三倍体毛白杨速生纸浆林光合特性及冠层管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文对不同栽植配置方式和不同密度三倍体毛白杨林木冠层结构的特点、叶片光合特性、光合产物在树冠内的分配规律、冠层内二氧化碳同化物质分配的机理以及树冠整形与修枝措施等进行了研究,得到以下结论:
     (1)树冠下层叶面积指数分别比中层、上层高0.82、0.69;树冠下层的消光系数为0.89,分别比中、上层高0.07和0.005。在生长旺盛期,三倍体毛白杨冠层不同部位叶片的光饱和点变化幅度在600~1350μmol~m-2~s-1之间,光补偿点变化幅度在12~33μml·m-2·s-1之间,暗呼吸的速率变化范围为0.08-2.95μmol·m-2·s-1,同时表观量子效率的值在0.109 molCO2·mol-1内变化;西向枝条叶片的平均LSP、LCP和Pmax都较其它方向高,中层枝条叶片的平均LSP依次高于上层枝条叶片和下层枝条叶片;枝条外部叶片LSP和LCP平均值均达到最大;叶片水分利用效率在树冠的朝向和冠层的垂直层次上,随着叶片气孔导度的增大而增大,但不因叶片着生位置的不同而存在差异性。
     (2)三倍体毛白杨比叶重随着叶片的发育,呈现增大—降低—增大的趋势,随着树冠垂直层次的加深,比叶重逐渐减少;比叶面积在整个生长期呈现下降-升高-下降的趋势;叶片氮随着树冠垂直距离的加大而降低,生长期的推延先增大后降低,在树冠的水平部位,枝条中部叶片含有叶片氮的量最高,在生长旺盛期冠层各位置叶片氮含量与叶片的最大净光合速率之间存在着显著的正相关关系;同时树冠不同位置叶片的非结构性碳水化合物含量在林木的生长末期达到最大。
     (3)三倍体毛白杨林木生长量的大小及生长速率因栽植配置方式的不同而不同,胸径、树高和材积在林木生长到了第5a时都减弱;均匀配置林分比带状配置林分的叶面积指数和消光系数在整个生长季都高,而带状配置林分叶片的含氮量高于均匀配置栽植林分的叶片;一级侧枝的分枝角度随着林分密度的减小而增大,林分密度较小时,枝条的长度增大,当林分密度减小到一定的程度时枝条的长度反而降低;光合作用对光的响应受林分密度的影响,低密度林分的叶片能获得更多的光照,叶的阳生特性更强,表现出高的光饱和点、光补偿点,同时非结构性碳水化合物也均随着林分密度的降低,在叶片中的积累量呈现先降低后增加的趋势。
     (4)环剥处理的林木其光合作用明显的小于未进行环剥的林木,其LSP变化幅度在815μmol·m-2·s-1~1529μmol·m-2·s-1,对林木的韧皮部进行环剥处理截断了光合同化产物从源到库的运输,造成光合产物在源叶中的积累,尤其是淀粉的积累增加。
     (5)三倍体毛白杨1/2和1/3修枝处理林木的东向枝条叶片,在生长旺盛期时比叶重均比对照的低,且随着冠层层次的上升和叶片在枝条上生长位置的外延,比叶重越大,当冠形率为1/4时,枝条的生物量在树冠内各个部分的分配达到最大,胸径及树高的生长幅度、枝条的生物量、树干和根生物量均高于对照和其它修枝处理。
This paper was studied on the structural characteristics of Triploid Chinese White Poplar canopy and photosynthetic characteristics of leaves in the canopy with differents planting configuration and stand densities;Studied on carbon dioxide assimilation source/sink relation mechanism after girdling on phloem;Meanwhile, in order to get a reasonable canopy structure management technology, according to canopy structure characteristics, pruning the canopy of Triploid Chinese White Poplar; The main results as follows:
     (1) Leaf Area Index(LAI) and Extinction Coefficient (K) of the buttom canopy were reache maximum, K of the buttom canopy was arrived 0.89, more 0.07 than middle and top 0.005.In the growing period, the different layers in the canopy, Light Saturation Point (LSP) changed from 600μmol·m-2·s-1 to 1350μmol·m-2·s-1, Light Compensation Point (LCP) from 12μmol·m-2·s-1 to 33μmol·-2·s-1, the dark respiration(Rd) and apparent quantum yield (a) were changes within 17.4μmol·m-2·s-1 and 0.109 molCO2·mol-1, respectively; Leaves in east branch, the top of canopy and outside of branch, the LSP, LCP and maximum net photosynthetic rate(Pmax) were highest.The leaves of WUE were increase with stomatal conductance(Gs) increasing, but there were no difference between leaves in the different canopy positions.
