新型功能性聚酰亚胺的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺是一类含有酰亚胺环的高性能高分子材料,具有优异的热稳定性、机械性能及电性能,广泛应用于航空航天、汽车、微电子等高科技领域中。但由于传统的聚酰亚胺溶解性差、加工温度高,因而其应用受到了一定限制。为满足一些特殊领域的发展需求,针对功能性聚酰亚胺材料,如具有高溶解性、高透明性、低介电常数或高折射率的聚酰亚胺的研究和开发已成为目前最引人注目的热点之一。
     本论文简述了聚酰亚胺的发展过程,并在分子水平上探讨了聚酰亚胺分子结构特点以及各种改性方法对聚酰亚胺功能性的影响。在此基础上,从芳香二胺和二酐单体的分子设计与合成出发,成功地将一系列特殊结构和取代基如硫醚基、三氟甲基、多烷基和扭曲非共平面结构等引入聚酰亚胺主链中,制得多种综合性能优异的聚酰亚胺材料。采用FT-IR、NMR、质谱和元素分析等表征手段对所制备的单体和聚合物结构进行了分析和确认,并利用UV-Vis、TGA、DSC、DMA、广角X射线衍射和ATR耦合菱镜仪等多种仪器对聚酰亚胺材料各项性能如溶解性能、机械性能、介电性能、吸湿率和折射率等进行了详细表征和探讨。主要研究工作和结论如下:
     1、以2,2-双(4-羟苯基)六氟丙烷(简称六氟双酚A)、4-氯硝基苯和2-氯-5-硝基三氟甲苯等为原料,经亲核取代、Newman-Kwart重排、水解、氧化还原等五步有机反应设计合成了两种新型芳香二胺单体:2, 2-双[4-(4-胺基苯硫基)苯基]六氟丙烷(5)和2, 2-双[4-(4-胺基-2-三氟甲基苯硫基)苯基]六氟丙烷(7),然后与一系列芳香二酐单体通过“一步法”高温溶液缩聚反应,成功制备了主链中含硫醚基和六氟异亚丙基,或含侧三氟甲基的可溶性聚酰亚胺材料(PI 9a-f系列和PI 10a-f系列),并对所得聚酰亚胺材料的各项性能进行了表征和研究。结果表明,所得聚酰亚胺不仅溶于NMP、DMF、DMAc、DMSO及m-Cresol等高沸点、强极性溶剂中,还溶于CHCl3、THF甚至丙酮等低沸点溶剂中;其重均分子量在5.4×104 ~ 2.52×105之间,分子量分布指数在1.32 ~ 2.87之间,可通过溶液浇注法制得透明的韧性聚酰亚胺薄膜;其玻璃化转变温度在207 ~ 266℃之间,在氮气氛围中其5%和10%热失重温度分别在499 ~ 525℃和522 ~ 543℃之间,800℃时的残炭量为34 ~ 52 %;其薄膜的拉伸强度为60 ~ 93 MPa,断裂伸长率为7.0 ~ 12.3%,杨氏模量为0.90 ~ 1.47 GPa;截止波长在330 ~ 387 nm之间,400 nm波长后透光率在80%以上;通过ATR耦合菱镜仪测得聚合物薄膜的平均折射率在1.5116 ~ 1.6031之间,双折射在0.0025 ~ 0.011之间,介电常数在2.51 ~ 2.83之间;所得聚酰亚胺的吸湿率在0.05 ~ 0.76%之间。可见,该类聚酰亚胺不仅具有良好的溶解性,还具有优异的耐热性能、机械性能、光学性能、介电性能及较低的吸湿率,潜在的应用前景广泛。
     2、以4-溴苯酐、2,2-双(4-巯苯基)六氟丙烷为原料,通过取代、水解反应得到中间体2,2-双[4-(3,4-二羧基苯硫基)苯基]六氟丙烷(6FTAPSP),然后在乙酐中脱水闭环得到新型芳香二酐单体2,2-双[4-(3,4-二羧基苯硫基)苯基]六氟丙烷二酐(6FDAPSA)。然后进一步与各种芳香二胺单体通过“一步法”高温溶液缩聚反应,制得了一系列主链含硫醚及六氟异异丙基的聚酰亚胺材料。测试结果表明:该类聚酰亚胺材料具有优异的综合性能。在室温下其具有良好的溶解性,不仅溶于NMP、DMF、DMAc、DMSO及m-Cresol等强极性、高沸点溶剂中,还能溶于CHCl3及THF等低沸点溶剂,其重均分子量和分子量分布分别在1.1×105 ~ 2.4×105和1.9 ~ 2.4之间;该系列聚酰亚胺具有良好的耐热稳定性,其玻璃化转变温度范围在206 ~ 258℃之间,热分解起始温度范围在480 ~ 540℃之间,在氮气氛围中5%和10%热失重范围分别载471 ~ 530℃和484 ~ 548℃之间,800℃下的残炭率大于54%;所得聚酰亚胺可以通过溶液浇注法制成具有优异的力学性能韧性薄膜,其拉伸强度在69 ~ 78 MPa,断裂伸长率均大于7%;该聚酰亚胺薄膜具有优异的光学透明性,大部分薄膜样品颜色浅,有的甚至接近无色,UV-Vis测试表明其截止波长范围为401 ~ 421 nm,在440 nm以上波段的透光率都在80%以上;ATR耦合菱镜测试表明,该类薄膜的平均折射率在1.5462 ~ 1.5993之间,双折射在0.0035 ~ 0.0125之间;该类聚酰亚胺具有较低的介电常数(2.63 ~ 2.81)和吸水率(小于0.56%)。
     3、以2-氯-5-硝基三氟甲苯和4,4’-二巯基二苯硫醚为原料,经过缩合和还原两步反应制得一种新型芳香二胺单体:4,4’-双(4-胺基-2-三氟甲基苯硫基)二苯硫醚(6FSEDA),然后与六种不同的芳香二酐单体经“一步法”高温溶液缩聚反应,制备了一系列主链含硫醚结构和侧三氟甲基取代基的可溶性聚酰亚胺材料。研究结果表明:所得聚酰亚胺材料具有较好的溶解性、耐热性和光学性能。在室温下,该类聚酰亚胺材料易溶于DMF、DMAc、NMP、DMSO及m-Cresol等强极性有机溶剂,可以通过溶液浇铸法得到透明韧性薄膜。其玻璃化温度为197 ~ 235℃(DMA)及200 ~ 232℃(DSC),在氮气氛围中5%和10%热失重的温度分别在491℃和517℃以上,800℃时的残炭率在30 ~ 63%之间;截止波长为380 ~ 417 nm,在波长大于450 nm时具有良好的光学透明性;另外,近红外光谱测试显示该类聚酰亚胺在光通讯波段(1310 nm和1550 nm)具有较小的吸收,较宽的通讯波段发射“窗口”;在1310 nm及1550 nm波长处测得的平均折射率范围分别为1.5401 ~ 1.6142和1.5389 ~ 1.6124,在632.8 nm测得的双折射范围为0.0012 ~ 0.0045。所得聚酰亚胺材料的吸湿率均小于0.85%。
     4、以1,4-二巯基苯和4-溴苯酐为起始原料,经取代、水解、缩合等反应成功合成了一种含硫醚结构的芳香二酐单体:1,4-双(3,4-二羧基苯硫基)苯二酐(2SDEA)。然后进一步与各种商品化芳香二胺单体通过“二步法”,经高温热亚胺化制得一类主链含有硫醚结构的聚酰亚胺薄膜材料。该类聚酰亚胺薄膜具有较好的热稳定性,玻璃化转变温度在205 ~ 266℃之间,在氮气氛围中,5%和10%热失重温度范围分别为508 ~ 546℃和538 ~ 558℃,800℃长率和杨氏模量分别在58 ~ 83 MPa、10 ~ 19%和0.65 ~ 1.05 GPa之间;该聚酰亚胺薄膜材料具有较好的光学透明性,其截止波长为352 ~ 400 nm,在460 nm处的透射率均超过80%;在632.8 nm处测得的平均折射率nAV和双折射值Δn范围分别为1.6823 ~ 1.7404和0.0085 ~ 0.0120,相对应的介电常数εopt为3.11 ~ 3.33;材料的吸水率均小于1.03%。
     5、以2-异丙基苯胺和4-甲基苯甲醛为起始原料,经一步偶联反应成功合成了一种含异丙基和4-甲基苯基取代基的芳香二胺单体:3,3’-二异丙基-4,4’-二胺基苯基-4’’-甲基甲苯(PAPMT),然后与一系列商品化芳香二酐通过“一步法”高温缩聚反应制得一类主链含3,3’-二异丙基和4-甲基甲苯结构的新型聚酰亚胺材料。研究结果表明:该类聚酰亚胺材料具有高可溶性、高耐热性、高光学透明性、低地介电常数及低吸湿率等性能;在室温下能溶于NMP、DMF、DMAc、DMSO、m-Cresol、CHCl3和THF等大多数有机溶剂;玻璃化转变温度Tg较高,其范围在262 ~ 308℃之间,在空气或氮气氛围下10%的热失重温度分别为485 ~ 503℃和489 ~ 507℃,氮气氛围中800℃时的残炭率均在61%以上;其截止波长为302 ~ 365 nm,透过率为80%的起始波长范围为385 ~ 461 nm;1MHz下测得的介电常数为2.73 ~ 3.23;材料的吸水率介于0.13 ~ 0.46%之间。
Aromatic polyimides are a class of high performance polymeric materials containing imide rings, which are well-known for their excellent thermal stability, electrical and mechanical properties. They are widely used in many high technology fields, such as aerospace, automobile and microelectronics etc. However, the applications of conventional aromatic polyimides are often limited because of their poor solubility and high processing temperatures. In order to overcome these problems and meet the need of development in some special areas, more and more researches have been focused on the preparation of functional polyimides, such as good solubility, high transparence, low dielectric constant, high refractive index and so on.
