植物对砷、硒、锑的富集及抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业和农业的发展,重金属不可避免的大量进入环境,导致环境污染问题日益严重。超富集植物以其对重金属的耐性、富集性等特性展示了它在重金属污染修复方面的巨大潜力。近年来,利用超富集植物修复环境污染的研究获得了学术界和公众的普遍关注。砷、硒、锑三种元素的污染问题在世界范围内广泛存在。研究这三种元素在植物体内的吸收、富集机理及相互作用过程,对于认识植物耐性机理以及植物修复技术的实践均具有理论与实际意义。本文通过一系列的水培与土培试验,以蕨类植物为主要材料,应用生理生化测定技术、氢化物原子荧光光谱法、ICP-OES测定技术以及亚细胞分离技术等手段,研究了植物对硒、锑的吸收、富集机理以及砷、硒、锑在植物体内的两两相互作用,探索研究了利用硒缓解砷、锑毒性的策略。研究成果不仅有助于了解环境有害元素在植物体内的行为特征,对于降低有害元素的环境以及健康风险也提出了可行的技术手段。取得的主要结果有:
     (1)研究了蜈蚣草富集硒的能力及硒胁迫条件下的抗氧化反应。结果表明:蜈蚣草是一种硒的耐性植物,其地下部硒的最大富集量为1573.3 mg kg~(-1),远高于地上部硒的富集量263.6 mg kg~(-1)。0-2 mg L~(-1)硒处理浓度对蜈蚣草有益,显著降低蜈蚣草叶片中MDA的含量;但是≥5 mg L~(-1)硒处理浓度对蜈蚣草产生损伤,显著增加植物叶片中MDA的含量,特别是在硒的最高处理浓度20 mg L~(-1)时。0-5 mg L~(-1)的硒处理显著诱导了酶POD,APX和CAT的活性,而>5 mg L~(-1)的硒处理浓度则降低了这三种酶的活性。>5 mg L~(-1)的硒处理浓度显著增加了蜈蚣草叶片中GSH的含量以及GR酶的活性,20 mg L~(-1)的硒处理浓度显著增强蜈蚣草叶片中SOD酶。以上结果说明,GSH、GR酶以及SOD酶可能与蜈蚣草的耐硒机理有关,起到调控超氧阴离子自由基(O_2~-)的作用;而酶POD,APX和CAT仅在低浓度硒处理条件下起到清除H_2O_2的作用。
     (2)利用水培和土培试验研究了硒对蜈蚣草体内必需营养元素含量及分布的影响。结果表明:水培条件下蜈蚣草硒富集量高于土培条件下蜈蚣草的富硒量。在土培条件下,蜈蚣草同样也富集了大量的硒,其地上部和地下部硒的最大富集量分别为81 mg kg~(-1)和233 mg kg~(-1)。在土培试验中,硒抑制了几乎所有测定元素的吸收,包括镁(Mg)、钾(K)、磷(P)、铁(Fe)、铜(Cu)和锌(zn)。在水培试验条件下,当蜈蚣草体内硒含量相对较低时,硒同样也抑制了几乎所有被测元素的吸收。然而,当蜈蚣草体内硒含量增加时,硒则促进了蜈蚣草对Ca,Mg,K的吸收。在水培条件下,低剂量硒(或低硒含量)抑制、而高剂量硒(或高硒含量)促进了蜈蚣草对Fe的吸收。以上结果说明Ca,Mg,K可能与蜈蚣草的耐硒机理有关,同时我们推测硒对Fe的吸收调控可能与硒在蜈蚣草体内的双面作用有关。
     (3)采用正交旋转回归设计,利用水培试验研究了蜈蚣草体内砷硒间的交互作用。结果表明:当硒处理水平小于2.5 mg L~(-1)时,增加砷处理浓度促进蜈蚣草根部硒的吸收,这一促进作用可能与硒对植物的有益作用有关。而当硒处理浓度高于2.5 mgL~(-1)时,砷抑制了蜈蚣草根部硒的吸收。蜈蚣草地上部和地下部砷的吸收均被硒抑制,表明硒对砷的拮抗作用。另外,当硒的处理浓度小于2.5 mg L~(-1)时,砷的加入促进了硒向蜈蚣草地上部的转移;硒却导致砷向蜈蚣草地上部转移能力的降低。
     (4)利用水培试验比较研究了四种蕨类植物对锑的吸收富集能力以及相应的耐性机理。结果表明:锑的加入没有显著影响砷超富集植物白玉凤尾蕨的生物量,却抑制了贯众、鳞盖蕨和齿牙毛蕨的生物量。与各自对照相比,随着锑的加入,贯众、鳞盖蕨和齿牙毛蕨的生物量降低幅度分别达到12.5%,35.0%和38.3%。表明四种植物由高到低的耐锑能力。四种植物吸收的锑主要富集在根部,表明四种植物转移锑的能力较低。四种植物中,白玉凤尾蕨根部锑最大平均富集量为358 mgkg~(-1),贯众为224 mg kg~(-1),齿牙毛蕨为124 mg kg~(-1),鳞盖蕨为123 mg kg~(-1)。在20 mg L~(-1)锑处理条件下,与各自对照相比,鳞盖蕨和齿牙毛蕨叶片中MDA的含量分别增加41.3%和171.6%,而白玉凤尾蕨和贯众叶片中MDA的含量没有显著性变化,表明这两种蕨类植物中脂质过氧化反应较低。在5 mg L~(-1)锑处理条件下,白玉凤尾蕨叶片中抗坏血酸过氧化物酶(APX)、过氧化氢酶(POD)以及过氧化物酶(CAT)活性均显著高于其他三种蕨类植物,表明这三种酶类在抵御锑毒性的过程中起到重要作用。在锑胁迫下,白玉凤尾蕨不变的生物量、较高的根部锑富集量、较低的叶片MDA含量以及较高的叶片抗氧化酶活性均表明白玉凤尾蕨耐锑能力高于其他三种蕨类植物。结果表明,抗氧化物酶类可能与白玉凤尾蕨较高的耐锑能力有关。
