. Proc Natl Acad Sci USA, 89: 1790~1794.
    [99] McAinsh MR, Clayton H, Mansfield TA, Hetherington AM. Changes in stomatai behavior and guard cell cytosolic free calcium in response to oxidative stress[J]. Plant Physiol, 111: 1031~1042.
    [100] 王彭伟,郭维明等.不同保鲜剂对切花菊膜稳定性及瓶插寿命的影响[J].南京农业大学学报,1996,(1):101~104.
    [101] 严景华,蔡永萍等.保鲜剂对玫瑰切花几个衰老指标的影响[J].植物生理学通讯,1997,33(2):109~111.
    [102] 郭维明,曾武清,陈发棣.乙烯对切花月季衰老的调节[J].南京农业大学学报,1997,20(4):24~29.
    [103] 郭维明,盛爱武.梅花采后衰老的内源激素调节[J].北京林业大学学报,1999,21(2):42~47.
    [104] 张薇,张惠,谷祝平等.九种花衰老的研究[J].植物学报,1991,33(6):429~436.
    [105] 高俊平,张晓红.月季切花开花和衰老进程中乙烯变化类型初探[J].园艺学报,1997,24(3):274~278.
    [104] 柯德森,王爱国,罗广华.活性氧在外源乙烯诱导内源乙烯产生过程中的作用[J].植物生理学报,1997,23(1):67~72.
    [105] Lers A, Jiang WB, Lomaniec E.Gibbberellic acid and CO_2 additive effect in retarding postharvst seneescence of parsley[J]. Journal of Food Science, 1998, 63 (1): 66~68.
    [106] 周相娟,姜微波.赤霉素和乙烯对香菜叶片衰老的影响[J].北方园艺,2003(3):54~56.
    [107] 鞠志国.采期对莱阳在梨酚类物质代谢和组织褐变的影响[J].中国农业科学,1991,24(2):63~68.
    [108] 马克元,傅玉瑚,程福厚.鸭梨果点发育的解剖观察[J].山西果树,1990(4):12~14.
    [109] Harel E, Mayer AM, Shain Y. Catechol oxide, endogenous substances and browning in developeing apple[J]. J.Sci. Food Agr, 1996, 17: 389~392.
    [110] 石雪晖,王淑英.葡萄叶片中单宁、木质素、PPO活性与抗黑痘病的关系[J].葡萄栽培与酿酒,1997,4:8~11.
    [111] 韩涛,李丽萍.水杨酸对短期贮藏期苹果的生理效应(简报)[J].植物生理学通讯,1997,33(5):347~348.
    [112] 吕静.果实衰老中水杨酸和茉莉酸甲酯的生理效应及关系研究[D].河北农业大学,2002,26~27.
    [113] Coseteng M.Y, lee c.y. Changes in Apple polyphenloxidase and pdyphenol Concenraions in Relation to Degree of Browning [J]. Journal of Food Sci, 1987, 52 (4): 985.
    [114] Flurkey W.H, Jen J.J.Peroxidase and polyphenoloxidase from TWO Avocado verieties Differing in their Browning
    
    Rates[J]. Journal of Food Sci, 1978, 42: 38~43.
    [115] Lee C.Y., Kagan V.Jaworsk A. W. and Brown S.K.Enzymatic Browning in Relation to phenolic compounds and pdyphenoloxidase Activity among various peach cultivnrs[J]. J. Agril Food chem, 1990, 38: 99~101.
    [116] Gonzalez T. Patial characteriation of PPO extracted from Anna apple[J]. J of American Soci Hort, 1991, 116(4): 672~675.
    [117] Jaonitz K. Polyphenol oxidase from apple, partial purification and some properties [J]. Phytochemisrry, 1989, 28 (11): 2903~2907.
    [118] Stelzig A. Catechol oxidase of Red Delicious apple peel[J]. Phytochemistry, 1972, 11: 535~579.
    [119] Moktay. Polyphenol oxidase from Amasya apple[J]. J of Food Sci, 1995, 60 (3): 494~496.
    [120] Staque. Charaterication of apple polyphenol oxidase[J]. Arq Biol Technol, 1987, 30 (2): 287~299.
    [121] Keles. Studies on polyphenol oxidase from Amasya and Golden apple[J]. Tarim Orammancilick Ser., 1987, 11(1): 7~16.
    [122] 谢序宾,杨光蓉,冷怀琼等.金川雪梨果实黑心病机理及发生原因研究初报[J].四川农业大学学报,2000,18(3):236~242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700