     In this paper, we summarized the development of polyimides, dicussed the molecular structural characteristics of polyimides and the effect of various structural modification methods on the properties of functional polyimides. On the basis of molecular design, six novel monomers including aromatic diamines and aromatic dianhydrides and their corresponding series of functional polyimides were synthesized successfully. Some special molecular structures and substituents were introduced into the polyimide backbones, such as trifluoromethyl groups, thioether groups, bulky alkyl groups and non-coplanar structures. The chemical structures of the resulting monomers and polyimides were confirmed by FT-IR, NMR, MS and elementary analysis. The solubility, thermal property, mechanical property, aggregate structures, optical properties, dielectric property, and water absorption were also investigated and discussed. The details and key conclusions are described as follows:
     1. Two novel aromatic diamines containing thioether groups and hexafluoro isopropylidene group, or trifluoromethyl pendent groups, 2,2-bis[4-(4-aminophenylsulfanyl)phenyl]- hexafluoropropane (5) and 2,2-Bis[4-(4-amino-2-trifluoromethylphenylsulfanylphenyl)]- hexafluoropropane (7) were synthesized via nucleophilic substitution, Newman-Kwart rearrangement, hydrolyzation, oxidation and reduction reactions using 2,2-Bis(4-hydroxyphenyl)- hexafluoropropane, 4-chloronitrobenzene and 2-Chloro-5- nitrobenzotrifluoride as starting materials. Then they were polymerized with various aromatic dianhydrides through the one-step high-temperature polycondensation procedure to produce two series of the functional polyimide (PI 9a-f and 10a-f). The various properties of the resulting functional polyimides were investigated and characterized in detail. All the functional polyimides easily dissolved in strong polar aprotic solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc) and m-Cresol at room temperature. Most of them could still be soluble in low boiling point organic solvents such as CHCl3, tetrahydrofuran (THF) and even partially soluble in acetone. The weight-average molecular weight and molecular weight distribution were in the range of 5.4×104 ~ 25.2×104 and 1.32~2.87, respectively. The transparent strong and flexible PI films were obtained by the solution casting method. They exhibited excellent thermal stability with the glass transition temperature in the range of 207 ~ 266 oC, and the weight loss temperature of 5% and 10% were in the range of 499 ~ 525 oC and 522 ~ 543 oC, respectively. These polyimides films exhibited highly optical transparency with the UV cutoff wavelength of 330 ~ 387 nm and the transmittance is higher than 80% at 401 nm. Moreover, the polymer films showed outstanding mechanical properties with the tensile strengths of 60 ~ 93 MPa, elongation at breaks of 7.0 ~ 12.3% and Young’s modulus of 0.90 ~ 1.47 GPa. The average refractive index and the birefringence of the polyimides were in the range of 1.5116 ~ 1.6031 and 0.0025~0.0112, respectively. The dielectric properties were estimated from the average refractive indices with in the range of 2.51 ~ 2.83. The polyimides also had low water absorption of 0.05 ~ 0.76%.
     2. A novel aromatic dianhydride with thioether group and hexafluoro isopropylidene group, 2,2-bis[4-(3,4-dicarboxyphenylsulfanyl)phenyl]hexafluoropropane dianhydride (6FTAPSP) was synthesized successfully by nucleophilic substitution, hydrolyzation and closed loop reactions using 2,2-bis(4-thiolphenyl)hexafluoropropane and 4-bromophthalic anhydride as starting materials. Then they were employed to prepare some novel polyimides with several aromatic diamines via the one-step high-temperature polycondensation. The resulting polyimides displayed excellent comprehensive properties. At room temperature, they could be dissolved both in strong polar aprotic solvents (such as NMP, DMF, DMAc, DMSO, m-Cresol) and low boiling point solvents (such as CHCl3 and THF). The weight-average molecular weights and molecular weight distributions were in the range of 1.1×105 ~ 2.4×105 and 1.9 ~ 2.4, respectively. All the polyimides were able to prepare into the transparent, flexible and strong films by the solution casting method. These polyimides films showed good thermal stability with the glass transition temperature in the range of 206 ~ 258 oC, and the weight loss temperature of 5% and 10% were above 471 oC and 484 oC, respectively. In addition, the char yields of all polyimides at 800 oC in nitrogen still maintained 54% or more of their original weights. Moreover, these PI films exhibited highly optical transparency with the UV cutoff wavelength of 401 ~ 421 nm and the transmittance is higher than 80% at 440 nm. They also showed the outstanding mechanical properties with the tensile strengths of 69~78 MPa, elongation at breaks over 7%. The average refractive index and the birefringence of the polyimides were in the range of 1.5462 ~ 1.5993 and 0.0035 ~ 0.0125, respectively. And good dielectric properties with low dielectric constants of 2.63 ~ 2.81 were estimated from the average refractive indices. The water absorption of polyimides was lower than 0.56%.
     3. A novel aromatic diamine containing thioether groups and trifluoromethyl pendent groups, 4,4’-bis(4-amino-2-(trifluoromethyl)phenylsulfanyl)diphenyl sulfide (6FSEDA), was synthesized by the nucleophilic substitution and reduction reaction with 1-chloro-4-nitro-2-(trifluoromethyl)- benzene and 4,4’-thiobisbenzenethiol as starting material. Then it was polymerized with six various dianhydrides via one-pot high-temperature polycondensation to produce a series of polyimides. The resulting polyimides were soluble in conventional polar organic solvents, such as NMP, DMF, DMAc, m-Cresol, and some of them are even soluble in CDCl3 and acetone. The glass transition temperatures of plyimides were in the range of 197 ~ 235 oC (by DMA) and 200 ~ 232 oC (by DSC), respectively. They were able to keep stable over 400 oC and the char yields at 800 oC were between 30 ~ 63%. In addition, the PI films showed good optical transparency in the visible light region (450 ~ 700 nm) with the cutoff wavelengths range of 380 ~ 417 nm, and little absorption at the optoco-mmunication wavelengths of 1310 nm and 1550 nm. Furthermore, the average refractive indices (nAV) of the polyimide films were measured at 1310 nm and 1550 nm by Variable Angle Spectroscopic Ellipsometer (VASE), and the results of the nAV were 1.5401 ~ 1.6142 and 1.5389 ~ 1.6124, respectively. The birefringence (△n) of the polyimide films were obtained in the range of 0.0012 ~ 0.0043 by the ATR prism coupling device at 632.8 nm. Moreover the water absorption of the polyimides all was less than 0.85%.
     4. A series of novel aromatic polyimides were synthesized and characterized from a newly synthesized thioether-containing dianhydride, 1,4-bis(3,4-dicarboxy-phenylenesulfanyl)-benzene dianhydride (2SDEA) derived from 1,4-benzenedithiol and 4-bromophthalic anhydride as starting material, and various diamines by a two-step polycondensation reaction. All the flexible and tough films PI1-5 derived from 2SDEA were thermally stable up to 500 oC both in air and nitrogen. Their glass transition temperatures are in the range of 205 to 266 oC. And the polymer films presented excellent mechanical properties, the tensile strengths, elongation at breaks, and Young's moduli were 58 ~ 83 MPa, 10 ~ 19% and 0.65 ~ 1.05 GPa, respectively. In addition, these polyimides presented good transparency with the UV cutoff wavelengths of 352 ~ 400 nm and the transmittance is higher than 80% at 460 nm. Moreover the polyimides endowed themselves with high average refractive indices (nAV) from 1.6823 to 1.7404 and low birefringence (Δn) between 0.0085 and 0.0120 at 632.8 nm. The corresponding dielectric constants calculated from the average refractive indices were in the range of 3.11 ~ 3.33. The water absorption of the polyimides was all less than 1.03%.
     5. A novel aromatic diamine, 3,3’-diisopropyl-4,4’-diaminophenyl-4’’-methyltoluene (PAPMT) with 4-methylphenyl pendent group and isopropyl side groups, was designed and synthesized by a one-step coupling reaction using 2-isopropylaniline and 4-methylbenzaldehyde as staring materials. Then it was polymerized with various aromatic dianhydrides via a one-pot high-temperature polycondensation to produce a series of aromatic polyimides. These polyimides PI1-5 showed excellent solubility, they could be quickly soluble in NMP, DMF, DMAc, DMSO, m-Cresol, CHCl3 and THF at room temperature. And the PI films were nearly colorless and exhibited high optical transparency, with the UV cutoff wavelength in the range of 302 - 365 nm and the starting wavelength of 80% transparency in the range of 385 ~ 461 nm. Furthermore, they also possessed good thermal and thermo-oxidative stability with 10% weight loss temperatures in the range of 489 ~ 507 oC in nitrogen atmosphere, and the glass transition temperatures of all polyimides are in the range of 262~308 oC. They also showed low dielectric constants (2.73 ~ 3.23 at 1 MHz) and low moisture absorption (0.13 ~ 0.46 %).
引文
1. Bogert M.T., Renshaw R.R. 4-Amino-o-phthalic acid and some of its derivatives. J. Am. Chem. Soc. 1908, 30, 1140-1142.
    2. Edwards M.W. Robison I.M. Polyimides of pyromellitic acid. US Pat., 2710853, 1955.
    3. Hergenrother P.M. Development of High-temperature polymers. Angew. Chem. 1990, 102, 1302-1309.
    4. Echigo Y., Miki N., Tomokia I. Proc. of 4th European Technical Symp. On Polyimide and High Performance Polymers. France, 1996, 57.
    5.钱伯章.聚酰亚胺国内外发展分析.国外塑料2008, 26, 40-43.
    6.李生柱.聚酰亚胺新进展.化工新型材料1997, 25, 3-10.
    7.周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料.北京,化学工业出版社2006.
    8.何天白,胡汉杰.功能高分子与新技术.北京,化学工业出版社, 2001.
    9.丁孟贤.聚酰亚胺-化学、结构与性能的关系及材料.北京,科学出版社, 2006.
    10.王晓龙.新型主链含吡啶环聚酰亚胺的合成与性能研究[学位论文].兰州,兰州大学,2007.