     (5)利用水培试验研究了砷、锑在砷超富集植物大叶井口边草体内的相互作用以及亚细胞分布特征。结果表明:大叶井口边草是一种潜在的锑超富集植物。在不加砷、锑处理条件下,大叶井口边草叶片和茎部胞液组份聚集了绝大部分砷和锑,而细胞壁和细胞器中砷、锑含量相对较少;在单独加入锑处理时,随着锑处理浓度的增加,大叶井口边草体内锑的含量逐渐增加,叶片、茎和根部中的各个亚细胞组份中锑的含量也逐渐增加,胞液中锑含量的相对比例却降低,而细胞壁组份中锑含量的比例随着锑处理浓度的增加而增加。当砷、锑联合处理时,砷的加入显著促进了植物对锑的吸收,并且低剂量砷的促进作用要高于高剂量砷的促进作用。增加的砷处理浓度诱导更多的锑被转移富集于植物胞液组份中,而这一过程伴随着砷在胞液中比例的降低。在低砷处理条件下,锑的加入轻微促进了植物对砷的吸收,然而这种促进作用伴随着植物富集砷潜力的降低,表现为大叶井口边草胞液组份中砷含量以及相对比例的降低;在高砷处理下,锑的加入抑制了植物对砷的吸收,显著降低了茎部砷的含量,同时也降低了叶片和茎不胞液组份中砷含量的比例。表明锑对水稻具有很强的毒性。当不加锑时,0.1 mg L~(-1)硒的加入未显著影响水稻的生物量,却显著抑制了叶片MDA;≥1 mg L~(-1)硒的加入则显著降低了水稻的生物量并增加了叶片MDA的含量,表现出硒对水稻的两面性作用。硒的加入显著增加了水稻叶片中蛋白质的含量,而5 mg L~(-1)锑的加入却逆转了这一趋势,蛋白质含量随着硒处理浓度的增加而降低。当硒、锑联合处理时,增加的硒处理浓度降低了水稻各个部位锑的含量,表现出硒对锑的拮抗作用。另外,与5 mg L~(-1)单独锑处理浓度相比,1 mg L~(-1)硒的添加降低了5 mg L~(-1)单独锑处理下的叶片MDA含量,并且显著增加了该锑处理下的水稻生物量,此时水稻的生物量甚至要高于不加硒、锑的对照处理下水稻的生物量,以上结果表明硒缓解了锑对水稻的毒性。5 mg L~(-1)锑的加入也能缓解1 mg L~(-1)或者5 mg L~(-1)硒对水稻的毒害,表现为水稻生物量的增加、降低的叶片MDA含量以及降低的地上部硒含量。意外的是,当硒处理浓度为1 mg L~(-1)或者5 mg L~(-1)时,随着锑处理浓度的增加,硒被优先富集在水稻根部。以上结果反映了水稻体内硒、锑互相解毒的过程,而硒对锑的解毒功能可能主要与硒对锑的拮抗作用有关,而部分与硒的抗氧化功能有关。
With the development of industry and agriculture,continuous deposition of heavy metals in the environment is unavoidable,which may result in the aggravation of environmental pollution.Resently,increasing concerns from the scientists and public have been paid for the technology using hyperaccumulating plants to phytoremediate the comtaminated environment.Investigations on the mechanisms for uptake,accumulation and interactions among deleterious elements in plants will contribute to the understandings of tolerance mechanisms,and also benefit to provide more theoretical knowledge in phytoremediation process.In this study,a series of experiments in nutrition culture or in soil culture have been conducted to investigate:1) the mechanisms on the uptake and accumulation of selenium and antimony in plants;2) the interactions among arsenic,selenium and antimony in plants;3) the strategies to alleviate the toxicity of arsenic and antimony to plants using the extra supplementation of selenium to the substrate.In this study,most employed plants were fern plants and at the same time, physiological and chemical determination methods,hydride generation atomic fluorescence spectrometer test technology,inductively coupled plasma optical emission spectrometry test technology and the subcellular fractionation technology were also used.
     The main results were as follows:
     1.We examined the selenium(Se) accumulation as well as its related antioxidant responses in Chinese brake fern(Pteris vittata L.),an arsenic hyperaccumulator.The results showed that Se was accumulated more in roots than in fronds,with the highest Se concentration of 1573.3 mg kg~(-1).Addtion of Se in the range of 0-2 mg L~(-1) exerted a beneficial effect that was indicated by a significantly