     (2) Specific Leaf Weig(SLW) was changed with leaf development, showed increase-reduce-increase trend, with the depth in the vertical canopy, SLW decreased; Specific Leaf Area (SLA) was reduce-increase-reduce in the whole growing season;With the depth in the vertical canopy, leaf nitrogen increased;With the tree grow, leaf nitrogen was increase, then decrease, meanwhile, leaves in the utter was highest.In the growing period, leaf nitrogen and Pmax exists significant positive correlation.The non-structural carbohydrate (NSC) of leaves in different positions of canopy while its content was maximum in the mature period.
     (3) The tree growth and growth rate of Triploid Chinese White Poplar were different due to different planting configurations, diameter、height and volume had grow slowly during the first 5 years.Leaf area index and extinction coefficient of Uniform planting configuration higher than strip planting configuration in the whole growing season;But leaf nitrogen in strip configuration was more.Branches'angle and length increased with decreased stand density.Low-density tree could receive more light, had higher LSP and LCP; NSC of leaves was decrease then increase with decreasing stand density.
     (4) Leaf photosynthesis was lower after girdling tree, LSP changed from 815μmol·m-2·s-1 to 1529μmol·m-2·s-1.Girdling tree was cut off production from source to sink and caused the accumulation in the source leaves, especially starch.
     (5) In the growthing period, pruning tree to 1/2 and 1/3, SLW is lower than control and increase with canopy layer rise and the branch extension.Diameter, height, branch and stem biomass were higher than control when canopy shape ration was 1/4.
引文
1.陈军,李春平,等.林带小钻杨树冠的分维结构[J].林业科学[J].2006,42(12):6-12
    2.陈根云,俞冠路,陈悦,等.光合作用对光和二氧化碳响应的观测方法讨论[J].植物生理与分子生物学学报,2006,32:6912-696
    3.丁松爽,苏培玺,等.不同间作条件下枣树的光合特性研究[J].干旱地区农业研究,200927(1):185-188
    4.段巍巍,赵红梅,郭程瑾,等.夏玉米光合特性对氮素用量的反应[J].作物学报,2007,33(6):949-954
    5.范晶,赵惠勋,李敏.比叶重及其与光合能力的关系[J].东北林业大学学报,2003,31(5):37-391
    6.范淑秀,陈温福.超高产水稻品种叶绿索变化规律研究初报[J].沈阳农业大学学报,2005,36(1):14-17
    7.方金豹,田莉莉,等.猕猴桃源库关系的变化对果实特性的影响[J].园艺学报,2002,29(2):113-118
    8.郭程瑾,李宾兴,王斌,等.不同磷效率小麦品种的光合特性及其生理机制[J].作物学报,2006,32(8):1209-1217
    9.郭江.不同株型玉米光响应曲线的特征参数研究[J].西北植物学报,2005,25
    10.霍宏,王传宽.冠层部位和叶龄对红松光合蒸腾特性的影响[J].应用生态学报,2007,18(6):1181-1186
    11.胡晓丽.三倍体毛白杨纸浆材新品种产业化应用关键技术研究[D].北京林业大学,博士论文,2006
    12.姜岳忠.毛白杨人工林丰产栽培理论基础与技术体系研究[D].北京林业大学,博士论文,2006