    11.夏作勋,夏林.聚酰亚胺绝缘材料在电机中的应用.合成材料老化与应用2003, (2), 35-38.
    12.颜红侠,梁国正,马晓燕,黄英.聚酰亚胺无机纳米杂化材料.高分子通报2003, (6), 28-33.
    13. Li Y.F., Yang H.X., Zhou L.C., Yang S.Y., Liu J.G., Hu A.J., Fan L. Synthesis and Properties of PMR Matrix Resins of Poly(Pyrrolone-Benzimidazole)s. High Perform. Polym. 2004, 16, 55-68.
    14.王凯,高生强,詹茂盛,范琳,杨士勇.热塑性聚酰亚胺研究进展2005, (3), 25-32.
    15. Serafmi T.T., Delvigs P., Lightsey G.R. Thermally Stable Polyimides from Solutions of monomer Reactants. J. Appl. Polym. Sci. 1972, 16, 905-915.
    16. Iyoku Y., Kakimoto M., Imai Y. The preparation of new poly(phenylsilsesquioxane) -polyimide hybrid films by the sol-gel process and their properties. High Perform. Polym. 1994, 6, 53-62.
    17. Chen X.H., Gonsalvcs K.E. Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process. J. Mater. Res. 1997, 12, 1274-1286.
    18. Abdalla M.O., Dean D., Campbell S. Viscoelastic and mechanical properties of thermoset PMR-type polyimide-clay nanocomposites. Polymer 2002, 43, 5887-5893.
    19. Jiang L.Y., Lei C.M., Wei K.H. Layered Silicates/Fluorinated Polyimide Nanocomposites for Advanced Dielectric Materials Applications. Adv. Mater. 2002, 14, 426-429.
    20. Zhang Y.H., Su Q.S., Yu L., Liao L.B., Zheng H., Huang H.T., Zhang G.G., Yao Y.B., Lau C., Chan. H.L.W. Preparation of Low-K Fluorinated Polyimide/Phlogopite Nanocomposites. Adv. Mater. Res. 2008, 47-50, 987-990.
    21.赵飞明,徐永祥.聚酰亚胺泡沫材料研究进展.宇宙材料工艺2002, 32, 6-10.
    22.楚慧娟,朱宝库.聚酰亚胺泡沫材料在航空航天飞行器中的应用进展.宇宙材料工艺2006, 36, 1-3.
    23.王劲,刘涛,冯树东.聚酰亚胺粘胶剂的现状与研究进展.化工新型材料2007, 35, 126-130.
    24.黄旭,邵路,孟令辉,黄玉东.聚酰亚胺基气体分离膜的改性方法及其最新进展.膜科学与技术2009, 29, 101-107.
    25.祁喜旺,陈翠仙,蒋维钧.聚酰亚胺气体分离膜.膜科学与技术1996, 16, 1-7.
    26. Okamoto K., Fujii M., Okamyo S., Suzuki H., Tanaka K., Kita H. Gas permeation properties of poly(ether imide) segmented copolymers. Macromolecules 1995, 28, 6950-6956.
    27. Al-Masri M., Fritsch D., Kricheldorf H.R. New polyimides for gas separation. 2. polyimides derived from substituted catechol bis(etherphthalic anhydrides)s. Macromolecules 2000, 33,7127-7135.
    28. Rubner R., Ahne H., Kuehn E., Kolod-ziej G. A photopolymer-the direct way to polyimide patterns. Photogr. Sci. Eng. 1979, 23, 303-309.
    29.白宗武,张秋红,黄小力,黄毓礼.光敏聚酞亚胺光刻胶及光刻工艺的研究.感光科学与光化学, 1995, 13, 366-370.
    30.李佐邦,肖继君,白宗武.耐热感光高分子的合成与应用.河北工学院学报. 1988, (3), 68-75.
    31. Kim K.H., Jang S., Harris F.W. Synthesis and characterization of photosensitive polyimides for optical applications. Macromolecules 2001, 34, 8925-8933.
    32. Watanabe Y., Shibasaki Y., Ando S., Ueda M. A New Positive-Type Photosensitive Alkaline-Developable Alicyclic Polyimide Based on Poly(amic acid silylester) as a Polyimide Precursor and Diazonaphthoquinone as a Photosensitive Compound. Chem. Mater. 2002, 14, 1762-1766.
    33.杨士勇.聚酰亚胺在微电子工业中的应用.半导体情报1998, 35, 51-54.
    34. Negi Y.S., Damkale S.R., Ansari S. Photosensitive Polyimides. J. Macromol. Sci. Polym. Rev. 2001, C41, 119-138.
    35. Hasegawa M., Horie K. Photophysics, Photochemistry,and optical properties of Polyimides. Prog. Polym. Sci. 2001, 26, 259-335.
    36. Chen Y.W., Wang W.C., Yu W.H., Kang E.T., Neoh K.G., Vora R.H., Ong C.K., Chen L.F. Ultralow-k materials based on nanoporous fluorinated polyimide with well-defined pores via the RAFT-moderated graft polymerization process. J. Mater. Chem. 2004, 14, 1406-1412.
    37. Thelakkat M., Schmitz C., Neuber C., Schmidt H.W. Materials Screening and Combinatorial Development of Thin Film Multilayer Electro-Optical Devices. Macromol. Rapid Commun. 2004, 25, 204-223.
    38.高生强,杨士勇.高性能聚酰亚胺材料及其在电工电子工业中的应用.绝缘材料通讯1999, (1), 11-18.
    39.禹忠,韦玮,侯洵.紧缩型含氟聚酰亚胺多模干涉波分复用器的FD-BPM分析.光学与光电技术, 2005, (3), 1-4.
    40. Wang F., Chen K.X., Sun W., Zhang H.M., Ma C.S., Yi M.B., Liu S.Y., Zhang D.M.
    32-channel arrayed waveguide grating multiplexer using low loss fluorinated polymer operating around 1550 nm. Opt. Commun. 2006, 259, 665-669.
    41.杨正华,李悦生,丁孟贤,孙睿鹏,黄锡珉. TN-LCD用聚酰亚胺取向排列剂. 1995, (2), 77-81.
    42.刘金刚.液晶显示器(LCD)用聚酰亚胺取向剂的合成与性能研究[学位论文].河北,河北工业大学, 1999.
    43. Wang D.H., Shen Z.H., Guo M.M., Cheng S.Z.D., Harris F.W. Synthesis and properties of polyimides containing multiple alkyl side chains. Macaomolecules 2007, 40, 889-900.
    44. Lee S.B., Shin G.J., Chin J.H., Zin W.C., Jung J.C., Hahm S.G., Ree M., Chang T. Synthesis, characterization and liquid-crystal-aligning properties of novel aromatic polypyromellitimides bearing (n-alkyloxy)biphenyloxy side chains. Polymer 2006, 47, 6606-6621.
    45.李小兵,廖世军.燃料电池用质子交换膜的研究进展.化工新型材料2007, 35, 1-3.
    46.尚玉明,谢晓峰,刘洋,徐景明,毛宗强,周其凤.新型萘酐型磺化聚酰亚胺质子交换膜的合成.高等学校化学学报2006, 27, 1153-1156.
    47. Hu Z.X., Yin Y., Kita H., Okamoto K.I., Suto Y., Wang H.G., Kawasato H. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application. Polymer 2007, 48, 1962-1971.
    48. Li Y.H., Jin R.Z., Cui Z.M., Wang Z., Xing W., Qiu X.P., Ji X.L., Gao L.X. Synthesis and properties of novel sulfonated polyimides from 1,4-bis(4-aminophenoxy)naphthyl-2,7- disulfonic acid. Polymer 2007, 48, 2280-2287.
    49. Yan J.L., Liu C.P., Wang Z., Xing W., Ding M.X. Water resistant sulfonated polyimides based on 4,4’-binaphthyl-1,1’,8,8’-tetracarboxylic dianhydride(BNTDA) for proton exchange membrances. Polymer 2007, 48, 6210-6214.
    50.陈巍,郑华,刘培培,佘振珏,陆一棵,任秋实,周国民.聚酰亚胺薄膜电极与大鼠视神经胶质细胞的生物相容性研究.神经解剖学杂志2009, (3), 244-248.
    51. Kanno M., Kawakami H., Nagaoka S., Kubota S. Biocompatibility of fluorinated polyimde. J. Biomed. Mater. Res. 2002, 60, 53-60.
    52. Matsumoto N., Hiruma H., Nagaoka S., Fujiyama K., Kaneko A., Kawakami H. Cell processing on polyimide surface patterned by rubbing. Polym. Adv. Technol. 2008, 19, 1002-1008.
    53. Gresham W.F., Naylor M.A. US Pat., 2731447, 1956.
    54. Seafmi T.T., Delvigs P., Lightsey G. Thermally stable polyimides from Solutions of monomeric reactants. J. Appl. Polym. Sci. l972, 16, 905-916.
    55. Farrissey W.J., Rose J.S., Carleton P.S. Synthesis and properties of thermostable naphthalate containing copoly(amide-imide)s. Polym. Prepr. 1968, 9, 1581-1593.
    56. Peter S.C., Williams J., Farrissey J., James S.R. The Formation of Polyimides from Anhydrides and Isocyanates. J. Appl. Polym. Sci. 1972, 16, 2983-2989.
    57. Merten R. Synthesis of heterocyclic ring systems for heat-resistant plastics from Polyisocyanatcs. Angew. Chem. Int. Engl. Ed. 1971, 10, 294-301.
    58. Perry R.J., Tunner S.R. Preparation of polyimides via the palladium-catalyzed carbonylation and condensation of tetraiodoaromatics and diamines,Macromol. Sci. Chem. 1991, A8(11/12), 1213.
    59. Perry R.J., Wilson B.D., Turner S.R., Blevins R.W. Synthesis of Polyimides via the Palladium-Catalyzed Carbonylation of Bis(o-iodo Esters) and Diamines. Macromolecules 1995, 28, 3509-3515.