decreased content of malondialdehyde(MDA) in the fronds of Chinese brake fern.However,the toxicity of Se in Chinese brake fern occurred with Se addition of greater than 5 mg L~(-1),which was shown by significant increases in MDA contents,especially at the highest Se addition rate of 20 mg L~(-1).The enzymes catalase(CAT),ascorbate peroxidase(APX) and peroxidase (POD) in the fronds of Chinese brake fern were largely induced at low Se addition rates from 0 to 5 mg L~(-1) while Se addtion of greater than 5 mg L~(-1) reduced their activities.The contents of glutathione(GSH) and activities of GR increased when Se addition was greater than 5 mg L~(-1),and a significant increase of superoxide dismutase(SOD) activities was observed at the highest addition rate of Se at 20 mg L~(-1).The results suggested that participation of APX and POD in the destruction of H_2O_2 might be promoted by low addition of Se,while SOD,GSH and GR contributed to high Se tolerance through the reduction of superoxide radicals(O_2~-) accumulation.
     2.Hydroponic(nutrient solution culture) and pot(soil culture) experiments were simultaneously conducted to investigate the effects of Se on the uptake and distribution of essential elements in Chinese brake fern.Chinese brake fern took up much more Se in nutrient solution culture than that in soil culture.In soil culture,Chinese brake fern also accumulated high contents of Se,with the highest contents of 81 mg kg~(-1) and 233 mg kg~(-1) in the fronds and roots,respectively.In soil culture,the addition of Se suppressed the uptake of most measured elements,including magnesium(Mg),potassium(K), phosphorus(P),iron(Fe),copper(Cu) and zinc(Zn).In nutrient solution culture,when the Se contents in the tissues of Chinese brake fern were relatively low,the supplementation of Se suppressed the uptake of most essential elements;however,with the increase of Se contents,stimulation effects of Se on the uptake of Ca,Mg,K were observed.An initial decrease followed by a rapid increase of Fe contents in the fronds of Chinese brake fern were found with Se addition and tissue Se contents increasing in nutrient solution culture,suggesting antagonistic and synergic roles of Se on these elements under low to high Se exposure,respectively.The results indicated that Ca,Mg, K might be involved in the tolerance mechanism of Se,and that the regulation of Fe accumulation by Se in the fronds might be partially due to the dual effects of Se on Chinese brake fern.