    13.李惠芬,钱芝龙.羽衣甘蓝创新种质形态学特征研究[J].北方园艺,2005,(3):56-58
    14.李火根.杨树冠型、根系的分形特征及杨树改良策略[D].南京林业大学,博士论文,2003
    15.李卫东.桃库源关系中源叶光合作用及其碳水化合物代谢的研究[D].中国农业大学,博士论文,2005
    16.李轩然,刘琪王景,等.千烟洲针叶林的比叶面积及叶面积指数[J].植物生态学报,2007,31(1):93-101
    17.刘云惠.液相色谱示差折光法测定蜂蜜中的果糖、葡萄糖、蔗糖和麦芽糖[J].食品科学,2008,29(6):280-28
    18.刘平,温陟良,等.库-源关系对枣树14C-光合产物分配的影响[J].林业科学,2003,39(4):37-42
    19.刘雅欣,王育才,等.平原区速生杨片林抚育方法[J].河北林业科技,2006,6(3):55
    20.刘兆刚,刘继明,李凤日,等.樟子松人工林树冠结构的分形分析[J].植物研究,2005,25(4):465-470
    21.刘胜,贺康宁,王正宁,常国梁,李世荣.青海大通地区退耕地人工林分的消光特性[J].中国水土保持科学,2006,4(3):59-64
    22.刘晓东,朱春全,雷静品,等.杨树人工林冠层光合辐射分布的研究[J].林业科学,2000,36(3):2-7
    23.吕建林,陈如凯,张木清,等.甘蔗净光合速率、叶绿素和比叶重的季节变化[J].福建农业大学学报,1998,27(3):285-2901
    24.李绍长,王荣栋.作物源库理论的发展及其在生产中的应用[J].作物杂志,1998,(1):9-12
    25.孟陈,徐明,等.栲树冠层光合生理特性的空间异质性[J].应用生态学报,2007,18(9):1932-1936
    26.牛正田,张琦纹,等.国外杨树速生机制与理想株型研究进展[J].世界林业研究,2006,424-28
    27.祁红彦,周广胜,等.北方玉米冠层光合有效辐射垂直分布及影响因子分析[J].气象与环境学报,2008,24(1):22-25
    28.孙时轩主编.造林学[M].(第二版).北京:中国林业出版社,1992
    29.宋子炜,郭小平,赵廷宁,代巍.北京山区油松林光辐射特征及冠层结构参数[J].浙江林学院学报,2009,26(1):38-43
    30.谌红辉,丁贵杰.马尾松造林密度效应研究[J].林业科学,2004,40(1):92-98
    31.史建伟,张育平,等.植物体内非结构性碳水化合物变化及其影响因素[J].湖北农业科学,2008,47(1):112-116
    32.王丽丽,李向东,等.改变源库比对花生叶片和根系衰老的影响[J].花生学报,2005,34(3):1-5
    33.王文杰,祖元刚.林木非同化器官树枝(干)光合功能研究进展[J].生态学报,2007,27(4):1583-1596
    34.王希群,马履一,贾忠奎,徐程扬.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541
    35.吴杰,潘红丽,等.卧龙竹类非结构碳水化合物与叶氮含量对海拔的响应[J].生态学报,2010,30(3):0610-0618
    36.王进京,袁新旺.杨树的夏秋管理[J].河北林业,2007,(8):1612-1617
    37.肖文发,徐德应,刘世荣,韩景军.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46
    38.徐克章,张志安,刘振库,等.高粱叶片比叶重的变化与产量关系的研究[J].吉林农业大学,1998,20(2):11-131
    39.熊福生,高煜珠,詹勇昌,等.植物叶片蔗糖、淀粉积累与其降解酶活性关系研究[J].作物学报,1994,20(1):52-58
    40.杨曾奖,徐大平,张宁南等.细叶桉造林密度试验初报[J].生态环境,2003,12(4):446-448
    41.杨一,吴际友,程勇,等.四川桤木无性系采穗圃修枝与施肥试验初报[J].湖南林业科技,2005,32(1):23-24
    42.叶萌,严晓宇.基于14C同化物运转和分配对黄柏剥皮的再生机理[J].核农学报,2007,21(2):191-194
    43.余叔文,汤章城.植物生理与分子生物学(第二版),北京:科学出版社,2001
    44.张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,1999,19-26
    45.张国财,原瑶.树木分枝结构研究概述[J].林业科技情报,2008,140(11):8-11
    46.张国平,周伟军,译.植物生理生态学[M].浙江大学出版社,2003,6-58
    47.周勋波,杨国敏,孙淑娟,陈雨海.不同株行距配置对夏大豆群体结构及光截获的影响[J].生态学报,2010,30(3):0691-0697
    48.邹春蕾,吴凤芝.高CO2浓度对植物的影响研究进展[J].东北农业大学学报,2008,39(3):134-139
    49.张亚杰,冯玉龙.不同光强下生长的两种榕树叶片官和能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学报,2004,30(3):269-276
    50.赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-43