    60. Turner R.S., Perry R.J., Blevins R.W. High molecular weight aromatic polyamides from aromatic diiodides and diamines. Macromolecules 1992, 25, 4819-4820.
    61. Kricheldorf H.R., Domschke A. Layer Structure 1 Poly(phenylene-terephthalamide)s Derived from Mono-, Di-, and Tetrakis(alkylthio)terephthalic Acids. Macromolecules 1994, 27, 1509-1516.
    62. Kim J.H., Moore J.A. A low-temperature route to polyimides. Macromolecules, 1993, 26, 3510-3513.
    63. Cotter R.J., Sausers C.K., Whelan J.M. The Synthesis of N-Substituted Isomaleimides. J. Org. Chem. 1961, 26, 10-15.
    64. Boldebuck E.M., Klebe J.E. US Pat., 3303157, 1967.
    65. Oishi Y., Kakimoto M.A., Imai Y. Synthesis of aromatic polyamide-imides from N,N’- bis(trimethylsilyl)-substituted aromatic diamines and 4-chloroformylphthalic anhydride. J. Polym. Chem. 1991, 29, 1925-1931.
    66. Oishi Y., Kakimoto M.A., lmai Y. Synthesis of aromatic polyamides from N,N’-bis(trimethylsilyl)-substituted aromatic diamines and aromatic diacid chlorides, Macromolecules 1988, 21, 547-550.
    67. Korshak V.V., Vinogradova S.V., Vygodskii Ya.S, Nagiev Z.M., Urman Ya.G., Alekseeva S.G., Slonium I.Ya. Synthesis and investigation of the properties of cardo-copolyimides with different microstructure. Macromol. Chem. 1984, 184, 235-252.
    68. Manske R.J. A modification of the curtius synthesis of primary amines. J. Am. Chem. Soc. 1929, 51, 1202-1204.
    69. Jung J.C., Park S.B. Synthesis, Characterization and Properties of Polyimides from 3,3’,4,4’-Benzophenonetetracarboxylic Dianhydride and Imidazole-Blocked 2,5-bis((N-Alkyloxy)Methyl)-1,4-Benzenediisocyanates. Polym. Bull. 1995, 35, 423-430.
    70. Jung J.C., Park S.B. Synthesis and characterization of polyimides from imidazole-blocked
    2,5-bis[(n-alkyloxy)methyl]-1,4-benzene diisocyanates and pyromellitic dianhydride. J. Polym. Sci. Part A: Polym. Chem. 1996, 34, 357-365.
    71. Chem Y.T., Chen L.W. Interfacial Polyfunctional Condensation: Effect of the Reaction Conditions. J. Appl. Polym. Sci. 1991, 42, 2543-2550.
    72. Iijima M., Takahashi Y., Oishi Y., Kakimoto M., Imai Y.J. Preparation of ultrathin films of aromatic polymides by vapor deposition polymerization from N-silylated aromatic diamines or aromatic tetracarboxylic dithioanhydride. J. Polym. Sci. Part A: Polym. Chem. 1991, 29,1717-1723.
    73. Spring F.S., Woods J.C. The application of the Hofmann reaction to the synthesis of heterocyclic compounds. Part III. Synthesis of 3-alkyl-2:4-diketo-1:2:3: 4-tetrahydro- quinazolines from N-alkylphthalamides. J. Chem. Soc. 1945, 625-628.
    74. E I Du Pont de Nemours & Co. Neth. Pat. Appl., 6413552, 1965.
    75. Rogers M.E., Glass T.E., Mecham S.J., Rodrigues D., Wilkes G.L., McGrath J.E. Perfectly alternating segmented polyimide-polydimethyl siloxane copolymers via transimidization. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 2663-2675.
    76. Metzmann F.H., Rehahn M., Schmitz L., Ballauff M., Wegner G. A novel synthetic route to rigid-rod polyimides. Makcomol. Chem. 1992, 193, 1847-1858.
    77. Euwatds M.w., Robison I.M. Polyimides of pyromellitic acid. US Pat., 2710853, 1955.
    78.刘金刚,何民辉,王丽芳,杨海霞,李彦峰,范琳,杨士勇.含氟聚酰亚胺及其在微电子工业中的研究进展I含氟单体及聚酰亚胺的合成, II含氟聚酰亚胺在微电子上业中的应用.高分子通报, 2003, (3), 1-14, (4), 10-24.
    79.刘金刚,杨海霞,王丽芳,李彦峰,范琳,杨士勇.含氟芳杂环高分子及其在微电子工业中的研究进展.高分子通报, 2003, (5), 17-27.
    80. Yang C.P., Su Y.Y., Chen Y.C. Colorless Poly(ether-imide)s Derived from 2,2-Bis[4-(3,4- dicarboxyphenoxy)phenyl]propane dianhydride(BPADA) and Aromatic Bis(ether amine)s Bearing Pendent Trifluoromethyl Groups. European Polymer Journal 2006, 42, 721-732.
    81. Kalinina I.G., Gumargalieva K.Z., Shlyapnikov Y.A. Effect of P-Toluensulfonic Acid on Oxidation of Polyethylene and Polyethylene-poly-p-methylstyrene Blends. Polymer, 1999, 40, 411-416.
    82. Scola D.A. Synthesis and thermooxidative stability of poly[1,4-phenylene-4,4’- (2,2,2-trifluoro-1-phenylethylidene)bisphthalimide] and their fuorinated polyimides. J. Polym. Sci. Part A: Polym. Chem. 1993, 3l, 1997-2008.
    83. Yang S.Y., Ge Z.Y., Yin D.X., Liu J.G., Li Y.F., Fan L. Synthesis and Characterization of Novel Fluorinated Polyimides Derived from 4,4’-[2,2,2-Trifluoro-1-(3-trifluoromethylphenyl) ethylidene]diphthalic Anhydride and Aromatic Diamines. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 4143-4l52.
    84. Ando S., Matsuura T., Sasaki S. Perfluorinated Polyimides Synthesis. Macromolecules 1992, 25, 5858-5860.
    85. Myung B.Y., Kim J., Yoon T.H. Synthesis and characterization of novel 3,6-di[3’,5’-bis (trifluommethyl)phenyl]pyromellitic dianhydride for polyimide synthesis. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4217-4227.
    86. Myung B.Y., Ahn C.J., Yoon T.H. Synthesis and characterization ofpolyimides from novel l-(3’,5’-bis(trifluoromethyl)benzene) pyromelliticdianhydride(6FPPMDA). Polymer 2004, 45, 3185-3193.
    87. Yang C.P., Su Y.Y., Hsu M.Y. Organo-soluble and Lightly-colored Fluorinated Polyimides Based on 2,2-Bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane Dianhydride and Aromatic Bis(ether amine)s Bearing Pendent Trifluoromethyl Groups. Polym. J. 2006, 38, 132-144.
    88. Hsiao S.H., Yu C.H. Aromatic Poly(ether imide)s Bearing Isopropylidene or Hexafluoropropylidene Links in the Main Chain. Polym. J. 1997, 29, 944-948.
    89. Xie K., Zhang S.Y., Liu J.G., Yang S.Y. Synthesis and characterization of soluble fluorine- containing polyimides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2581-2590.
    90. Han K.S., Jang W.H., Rhee T.H. Synthesis of fluorinated polyimides and their application to passive optical waveguides. J. Appl. Polym. Sci. 2000, 77, 2172-2177.
    91. Yang C.P., Hsiao S.H.., Hsu M. F. Organosoluble and Light-Colored Fluorinated Polyimides from 4,4’-Bis(4-amino-2-trifluoromethylphenoxy)biphenyl and Aromatic Dianhydrides. J. Polym. Sci. Part A:Polym. Chem. 2002, 40, 524-534.
    92. Yang C.P., Chen R.S., Chen K.H. Effects of Diamines and Their Fluorinated Groups on the Color Lightness and Preparation of Organosoluble Aromatic Polyimides from
    2,2-Bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-hexafluoropropane. J. Polym. Sci. Part A: Polym. Chem. 2003, 41 922-938.
    93. Liaw D.J., Chang F.C. Highly organosoluble and fexible polyimides with color lightness and transparency based on 2,2-bis[4-(2-trifluoromethyl-4-aminophenoxy)-3,5- dimethylphenyl] propane. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5766-5774.
    94. Hsiao S.H., Yang C.P., Huang S.C. Preparation and Properties of New Polyimides and Polyamides Based on 1,4-Bis(4--amino-2-trifluoromethylphenoxy)naphthalene. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 2377-2394.
    95. Hsiao S.H., Yang C.P., Huang S.C. Polyimides from 1,5-bis(4-amino-2-trifluoromethyl- phenoxy)naphthalene and aromatic tetracarboxylic dianhydrides. Eur. Polym. J. 2004, 40, 1063-1074.
    96. Yang C.P., Su Y.Y. Synthesis and Properties of Organosoluble Polyimides Based on
    4,4’-Bis(4-amino-2-trifluoromethylphenoxy)-benzophenone. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 222-236.
    97. Yang C.P., Hsiao F.Z. Synthesis and Properties of Fluorinated Polyimides Based on 1,4-Bis(4-amino-2-trifluoromethylphenoxy)-2,5-ditertbutylbenzene and Various Aromatic Dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 2272-2284.
    98. Wang C.S., Yang R.W. Synthesis and Properties of Fluorine-Containing Polyimides. J. Appl. Poly. Sci. 1997, 66, 609-617.
    99. Chung I.S., Kim S.Y. Soluble Polyimides from Unsymmetrical Diamine with Trifluo-methyl Pendent Group. Macromolecules 2000, 33, 3190-3193.
    100. Yang C.P. Su Y.Y. Properties of organosoluble aromatic polyimides from 3'-trifluoromethyl- 3,4’-oxydianiline. Polymer 2003, 44, 6311-6322.
    101. T. Nakamura, H. Fujii, N. Juni and N. Tsutsumi, Enhanced Coupling of Light from Organic Electroluminescent Device Using Diffusive Particle Dispersed High Refractive Index Resin Substrate. Opt. Rev., 2006, 13, 104-110.