     3.The interactive effects of As and Se on their uptake by Chinese brake fern were explored in two hydroponic experiments based on a two-factor,five-level central composite design.At Se levels of less than 2.5 mg L~(-1),increasing amounts of As stimulated the uptake of Se in Chinese brake fern roots,possibly because of the beneficial effects of Se.In contrast,at Se concentrations greater than 2.5 mg L~(-1),As suppressed the uptake of Se in Chinese brake fern roots.Uptake of As by both fronds and roots of Chinese brake fern was suppressed by the addition of Se,indicating the antagonistic effects of Se on As.In addition,at Se concentrations of less than 2.5 mg L~(-1),As stimulated the translocation of Se from roots to fronds;meanwhile,the addition of Se resulted in reduced translocation of As from roots to fronds.These findings demonstrate the interactive effects of As and Se on their uptake by Chinese brake fern.
     4 Investigation of the potential of antimony(Sb) tolerance and accumulation by plants as well as the antioxidative responses to Sb in four fern plants were carried out.The biomass of fern PCA(Pteris Cretica 'Albo-lineata') remained constant with Sb addition, whereas the biomass of ferns CYF(Cyrtomium Fortunei),MH(Microlepia Hancei) and CYD(Cyclosorus Dentatus) at the high Sb rate exposure decreased by 12.5%,35.0%and 38.3%,respectively as compared with their controls.This suggested a high to low Sb tolerance order for these four fern plants.For all of these fern plants,more Sb was accumulated in the roots than in the fronds.Antimony concentration in the roots at the high rate of Sb addition was recorded,on average,as 358 mg kg~(-1) for fern PCA,224 mg kg~(-1) for fern CYF,124 mg kg~(-1) for fern CYD and 123 mg kg~(-1) for fern MH.A high rate of addition of Sb increased the contents of malondialdehyde(MDA) by 41.3%and 171.6% for ferns MH and CYD,respectively,as compared with their controls.No changes for MDA contents were observed in ferns PCA and CYF with Sb addition,indicating no lipid peroxidation reaction in these two plants.At a medium rate of Sb addition,the activities of peroxidase,catalase and ascorbate peroxidase in fern PCA were much higher than those in ferns CYF,CYD and MH,demonstrating the important role of these three enzymes in resisting Sb toxicity.The consistency in unchanged biomass,high accumulation of Sb in roots,lower MDA contents,as well as high enzyme production in fronds,indicated that fem PCA was more tolerant to Sb than the other three fern plants. Antioxidative enzymes(peroxidase catalase and ascorbate peroxidase) might be involved in Sb toxicity resistance of fern PCA.
     5 Pteris Cretica might be a potential antimony hyperaccumulator.Without As and Sb addition,most As and Sb absorbed by this plant were stored in the cytoplasmic supematant fraction in the fronds and stems,while the cellwall and cytoplastic organelles only sequestrated relatively few of As and Sb.In the presence of antimony alone in the solution,with Sb treatment concentrations increasing,the contents of Sb in all tissues of Pteris Cretica and in all subcellular fractions from leaves,stems and roots were all enhanced;However,the percentages of Sb distribution in the cytoplastic supernatant fraction in all tissues dereased,accompanied with the increases of that in the fraction of cellwall.When both As and Sb were present in the solution,the uptake of Sb by this fern plant were stimulated by the increasing As treatment concentrations,however,more efficient stimulation of Sb uptake by relatively low As treatment concentrations than high As treatment concentrations was also observed.The increased As treatment concentrations induced the more translocation of Sb to the cytoplastic supernatant fraction, along with the decrease in the percentage of As distribution in this fraction.At low As treatment concentrations,the supply of Sb slightly enhanced the uptake of As,but this operation simultaneously reduced the accumulation potential of As in Pteris cretica, reflecting on the decreased percentage of As in the fraction of cytoplastic suprnatant. However,at high As treatment concentrations,the uptake of As by this plant was suppressed by the addition of Sb.Significant decreases in the stem As contents and in the percentages of As in the cytoplastic supematant fractions of both leaves and stems were observed along with the supply of Sb.