    51.赵仁邦,刘孟军.高效液相色谱法测定枣中的糖类物质[J].食品科学,2004,25(8):138-141
    52.张雪松,申双和,等.棉花叶片氮含量的空间分布与光合特性[J].生态学报,2009,4(29):1893-1898
    53.张林,罗天祥,邓坤枚,李文华.云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J].北京林业大学学报,2008,30(1):40-44
    54.郑海水,黎明,汪炳根,等.西南桦造林密度与林木生长的关系[J].林业科学研究,2003,16(1):81-86
    55.郑紫燕,郑国琦,等.宁夏枸杞叶片、果柄、果实糖积累与蔗糖代谢相关酶活性研究[J].西北农业学报,2009,18(4):332-338
    56.周咏梅,姜建初,等.环剥对杧果幼树光合作用及根韧皮部糖含量和成花的影响[J].广西农业生物科学,2008,1(27):70-72
    57.张平冬.三倍体毛白杨超短轮伐纸浆材无性系选配及经营技术研究[D].北京林业大学,博士论文,2009
    58.张书芬.高效液相色谱内标法分离和测定植物中的单糖[J].色谱,2000,18(6):556-558
    59.周睿,束怀瑞.高等植物中的山梨醇及其代谢[J].植物生理学通讯,1993,29(5):384-390
    60.周贤军,吴定尧,黄辉白.螺旋环剥对荔枝14C光合产物转运及分配的影响[J].核农学报,1998,12(6):365-368
    61. AdamNR,Wall GW,Kimball BA,Pinter PJ,LaMorte Jr RL,Hunsaker DJ,Adamsen FJ,Thompson T,Matthias AD,Leavitt SW,Webber AN (2000).Acclimation response of spring wheat in a free air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes.Leaf position and phenology determine acclimation response. PhotosynthRes,66:65-77
    62. Anten NPR.2005.Optimal photosynthetic characteristic of individual plants in vegetation stands and implication for species coexistence.Annals ofBotany,95:495-506
    63. Bieleski R.L,and Redgwell R.J.Sorbitol versus sucrose as photosynthesis and translocation products in developing apricot leavesAustralian Journal of Plant Physiology,1985,12:657-668
    64. Boonen C,Samson R,Sylvain G,et al.2002.Scalingthe spatial distribution of photosynthesis from leaf to canopy in a plant growth chamber.Ecological Mode lling,156:201-212
    65. Bowes G (1993). Facing the inevitable plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol BiolCure JD,Acock B (1986).Crop responses to carbon dioxidedoubling:A literature survey. Agr For Meteorol,38:127-145
    66. Bonan G B. Land sphere CO2 exchange simulated by a land surface process model coup led to an atmospheric general circulation model. Jeohys Res,1995,100:281-283
    67. Bijlsma RJ,Lambers H. A dynamic whole plant model of integrated metabolism of nitrogen and carbon. balanced growth drievn by C fluxes and regulated by signals from C and N substrate.Plant and Soil,2000,220:71-78
    68. Bemiger F,Salas E.2003. Biomass dynamics of Erythrina as influence by shoot-pruning intensity in Costa Rieo. Agroforestry Systems,51:19-28
    69. Bayala J,Teklehaimanot Z,uedraogo S J.2002. Millet production under pruned tree canopy sin a parkland syemin Burkina Faso. Agroforestry Systems 54:203-214.