    102. Mosley D.W., Auld K., Conner D., Gregory J., Liu X.Q., Pedicini A., Thorsen D., Wills M., Khanarian G., Simon E.S. High performance encapsulants for ultra high-brightness LEDs. Proc. SPIE, 2008, 6910-6917.
    103. Krogman K.C., Druffel T., Sunkara M.K. Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology, 2005, 16, S338-S343.
    104. Regolini J.L., Benoit D., Morin P. Passivation issues in active pixel CMOS image sensors. Microelectron. Reliab. 2007, 47, 739-742.
    105. Seferis J.C., Brandrup J., Immergut E.H. Polymer Handbook, 3rdEdition, Wiley, New York, 1989.
    106. Liu J.G., Nakamura Y., Suzuki Y., Shibasaki Y., Ando S., Ueda M. Highly Refractive and Transparent Polyimides Derived from 4,4’-[m-Sulfonylbis(phenylenesulfanyl)]diphthalic Anhydride and Various Sulfur-Containing Aromatic Diamines. Macromolecules 2007, 40, 7902-7909.
    107. Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. Synthesis and Characterization of High Refractive Index Polyimides Derived from 4,4’-(p-Phenylenedisulfanyl)dianiline and Various Aromatic Tetracarboxylic Dianhydrides. Polym. J. 2007, 39, 543-550.
    108. Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. Synthesis and characterization of highly refractive polyimides from 4,4’-thiobis[(p-phenylenesulfanyl)aniline] and various aromatic tetracarboxylic dianhydrides. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5606-5617.
    109. Suzuki Y., Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. Synthesis of Highly Refractive and Transparent Polyimides Derived from 4,4’-[p-Sulfonylbis(phenylenesulfanyl)] diphthalic Anhydride and Various Sulfur-containing Aromatic Diamines. Polym. J. 2008, 40, 414-420.
    110. Liu J.G., Nakamura Y., Ogura T., Shibasaki Y., Ando S., Ueda M., Highly Refractive Polyimides Derived from 2,8-Bis(p-aminophenylenesulfanyl)dibenzothiophene and Aromatic Dianhydrides. Macromol. Chem. Phys. 2008, 209, 195-203.
    111. Terraza C.A., Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. Synthesis andproperties of highly refractive polyimides derived from fluorene-bridged sulfur-containing dianhydrides and diamines. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 1510-1520.
    112. You N.H., Suzuki Y., Yorifuji D., Ando S., Ueda M. Synthesis of High Refractive Index Polyimides Derived from 1,6-Bis(p-aminophenylsulfanyl)-3,4,8,9-tetrahydro-2,5,7,10- tetrathiaanthracene and Aromatic Dianhydrides. Macromolecules 2008, 41, 6361-6366.
    113. You N.H., Suzuki Y., Higashihara T., Ando S., Ueda M. Synthesis and characterization of highly refractive polyimides derived from 2,7-bis(4’-aminophenylenesulfanyl)thianthrene- 5,5,10,10-tetraoxide and aromatic dianhydrides. Polymer 2009, 50, 789-795.
    114.李卓,刘金刚,高志琪,陈建升,杨士勇.有机可溶性高折射率聚酰胺酰亚胺的合成与性能.高分子学报2009, (1), 17-22.
    115.刘金刚,李卓,高志琪,杨海霞,杨士勇.含硫杂环桥联的高折射率聚酰亚胺的合成与性能.高分子学报2009, (1), 11-16.
    116.刘金刚,李卓,杨海霞,杨士勇.高折射率高透明性半脂环聚酰亚胺的合成与性能.高分子学报2008, (5), 460-465.
    117.刘金刚,张秀敏,李卓,杨海霞,杨士勇.砜基取代高折射率高透明性聚酰亚胺的合成与性能.功能材料2008, (3), 460-464.
    118. J. G. Liu, Y. Nakamura, Y. Shibasaki, S. Ando and M. Ueda, Macromolecules 2007, 40, 4614.
    119. Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M Synthesis and Characterization of Highly Refractive Polyimides from 4,40-Thiobis[(p-phenylenesulfanyl)aniline] and Various Aromatic Tetracarboxylic Dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5606-5617.
    120. Liu J.G., Nakamura Y., Ogura T., Shibasaki Y., Ando S., Ueda M. Optically Transparent Sulfur-Containing Polyimide-TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)-TiO2 Nanocomposite Film. Chem. Mater. 2008, 20, 273-281.
    121. Harris F.W., Seymour R.B. Structure-Solubility Relationships in Polymer. New York, Academic Press, 1977, 183-198.
    122. Yang C.P., Hsiao S.H., Hsu M.F. Organosoluble and Light-Colored Fluorinated Polyimides from 4,4’-Bis(4-amino-2-trifluoromethylphenoxy)biphenyl and Aromatic Dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 524-534.
    123. Harris F.W., Hus S.L.C. Synthesis and Characterization of Polymides Based on 3,6- Diphenylpyromellitic Dianhydride. High perform polym. 1989, 1, 3-16.
    124. Wang Y., Qi Y. Poly(aryl prehnitimide)s. Macromolecules 1994, 27, 625-628.
    125. Jeong H.J., Oishi Y., Kakimoto M., Imai Y. Synthesis and characterization of novel aromatic polyamides from 3,4-bis(4-aminophenyl)-2,5-diphenylfuran and aromatic diacid chlorides. J.Polym. Sci. Part A: polym. chem. 1990, 28, 3293-3301.
    126. Oishi Y., Kakimoto M., Imai Y. Synthesis of aromatic polyimides from N,N’-bis(trimethylsilyl)-substituted aromatic diamines and aromatic tetracarboxylic dianhydrides. Macromolecules 1991, 24(12), 3475-3480.
    127. Spiliopoulos K., Mikroyannidis J.A. Soluble, Rigid-Rod Polyamide, Polyimides, and Polyazomethine with Phenyl Pendent Groups Derived from 4,4’’-Diamino-3,5,3’’,5’’- tetraphenyl-p-terphenyl. Macromolecules 1996, 29, 5313-5319.
    128. Mikroyannidis J.A. Wholly aromatic polyamides and polyimides prepared from
    3,3-di(4-aminophenyl)-5,5’’-(4-biphenylyl)-p-terphenyl and 3,3-di(4-aminophenyl)-5,5’’,6,6’’-tetraphenyl-P-terphenyl. Polymer 1999, 40, 3107-3117.
    129.黄卫.含特丁基聚酰亚胺功能材料的合成、表征及性能研究[学位论文].上海,上海交通大学,2002.
    130.王绪强.联苯型聚酰亚胺.绝缘材料通讯1998, (5), 21-24.
    131. Harris F.W., Sakaguchi Y., Shibata M., Cheng Z.D.S. Organo-soluble polyimides: synthesis and characterization of polyimides containing phenylated p-biphenyl and p-terphenyl units. High Perform. Polym. 1997, 9, 251-261.
    132. Reddy D.S., Chou C.H., Shu C.F., Lee G.H. Synthesis and characterization of soluble poly(ether imide)s based 2,2-bis(4-aminophenoxy)-9,9-spirobifluorene. Polymer 2003, 4, 557-563.
    133. Zheng H.B., Wang Z.Y. Polyimides Derived from Novel Unsymmetric Dianhydride. Macromolecules 2000, 33, 4310-4312.
    134. Jiang W., Wang D., Guan S.W., Gao H., Zhao Y.L., Jiang Z.H., Gao W.N., Zhang D., Zhang D.M. Sul-containing fluorinated polyimides for optical waveguide device. J. Photochem. Photobiol. A: Chem. 2008, 197, 426-433.
    135. Yang C.P., Hsiao S.H., Hsiao H.C. New Poly(amide-imide)s. XXIII. Synthesis and properties of Poly(aminde-imide)s Derived from 4,4-[l,4-phenylene bis(isopropylidene-1,4- phenyleneoxy)]dianiline and various Bis(trimellitimide)s. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 67-76.
    136. Jeong K.U., Kim J.J., Yoon T.H. Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. Polymer 2001, 42, 6019-6030.
    137. Zhou H.W., Liu J.G., Qian Z.G., Zhang S.Y., Yang S.Y. Soluble Fluorinated Polyimides Derived from 1,4’-Aminophenoxy)-2-(3’-trifluoromethylphenyl)benzene and Aromatic Dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2404-2413.
    138. Mercer F.W., Goodman T.D. Effect of Structural Features and Humidity on the Dielectric Constant of Polyimides. High. Perform. Polym. 1991, 3, 297-310.
    1. Zhang S.J., Li Y.F., Wang X.L., Zhao X., Shao Y., Ma T. Synthesis and Characterization of Souble Polyimides Derived from the Polyconsation of 2,6-bis(4-amino-2- tdfluommethylphenoxy-4’-benzoyl)Pyridine with Some Aromatic Dianhydrides. High. Perform. Polym. 2007, 19, 462-476.
    2. Shao Y., Li Y.F., Wang X.L., Guo J.S., Zhao X. Synthesis of a new siloxane-containing diamine and related polyimide. Chin. Chem. Lett. 2007, 18, 762-763.
    3. Paul M., Hergenrother. The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: an Overview. High Perform. Polym. 2003, 15, 3-45.
    4. Jang W.B., Shin D.Y., Choi S., Park S.G., Hart H.S. Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films. Polymer 2007, 48, 2130-2143.
    5. Wang X.L., Li Y.F., Gong C.L., Ma T., Yang F.C. Synthesis and properties of new pyridine-bridged poly(ether-imide)s based on 4-(4-trifluoromethylphenyl)-2,6-bis[4- (4-aminophenoxy)phenyl]pyridine. J. Fluorine Chem. 2008, 129, 56-63.
    6. Shundrina I.K., Vaganova T.A., Kusov S.Z., Rodionov V.I., Karpova E.V., Malykhin E.V. J. Synthesis and properties of organosoluble polyimides based on novel perfluorinated monomer hexafluoro-2,4-toluenediamine. Fluorine Chem. 2011, 132, 207-215.
    7. Zhang M., Wang Z., Gao L.X., Ding M.X. Polyimides from Isomeric Diphenylthioether Dianhydrides. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 959-967.
    8. Hsiao S.H., Lin K.H. Polyimides derived from novel asymmetric ether diamine. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 331-341.
    9. Yang C.P., Su Y.Y., Guo W.J., Hsiao S.H. Synthesis and properties of novel fluorinated polynaphthalimides derived from 1,4,5,8-naphthalenetetracarboxylic dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. Eur. Polym. J. 2009, 45, 721-729.
    10. Choi H., Chung I.S., Hong K., Park C.E., Kim S.Y. Soluble polyimides from unsymmetrical diamine containing benzimidazole ring and trifluoromethyl pendent group. Polymer, 2008, 49, 2644-2649.
    11. Sun F., Wang T.P., Yang S.Y., Fan L. Synthesis and characterization of sulfonated polyimides bearing sulfonated aromatic pendant group for DMFC applications. Polymer 2010, 51, 3887-3898.
    12. Tao L., Yang Ha.X., Liu J.G, Fan L., Yang S.Y. Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides Polymer 2009, 50, 6009-6018.
    13. Chen W.M., Tao Z.Q., Fan L., Yang S.Y. Jiang W.G., Wang J.F., Xiong Y.L., Synthesis and Characterization of Fluorinated Poly(etherimide)s Toughening for Carbon Fiber-Reinforced Epoxy Composites. Polym. Composite 2010, 31, 666-673.
    14. Yang Y., Fan L., Qu X.M., Ji M., Yang S.Y. Fluorinated phenylethynyl-terminated imide oligomers with reduced melt viscosity and enhanced melt stability. Polymer 2011, 52, 138-148.
    15. Su Y.Y., Yang C.P. Synthesis and Properties of Fluorinated Aromatic Poly(amide imide)s Based on 4,40-Bis(4-amino-2-trifluoromethylphenoxy)benzophenone and Various Bis(trimellitimide)s. J. Appl. Polym. Sci. 2006, 102, 3641-3653.
    16. Gao H., Yan C.Q., Guan S.W., Jiang Z.H. Hyperbranched fluorinated polyimides with tunable refractive indices for optical waveguide applications. Polymer, 2010, 51, 694-701.
    17. Wang C.Y., Zhao X.Y., Li G., Jiang J.M., Novel fluorinated polyimides derived from
    9,9-bis(4-amino-3,5-difluorophenyl)fluorene and aromatic dianhydrides, Polym. Degrad. Stabil. 2009, 94, 1746-1753.
    18. Chi J.H., Shin G.J., Kim Y.S., Jung J.C. Synthesis of new alicyclic polyimides by Diels-Alder polymerization. J. Appl. Polym. Sci. 2007, 106, 3823-3832.
    19. Li N.W., Cui Z.M., Zhang S. B., Li S.H., Zhang F. Preparation and evaluation of a proton exchange membrane based on oxidation and water stable sulfonated polyimides. J. Power Sources 2007, 172, 511-519.
    20. Qu W.Li., Ko T.M., Vora R.H., Chung T.S. Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group. Polym. Eng. Sci. 2001, 41, 1783-1793.
    21. Qu, W.L., Ko T.M. Studies of dielectric characteristics and surface energies of spin-coated polyimide films. J. Appl. Polym. Sci. 2001, 82, 1642-1652.
    22. Zhang C.Z., Wang C.Y., Im C., Lu G.Y., Wang C.S. Significant Effect of Bromo Substituents on Nonlinear Optical Properties of Polymer and Chromophores. J. Phys. Chem.B 2010, 114, 42-48.
    23. He M., Zhou Y.M., Dai J., Liu R., Cui Y.P. Zhang T., Synthesis and nonlinear optical properties of soluble fluorinated polyimides containing hetarylazo chromophores with large hyperpolarizability. Polymer 2009, 50, 3924-3931.
    24. H. Wang C.S., Yang R.W. Synthesis and Properties of Fluorine-Containing Polyimides. J. Appl. Polym. Sci. 1997, 66, 609-617.
    25. Jiang W., Wang D., Guan S.W., Gao H., Zhao Y.L., Jiang Z.H., Gao W.N., Zhang D., Zhang D.M. Sul-containing fluorinated polyimides for optical waveguide device. J. Photochem. Photobiol. A: Chem. 2008, 197, 426-433.
    26. Li Q.X., Fang X.Z., Wang Z., Yang Z.H., Gao L.X., and Ding M.X. Polyimides from isomeric oxydiphthalic anhydrides. J. Polym. Sci. Part A: Polym.Chem. 2003, 41, 3249-3260.
    27. El H., Jamal M., Melquist-John L. Blends of polyether sulfones and copolymides. 1991, US pat, 5.206.311.
    28. Liu J.H., Qiu F.X., Cao G.R., Guan Y.J., Shen Q., Yang D.Y., Guo Q. Chiral Azo Polyurethane(urea): Preparation, Optical Properties and Low Power Consumption Polymeric Thermo-Optic Switch. J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 939-948.
    29. Liu J.H., Qiu F.X., Cao G.R., Shen Q., Cao Z.J., Yang D.Y. Preparation, Thermo-Optic Property and Transmission Loss of Chiral Azobenzene Polyurethane. J. Appl. Polym. Sci. 2011, 121, 2567-2572.
    30. Yang Y.F., Yin J., Cao Z.Q., Shen Q.S., Chen X.W. Real-time investigation photobleaching process using non-scanning ATR method: Measurement of the refractive index and the thickness of polymer. Mater. Lett. 2006, 60, 2470-2474.
    31. Zhang S.J., Li Y.F., Wang X.L., Zhao X., ShaoY., Yin D.X., Yang S.Y. Synthesis and properties of novel polyimides derived from 2,6-bis(4-aminophenoxy-4’-benzoyl)pyridine with some of dianhydride monomers. Polymer 2005, 46, 11986-11993.
    32. Maya E.M., Lozano A.E., Abajo J.D., Campa J.G. Synthesis and properties evaluation of novel halogenated polyimides designed to prepare functional polymers. Polymer 2005, 46, 11247-11254..
    33. Myung B.Y., Kim J.J., Yoon T.H. Synthesis and characterization of novel
    3,6-di[3’,5’-bis(trifluoromethyl)phenyl]pyromellitic dianhydride for polyimide synthesis. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4217-4227.
    34. Myung B.Y., Ahn C.J., Yoon T.H. Synthesis and characterization of polyimides from novel l-(3’,5’-bis(trifluoromethyl)benzene)pyromelliticdianhydricle (6FPPMDA). Polymer 2004, 45, 3185-3193.
    35. Xie K., Zhang S.Y., Liu J.G., He M.H., Yang S.Y. Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2- trifluoromethylphenoxy) benzene. J. Polym. Sci. PartA: Polym. Chem. 2001, 39, 2581-2590.
    36. Li X.G., Huang M.R., Bai H., Yang Y.L. High-resolution thermogravimetry of polyphenylenesulfide film under four atmospheres. J. Appl. Polym. Sci. 2002, 83, 2053-2059.
    37. Liu J.G., Nakamura Y., Ogura T., Shibasaki Y., Ando S., Ueda M. Optically Transparent Sulfur-Containing Polyimide-TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)-TiO2 Nanocomposite Film. Chem. Mater. 2008, 20, 273-281.
    1. Ghosh M.K., Mitt al K.L., Ghosh M.K., Mittal KL. Polyimides: Fundament als and Applications. New York: Marcel Dekker, 1996.
    2. Paul M., Hergenrother. The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: an Overview. High. Perform. Polym. 2003, 15, 3-45.
    3. Mittal K.L., editor. Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications: Vol 2, Utrecht, 2003.
    4. Yang C.P., Su Y.Y. Colorless polyimides from 2,3,3’,4’-biphenyltetracarboxylic dianhydride(α-BPDA) and various aromatic bis(ether amine)s bearing pendent trifluoromethyl groups. Polymer 2005, 46, 5797-5807.
    5. Liu J.G., Peng Y.X.,Li H.S.,Fan L.,Yang S.Y. Organo-soluble fluorinated polyimides dedved fromα,α-bis(4-amino-3,5-dimethylphenyl)-4’-fluorophenyl methane and various aromatic dianbydrides. Chin. J. Polym. Sci. 2005, 23, 47-53.
    6. Yang C.R., Su Y.Y., Hsiao F.Z. Synthesis and properties of organosoluble polyim ides based Oil l,l-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]cyclohexane. Polymer 2004, 45, 7529-7538.
    7. Kim Y.J., Chung I.S.,In I., Kim S.Y. Soluble rigid rod-like polyimides and polyamides containing curable pendent groups. Polymer 2005, 46, 3992-4004.
    8. Zhao X.J., Liu J.G., Li H.S., Fan L., Yang S.Y. Synthesis and Properties of Fluorinated Polyimides from 1,1-Bis(4-amino-3,5-dimethylphenyl)-1-(3,4,5-trifluorophenyl)-2,2,2- trifluoroethane and Various Aromatic Dianhydrides. J. Appl. Polym. Sci., 2009, 11, 2210-2219.
    9. Ho,R.S., Leu J., Lee W.W. Editors. Low Dielectric Constant Materials for IC Applications. Springer: Berlin, 2003, P28.
    10. Ma H., Jen AK-Y., Dalton L.R. Polymer-Based Optical Waveguides: Materials, Processing,and Devices. Adv. Mater. 2002, 14, 1339-1365.
    11. Maya E.M., Lozano A.E., Abajo J.D., Campa J.G. Synthesis and properties evaluation of novel halogenated polyimides designed to prepare functional polymers. Polymer 2005, 46, l 1247-11254
    12.杨海霞,刘金刚,李彦锋,范琳,杨士勇.吡啶桥联的聚酰亚胺的合成与性能研究.高分子学报2006, 3, 489-495.