    70. Cordell S.Goldstein G,Meinzer FC,et al.Regulation of leaf lifespan and nutrient use efficiency of Metrosidero polymorpha trees at two extremes of a long chronosequence in Hawaii[J].Oecologia,2001,127(13):198-206
    71. Drake BG,Gonzalez Meler MA,Long SP (1997).More efficient plants,a consequence of rising atmospheric CO2 Annu Rev Plant Physiol Plant Mol Biol,48:609-639
    72. Ellsworth D.S.&Reich P.B.Photosynthesis and leaf nitrogen on five Amazonian tree species during early secondary succession.Ecology,1996,77(2):581-594
    73. Ellsworth DS, Reich PB(1993).Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest.Oecologia,96,169-178
    74. Field C. Allocating leaf nitrogen for the maximization of carbon gain:leaf age as a control on the Allocation program.Oecologia,1983,56:341-347
    75. Farrar JF,Jones DL.The control of carbon acquisition by roots. NewPhytologist,2000,147:43-53
    76. Gonzalez,Real MM,Baille A.2000.Changes in leaf photosynthetic parameters with leaf position and nitrogen content within a rose plant canopy (Rosa hybrida).Plant,Cell and Environment, 23(4):351-363
    77. Gaudillere J.P and Moing A.Photosynthesis of peach leaves:light adaptation,limiting factors and sugar content.Acta Horticulturae,1992,315:103-109
    78. Hikosaka K.et al.A model of the acclimation of photosynthesis in leaves of C3 plants to sun and shade with respect and native shrubs in southern Wisconsin.Oecologia,1995,80:356-367
    79. Harley PC,Baldocchi DB.1995.Scaling carbon dioxide and water vapor exchange from leaf to canopy in adeciduous forest.Leaf model parameterization.Plant,Cell and Environment,18:1146-1158
    80. Hikosaka K,Hirose T.2001 Nitrogen uptake and use by competing individuals competing in a Xanthium canadense stand. Oecologia,126:174-181
    81. Hirose T,WergerM J A, van Rheenen JW A.Canopy evelopment and leaf nitrogen distributions in a stand of Carex acutiform is.Ecology,1989,70:1610-1618
    82. Harley P C,Tenhunen J D. Modeling the photosynthetic response of C3 leaves to environment factors. In:Boote K J ed. Modeling Crop Photosynthesis from Biochemistry to Canopy,CSSA Special Publication No.19. Madison:American Society of Agronomy and Crop Science Society of American,1991,1723-9
    83. Henley WJ,Leavasseur G, Franklin LA,et.al. Photo acclimation and photo inhibition in Ulva rotundata as influenced by nitrogen availability [J].Planta,1991,184:235-243
    84. Jennifer R. Gottwald,Patrick J. Krysan,Jeffery C.Young, et al. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters.PNAS,2000,25:13979-13984
    85. Kikuzawa K.&Ackerly D.Significance of leaf longevity in plants[J].Plant Species Biology, 1999,14(4):39-45
    86. Kimball BA,Morris CF,Pinter Jr PJ,Wall GW,Hunsaker DJ,Adamsen FJ,LaMorte RL,Leavitt SW,Thompson TL,Matthias AD,Brooks TJ (2001).Wheat grain quality as affected by elevated CO2, drought,and soil nitrogen.New hytol,150:295-303
    87. Kharouk VI,Middleton EM,Spencer SL et al.,Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimate inthe boreal ecosystem.WaterAir Soil Pollut,1995,82: 483-497
    88. Kitao M,Lei TT,Koike T,et al.,Susceptibility to photoinhabition of three deciduous broadleaf tree species with different successional traits raised under various light regimes Plant[J].Cell and Environment,2000,23(3):81-89
    89. KOCHG W,SILLETT SC,JENNINGS G M etal.,The limits to tree height [J]. Nature,2004,428 (6985):851-854
    90. King D A. Allocation of aboveground growth is related to light in temperate deciduous sap lings. Functional Ecology,17(4):482-488
    91. KarelM,Raison R J,Anatolys P.Critical analysis of root:shoot ratios in terrestrial biomes.Global Change Biology,2006,12:84-96
    92. Layne D.R.and Flore J.A.Physiological responses of Prunus cerasus to whole-plant source manipulation.Leaf gas exchange,chlorophyll fluorescence,water relations and carbohydrate concentrations Physiologia Plantarum,1993,88:44-51
    93. Loescher W.H.Marlow G.C.and Kennedy R.A.Sorbitol metabolism and sink-source intercomversions in developing apple leaves.Plant Physiology,1982,70:335-339
    94. Lilley R.M., Portis A.R. Activation of ribulose-l,5-bisphosphate carboxylase/oxygennase (Rubisco) by rubisco activase,Effects of some sugar phosphates. Plantphysiol,1990,94:245-250
    95. Moore BD,Palmquist DE,Seemann JR (1999).The biochemi2cal and molecular basis for photosynthesis acclimation to elevated atmospheric CO2.Plant Cell Environ,22:567-582
    96. Murthy R.,Dougherty P.M., Zarnoch S.J.&Allen H.L. Effiects of carbon dioxide, fertilization and irrigation on photosynthetic capacity of loblolly pine trees.Tree,1996,16:537-546
    97. Ogren W.T.&Bowes C.T.Nature,1971,230:159
    98. Pons T L,Schieving F,Hirose T,WergerM J A. Op timization of leaf nitrogen allocation for canopy photosynthesis in Lysim achia vulgaris (L). In Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. In:H Lambers,M L Cambridge,H Konings and T LPons. eds. SPB Academic Publishing,The Hague,The Netherlands,1989,175-186.