    13. Li H.S.,Liu J.G., Wang K., Fan L., Yang S.Y. Synthesis and Characterization of Novel Fluorinated Polyimides Derived from 4,4’-[2,2,2-Trifluoro-1-(3,5-ditrifluoromethylphenyl) ethylidene]diphthalic Anhydride and Aromatic Diamines. Polymer 2006, 47,1443-1250.
    14. Yang C.P., SU Y.Y., HSU M.Y. Organo-soluble and Lightly-colored Fluorinated Polyimides Based on 2,2-Bis[4-(3,4-dicarboxyphenoxy) phenyl]hexafluoropropane Dianhydride and Aromatic Bis(ether amine)s Bearing Pendent Trifluoromethyl Groups. Polym. J. 2006, 38, 132-144.
    15. Myung B.Y., Kim J.J., Yoon T.H. Synthesis and Characterization of Novel 3,6-Di[3’,5’- bis(trifluoromethyl)phenyl]pyromellitic Dianhydride for Polyimide Synthesis. J. Polym. Sci.: Part A: Polym. Chem. 2002, 40, 4217-4227.
    16. Huang W., Yan D.Y., Lu, Q.H., Tao P. Preparation of Aromatic Polyimides Highly Soluble in Conventional Solvents. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 229-234.
    17. Huang W., Yan D.Y., Lu Q.H. Synthesis and Characterization of a Highly Soluble Aromatic Polyimide from 4,49-Methylenebis(2-tertbutylaniline). Macromol. Rapid. Commun. 2001, 22, 1481-1484.
    18. Zhang S.J., Li Y.F., Wang X.L., Zhao X., ShaoY., Yin D.X., Yang S.Y. Synthesis and properties of novel polyimides derived from 2,6-bis(4-aminophenoxy-4’-benzoyl)pyridine with some of dianhydride monomers. Polymer 2005, 46, 11986-11993.
    19. Maya E.M., Lozano A.E., Abajo J.D., Campa J.G. Synthesis and properties evaluation of novel halogenated polyimides designed to prepare functional polymers. Polymer 2005, 46, 11247-11254.
    20. Myung B.Y., Kim J.J., Yoon T.H. Synthesis and characterization of novel
    3,6-di[3’,5’-bis(trifluoromethyl)phenyl]pyromellitic dianhydride for polyimide synthesis. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4217-4227.
    21. Myung B.Y., Ahn C.J., Yoon T.H. Synthesis and characterization of polyimides from novel l-(3’,5’-bis(trifluoromethyl)benzene)pyromelliticdianhydricle (6FPPMDA). Polymer 2004, 45, 3185-3193.
    22. Xie K., Zhang S.Y., Liu J.G., He M.H., Yang S.Y. Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2- trifluoromethylphenoxy)benzene. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2581-2590.
    23. Li X.G., Huang M.R., Bai H., Yang Y.L. High-resolution thermogravimetry of polyphenylene sulfide film under four atmospheres. J. Appl. Polym. Sci. 2002, 83, 2053-2059.
    24. Liu J.g., Nakamura Y., Ogura T., Shibasaki Y., Ando S., Ueda M. Optically Transparent Sulfur-Containing Polyimide-TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)-TiO2 Nanocomposite Film. Chem. Mater. 2008, 20, 273-281.
    25. Banerjee S., Madhra M.K., Salunke A.K., Jaiswal D.K. Synthesis and properties of fluorinated polyimides. 3. Derived from novel 1,3-bis[3’-trifluoromethyl-4’(4’’-amino benzoxy)benzyl] benzene and 4,4-bis[3’-trifluoromethyl-4’(4-aminobenzoxy)benzyl] biphenyl. Polymer 2003, 44, 613-622.
    26. Dine Hart R.A., Wright W.W. A study of some properties of aromatic imides. Makromol. Chem. 1971, 143, 189-206.
    27. Imamura S., Yoshimura R., Izara T. Polymer Channel Waveguides with Low loss at 1. 30μm. Electron. Lett. 1991, 27, 1342-1343.
    1 Luff B.J., Wilkinson J.S., Piehler J., Hollenbach U., Ingenhoff J., Fabricius N. Integrated Optical Mach-Zehnder Biosensor. J. Lightwave Tech. 1998, 16, 583-592.
    2 Ogawa O., Watanabe T., Aizawa M., Sowa T., Ichizono S., Ito A. LiNbO3 optical waveguide electric field sensor with low temperature dependence. Opt. & Laser Technol. 1995, 27, xii-xii.
    3 Maisenh?lder B., Zappe H.P., Kunz R.E., Riel P., Moser M., Edlinger J.A. GaAs/AlGaAs-based refractometer platform for integrated optical sensing applications.Sensors Actuators B 1997, 39: 324-329.
    4 Mores M., Cassidy P.E. Polyimidines. XI. Polyimidines from 3,3’,4,4’- benzophenonetetracarboxylic dianhydride and 4,4’-(hexafluoroisopropylidene) diphthalic anhydride. J. Polym. Sci. Part A: Polym. Chem 1990, 28, 811-813.
    5 Tien N.C. Micro-optical Inertial Sensors using Silicon MEMS. Aerospace Conference, Proc. IEEE, Snowmass, Colo, 1998, 1, 437-443.
    6 Fatinger C., Koller H., Schlater D., Wehrli P. The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration. Biosensors Bioelectron 1993, 8, 99-107.
    7 Murphy E.J. Integrated Optical Circuirs and Components-Design and Applications. New York: Marcel Deker Inc, 1999, 335-376.
    8 Kunz R.E. Integrated Optical Sensors based on Hard Dielectric Films on Replicated Plastic Substrates. Proc. 8th Eur. Conf. Integrated optics ECIO’97, Stockholm, Sweden, April 2-4, 1997, 86-93.
    9 Brockmeyer A., Coutandin J., Groh W., Stehlin T.F., Theis J. Passive optical fiber star coupler. Appl. Opt. 1992, 31, 746-748.
    10 Liu H.Y., Peng G.D., Chu P.L. Thermal tuning of polymer optical fiber Bragg gratings. IEEE Photonic Technol., 2001, 13, 824-826.
    11 Kaino T., Fujiki M., Oikawa S. and Nara S. Low-loss plastic optical fibers. Appl. Opt. 1981, 20, 2886-2888.
    12 Imamura S., Yoshimura R., Izara T. Polymer channel waveguides with low loss at 1.33um. Electron Lett. 1991, 27, 1342-1343.
    13 Matsuura T., Kobayashi J., Ando S., Maruno T., Sasaki S., and Yamamoto F. Heat-resistant flexible-film optical waveguides from fluorinated polyimides. Appl. Opt. 1999, 38, 966-971.
    14 Tanio N., Irie M. Refractive Index of Organic Photochromic Dye-Amorphous Polymer Composites. Jpn. J. Appl. Phys. 1994, 33, 3942-3946.
    15张艺,郑雪菲,牛新星,张燕珠,肖善雄,林文璇,刘四委,黄爱萍,池振国,许家瑞.含硫醚结构均苯型聚酰亚胺的合成及表征.高分子学报, 2010, (11), 1288-1293.
    16刘金刚,李卓,高志琪,杨海霞,杨士勇.含硫杂环桥联的高折射率聚酰亚胺的合成与性能.高分子学报, 2009, (1), 11-16.
    17李卓,刘金刚,高志琪,陈建升,杨士勇.有机可溶性高折射率聚酰胺酰亚胺的合成与性能.高分子学报, 2009, (1), 17-22.
    18 Badarau C., Wang Z.Y. Synthesis and Optical Properties of Thermally and Photochemically Cross-Linkable Diacetylene-Containing Polymers. Macromolecules2004, 37, 147-153.
    19 Goodwin A.A., Mercer F.W., McKenzie M.T. Thermal Behavior of Fluorinated Aromatic Polyethers and Poly(ether ketone)s. Macromolecules 1997, 30, 2767-2774.
    20 Harris F.W., Hsu S L.C. Synthesis and Characterization of Polyimides Based on 3, 6-Diphenylpyromellitic Dianhydride. High Perform. Polym. 1989, 1, 3-14.
    21 Hougham G., Tesoro G., Viehbeck A. Influence of Free Volume Change on the Relative Permittivity and Refractive Index in Fluoropolyimides. Macromolecules 1996, 29, 3453-3456.
    22 Jiang W., Wang D., Guan S.W., Gao H., Zhao Y.L., Jiang Z.H., Gao W.N., Zhang D., Zhang D.M. Sul-containing fluorinated polyimides for optical waveguide device. J. Photochem Photobiol A: Chem 2008, 197: 426 ~ 433.
    23 Li Q.X., Fang X.Z., Wang Z., Yang Z.H., Gao L.X., Ding M.X. Polyimides from isomeric oxydiphthalic anhydrides. J. Polym. Sci. Part A: Polym.Chem. 2003, 41, 3249-3260.
    24 El H., Jamal M., Melquist-John L. Blends of polyether sulfones and copolymides. 1991, US pat., 5,206,311.
    25 Li X.G., Huang M.R., Bai H., Yang Y.L. High-resolution thermogravimetry of polyphenylene sulfide film under four atmospheres. J Appl Polym Sci 2002, 83, 2053-2059.
    26 Liu J.G., Nakamura Y., Ogura T., Shibasaki Y., Ando S., and Ueda M. Optically Transparent Sulfur-Containing Polyimide-TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)-TiO2 Nanocomposite Film. Chem. Mater. 2008, 20, 273-281.
    27 Ando S., Matsuura T. Perfluorinated polyimide synthesis. Macromolecules, 1992, 25, 5858-5860.
    28 Watanabe T., Ooba N., Hayashida S., Kurihara T., Imamura S. Polymeric Optical Waveguide Circuits Formed Using Silicone Resin. J. Lightwave Technol. 1998, 16, 1049-1055.
    29 Han K., Jang W.H., Rhee T.H. Synthesis and properties of chlorinated polyimides. Macromol Chem Phys. 2000, 201, 747-751.
    30 Booth B.L. Low loss channel waveguides in polymers. IEEE J. Lightwave Technol. 1989, 7, 1445-1453.
    31 Ma H., Jen A.K-Y., Dalton L.R. Polymer-based optical waveguides materials processing and devices. Adv Mater 2002, 14(19), 1339-1365.
    1. Liu J.G., Ueda M. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 2009, 19, 8907-8919.
    2. Brandrup J., Immergut E.H., Grulke E.A., Abe A., Bloch D.R. Polymer Handbook, 4thed. New York: John Wiley & Sons, 2005.
    3. Suwa M., Niwa H. High Refractive Index Positive Tone Photo-sensitive Coating. J. Photopolym. Sci. Tech. 2006, 19, 275-276.
    4. Hasegawa M., Horie K. Photophysics, photochemistry, and optical properties of polyimides. Prog. Polym. Sci. 2001, 26, 259-335.
    5. Ma H., Jen A.KY., Dalton L.R. Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Adv. Mater. 2002, 14, 1339-1365.
    6. Matsuda T., Funae Y., Yoshida M., Tsuguo T. Novel Thiophene Methacrylates for Materials of High Refractive Index. J. Macromol. Sci. Pure Appl. Chem.1999, A36, 1271-1288.
    7. Matsuda T., Funae Y., Yoshida M., Yamamoto T., Takaya T. Optical material of high refractive index resin composed of sulfur-containing aromatic methacrylates. J. Appl. Polym. Sci. 2000, 76, 50-54.
    8.李卓,刘金刚,高志琪,陈建升,杨士勇.有机可溶性高折射率聚酰胺酰亚胺的合成与性能.高分子学报2009, 1, 17-22.
    9.刘金刚,李卓,高志琪,杨海霞,杨士勇.含硫杂环桥联的高折射率聚酰亚胺的合成与性能.高分子学报2009, 1, 11-16.
    10.刘金刚,李卓,杨海霞,杨士勇.高折射率高透明性半脂环聚酰亚胺的合成与性能.高分子学报2008, 5, 460-465.
    11. Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. Synthesis and Characterization of Highly Refractive Polyimides from 4,4’-Thiobis[(p-phenylenesulfanyl)aniline] and Various Aromatic Tetracarboxylic Dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5606-5617.
    12. You N.H., Higashihara T., Ando S., Ueda M. Synthesis of Highly Refractive and Transparent Polyimides Derived from 4,4’-Thiobis[2’’, 6’’-dimethyl-4’’-(p-phenylenesulfanyl)aniline]. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 656-662.
    13. Liu J.G., Nakamura Y., Ogura T., Shibasaki Y., Ando S., Ueda M. Optically Transparent sulfur-Containing Polyimide-TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)-TiO2 Nanocomposite Film. Chem. Mater. 2008, 20, 273-281.
    14. Liu J.G., Nakamura Y., Suzuki Y., Shibasaki Y., Ando S., Ueda M. Highly Refractive andTransparent Polyimides Derived from 4,4’-[m-Sulfonylbis(phenylenesulfanyl)]diphthalic Anhydride and Various Sulfur-Containing Aromatic Diamines. Macromolecules 2007, 40, 7902-7909.
    15. Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. High Refractive Index Polyimides Derived from 2,7-Bis(4-aminophenylenesulfanyl)thianthrene and Aromatic Dianhydrides. Macromolecules 2007, 40, 4614-4620.
    16. You H., Chueh C.C., Liu C.L., Ueda M., Chen WC. Synthesis and Memory Device Characteristics of New Sulfur Donor Containing Polyimides. Macromolecules 2009, 42, 4456-4463.
    17. Terraza C.A., Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. Synthesis and Properties of Highly Refractive Polyimides Derived from Fluorene-Bridged Sulfur-Containing Dianhydrides and Diamines. J. Polym. Sci. Part A: Polym. Chem 2008, 46, 1510-1520.
    18. Sugioka T., Hay A.S. Synthesis of novel poly(thioether-naphthalimide)s that utilize hydrazine as the diamine. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1040-1050.
    19. Egbe D.A.M., Tekin E., Birckner E., Pivrikas A., Sariciftci N.S., Schubert U.S. Effect of Styryl Side Groups on the Photophysical Properties and Hole Mobility of PPE?PPV Systems. Macromolecules 2007, 40, 7786-7794.
    20. Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. Synthesis and characterization of highly refractive polyimides from 4,4’-thiobis[(p-phenylenesulfanyl)aniline] and various aromatic tetracarboxylic dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2007, 4, 5606-5617.
    21. Terraza C.A., Liu J.G., Nakamura Y., Shibasaki Y., Ando S., Ueda M. High-throughput kinetic analysis of acrylate and thiol-ene photopolymerization using temperature and exposure time gradients. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 1510-1520.
    22. Maier G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3-65.
    23. Ree M., Shin T.J., Park Y.H., Kim S.I., Woo S.H., Cho C.K., Park C.E. Residual stress and optical properties of fully rod-like poly(p-phenylene pyromellitimide) in thin films: Effects of soft-bake and thermal imidization history. J. Polym. Sci. Part B: Polym. Phys. 1998, 36, 1261-1273.
    24. Russel T.P., Gugger H., Swalen J.D. In-Plane Orientation of Polyimide. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 1745-1756.
    1. Ge Z.Y., Fan L., Yang S.Y. Synthesis and characterization of novel fluorinated polyimides derived from 1,1’-bis(4-aminophenyl)-1-(3-trifluoromethylphenyl)-2,2,2-trifluoroethane and aromatic dianhydrides. Eur. Polym. J. 2008, 44, 1252-1260.
    2. Shang Y.M., Fan L., Yang S.Y., Xie X.F. Synthesis and characterization of novel fluorinated polyimides derived from 4-phenyl-2,6-bis[4-(4’-amino-2’-trifluoromethyl-phenoxy)phenyl] pyridine and dianhydrides. Eur. Polym. J. 2006, 42, 981-989.
    3. Zhou H.W., Liu J.G., Qian Z.G., Zhang S.Y., Yang S.Y. Soluble Fluorinated Polyimides Derived from 1,4-(4’-Aminophenoxy)-2-(3’-trifluoromethylphenyl)benzene and Aromatic Dianhydrides. J. Polym. Sci Part A: Polym. Chem. 2001, 39, 2404-2413.
    4. Hsiao S.H., Yang C.P., Huang S.C. Polyimides from 1,5-bis(4-amino-2-trifluoromethyl phenoxy)naphthalene and aromatic tetracarboxylic dianhydrides. Eur. Polym. J. 2004, 40, 1063-1074.
    5. Yang C.P., Su Y.Y., Chen Y.C. Light-Colored Fluorinated Polyimides Based on 2,5-Bis(4- amino-2-trifluoromethylphenoxy)biphenyl and Various Aromatic Dianhydrides. J. Appl. Polym. Sci. 2006, 102, 4101–4110.
    6. Chung I.S., Park C.E., Ree M., Kim S.Y. Soluble polyimides containing benzimidazole rings for interlevel dielectrics. Chem. Mater. 2001, 13, 2801-2806.
    7. Wang C.Y., LI G., Jiang J.M. Novel Soluble Polyimide Containing 4-tert-Butyltoluene Moiety: Synthesis and Characterization. Chin. J. Chem. 2009, 27, 2255-2260.
    8. Wang C.Y., Zhao X.Y., Li G., Jiang J.M. High solubility and optical transparency of novel polyimides containing 3,3’,5,5’-tetramethyl pendant groups and 4-tert-butyltoluene moiety. Polym. Degrad. Stab. 2009, 94, 1526-1532.
    9. Wang C.Y., Li G., Zhao X.Y., Jiang J.M. High Solubility, Low-Dielectric Constant, and Optical Transparency of Novel Polyimides Derived from 3,3’,5,5’-Tetramethyl-4,4’- diaminodiphenyl-4’’-isopropyltoluene. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 3309-3317.
    10. Hariharan R., Bhuvana S., Anuradha G., Sarojadevi M. Synthesis and characterisation of organosoluble polyimides containing the anisyl moiety. Polym. Int. 2004, 53, 1442-1447.
    11. Likhatchev D., Alexanrova L., Vilar R., Vera-Graziano R. Soluble aromatic polyimides and polyamides based on 4,4′-diaminotriphenylmethane. J. Appl. Polym. Sci. 1995, 57, 37-44
    12. Lee D.H., Koo S.Y., Kim D.Y., Choi H.J. Prepration and propertites of soluble aromatic polyetherimides based on 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride. J. Appl. Polym. Sci. 2000, 76, 249-257.
    13. Yin D.X., Li Y.F., Yang S.Y., Fan L., Liu J.G. Synthesis and characterization of novel polyimides derived from 1,1-bis[4-(4’-aminophenoxy)phenyl]-1-[3’’,5’’-bis(trifluoromethyl) phenyl]-2,2,2-trifluoroethane. polymer. 2005, 46, 3119-3127.
    14. Qian Z.G., Pang Z.Z., Li Z.X., He M.H., Liu J.G., Fan L., Yang S.Y. Photoimageable polyimides derive fromα,α-(4-amino-3,5-dimethylphenyl)phenylmethane and aromatic dianhydride. J. polum. Sci. Part A: Polym. Chem. 2002, 40, 3012-3020.
    15. Li H.S., Liu J.G., Rui J.M., Fan L., Yang S.Y. Synthesis and characterization of novel fluorinated aromatic polyimides derived from 1,1-bis(4-amino-3,5-dimethylphenyl)-1- (3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and various aromatic dianhydrides. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2665-2674.
    16. Zhao X.J., Liu J.G., Yang H.X., Fan L., Yang S.Y. Novel polyfluorinated polyimides derived fromα,α-bis(4-amino-3,5-difluorophenyl)phenylmethane and aromatic dianhydrides: Synthesis and characterization. Eur. Polym. J. 2008, 44, 808-820.
    17. Ringel C., Boehm H., Kroschwitz H., Scheller D. Zur Rolle der Pl?chl-Methylierung bei der DA-Kondensation. Syspur. Reporter. 1981, 19, 143-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700