    99. Pooter H.& Evans J.R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia,1998,116:26-37
    100. Patterson T G,Moss D N,Brun W A. Enzymatic changes during the senescence of field-grown wheat[J]. Crop Science,1980,20(1):15-18 RyanM G,LavigneM B & Gower S T. Annual carbon cost of autotrophic resp iration in boreal forest ecosystems in relation to species and climate.J. Geophy. Res.,1997,102,29029-29041
    101. Roper T. R. and Williams L.E.Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application.Plant Physiology,1989,89:1136-1140
    102. Rogers HH,Prior SA,Runion GB,Mitchell RJ (1996).Root toshoot ratio of crops as influenced by CO2.Plant Soil,187:229-248
    103. Reich PB,Walters MB & Ellsworth DS.Leaf life-span in relation to leaf,plant,and stand characteristics among diverse ecosystems[J]. Ecological Monographs,1992,62
    104. Sharkey T D. Photosynthesis in intact leaves of C3 plants:physics,physiology and rate limitations[J].Botanical Review,1985,51(1):53-105
    105. Salvucci M.E.etal.A solublechloroplast protein catalyzes bisphosphate ribulose-1,5-carboxy-ase/oxygenase activation in vivo. Photosynth.Res,1985,7:193-201
    106. Somerville C.R.Portis A.R.Ogren W.L. A activation for carboxylase in vivo.Plant physiol. mutantof arabidopsis thaliana which lacks,1982,70:381-387 107. Schaffer.,BRamos L.and Lara S. P. Effect of fruit removal on net gas exchange of avocado leaves.HortScience,1987,22:925-927
    108. Schulze ED,Kelliher FM,Leuning R(1994).Relationship among maximum stomatal conduc-tance,ecosystemsurface conductance,carbon assimilation rate and plant nitrogen nutrition:a global ecology scaling exercise,Annual Review of Ecology and Systematica,25,629-660
    109. Trewavas A. A pivotal role for nitrate and leaf growth in plant development.In:Baker NR, Davies WJ&Ong CK eds.Control of leaf growth[M].New York:Cambridge University Press,1985: 77-91
    110. Wibbe M.L.and Blanke M.M.Effects of defruiting on source-sink relationship,carbon budget, leaf carbohydrate content and water use efficiency of apple trees.Physiologia Plantarum,1995, 94:529-533
    111. Wrigh IJ,Reich PB,Westoby M,etal.,The world wide leafe conomics spectrum[J].Nature,2004 ,428(1):821-827
    112. Wildman S.G.&Bonner J. Arch. Biochem.Biophys,1947,14:381
    113. Wall GW,Adam NR,Brooks TJ,Kimball BA.Pinter PJ,LaM2 orte Jr RL,Adamsen FJ,Hunsaker DJ,Wechsung G,Wechung F etal. (2000).Acclimation response of springwheat in a free air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes.Net assimilation and stomatal conductance of leaves.Photosynth Re,66:79-95
    114. Wang,Tianhui;Zhou,Daowei;et,al.Size-dependent reproductive effort in Amaranthus retroflex-xus:the influence of planting density and sowing date[J].Can.J.Bot.2006,84(3):485-492
    116. Xiao W-F.1998.A study on photosynthesis:Modeling and scaling up from a leaf to canopy in a Chinese fir plantation.Acta Ecologica Sinica,18(6):621-628
    117. Kerr Gary. Effect s of spacing on t he early grow h of planted Fraxinus excelsior L [J].Can. J. Forest Research.2003,33(7):1196-1207
    118. Zhou R.,Sicher R. and Quebedeaux B. Diurnal changes in carbohydrate metabolism in mature apple leaves.Australian Journal of Plant Physiology,2001,21:1143-1150
    119. Zhang X-Q,Xu D-Y),Zhao M-S).1999.Review on forest canopy structure,radiation transfer and canopy photosynthesis.Forest Research,12(4):411-421 (in Chinese)
    120. Zhao P,S un G C,Peng S L.Ecophysiological research on nitrogen nutrition of plant. Ecologic Science,1998,17(2):37-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700