     6.The effects of Sb on the growth of paddy-rice(WeiYouⅡ416) and the supposition of detoxifying Sb by the addition of selenium to plants were explored.Aider 14 days exposure,the single addition of 5 mg L~(-1) Sb slightly reduced the biomass of paddy-rice and increased the leaf malondialdehyde(MDA) contents,and higher Sb addition as 50-100 mg L~(-1) Sb totally resulted in the death of paddy-rice,suggesting the toxicity of Sb to paddy-rice.Without Sb addition,0.1 mg L~(-1) Se remarkably subdued the formation of MDA in the leaves accompanied with an unaffected biomass,but≥1 mg L~(-1) Se evidently decreased the biomass and enhanced the leaf MDA contents,suggesting antioxidant and pro-oxidant roles of Se to paddy-rice under different dosages of Se.The increasing Se treatment concentrations enhanced the synthesis of soluble protein in the leaves of paddy-rice,however,with 5 mg L~(-1) Sb in the solution,increasing Se treatment concentrations reversely suppressed it.With both Se and Sb in the solution,the increasing Se levels depressed the uptake of Sb in all tissues of paddy-rice,indicating an antagonistic effect of Se on the uptake of Sb.Moreover,as compared with the single Sb level of 5 mg L~(-1),1 mg L~(-1) Se addition reversely decreased the leaf MDA contents and remarkably increased the biomass even being higher than that of the control,suggesting an alleviated process of Sb toxicity by Se.Interestingly,the addition of 5 mg L~(-1) Sb also ameliorate the toxicity of 1 or 5mg L~(-1) Se,reflecting on more or less increased biomass,decreased leaf MDA contents,and reduced above ground Se contents.Unexpected,when Se was imposed at the concentrations of 1 or 5 mg L~(-1),more Se were accumulated in the root of paddy-rice with increasing Sb treatment concentrations.The results of this study suggested a mutual detoxification process between Se and Sb in paddy-rice,and the detoxification of Sb by Se might be related with the antagonistic effects of Se on the uptake of Sb,partially with the antioxidant role of Se.
引文
1.陈同斌,范稚莲,雷梅,黄泽春,韦朝阳.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报,2002,47(15):1156-1159
    2.陈同斌,黄泽春,黄宇营,雷梅.蜈蚣草羽叶中砷及植物必需营养元素的分布特点.中国科学C辑一生命科学,2004,34(4):304-309
    3.陈同斌,阎秀兰,廖晓勇,肖细元,黄泽春,谢华,翟丽梅.蜈蚣草中砷的亚细胞分布与区隔化作用.科学通报,2005,50(24):2739-2744
    4.董广辉,陈利军,武志杰.植物硒素营养及其机理研究进展.应用生态学报,2002,13(11):1487-1490
    5.顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,2003,11(2):143-151
    6.蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤,2004,36(3):264-270
    7.廖晓勇,谢华,陈同斌,肖细元,阎秀兰,翟丽梅,武斌.蜈蚣草的超微结构和砷、钙的亚细胞分布.植物营养与肥料学报,2007,13(2):305-312
    8.刘硕,周启星.抗氧化酶诊断环境污染研究进展.生态学杂志,2008,27(10):1791-1798
    9.汤惠华,杨涛,胡宏友,汤朝凤,卢昌义.镉对花椰菜光合作用的影响及其在亚细胞中的分布.园艺学报,2008,35(9):1291-1296
    10.唐世荣,黄昌勇,朱祖祥.污染土壤的植物修复技术及其研究进展.上海环境科学,1996,15(12):37-47
    11.唐世荣,黄昌勇,朱祖祥.利用植物修复污染土壤研究进展.环境科学进展,1996,4(6):10-16
    12.涂书新,韦朝阳.我国生物修复技术的现状与展望.地理科学进展,2004,23(6):20-32
    13.韦朝阳,陈同斌,黄泽春,张学青.大叶井口边草—一种新发现的富集砷的植物.生态学报,2002,22(5):777-778
    14.韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1196-1203
    15.韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状.地理科学进展, 2002,17(6):833-839
    16.翁焕新,张霄宇,邹乐君,张兴茂,刘广深.中国土壤中砷的自然存在状况及其成因分析.浙江大学学报(工学版),2000,34(1):88-92
    17.谢华,廖晓勇,陈同斌,林鉴钊.污染农田中植物的砷含量及其健康风险评估—以湖南郴州邓家塘为例.地理研究,2005,24(1):151-159
    18.杨兰芳.土壤中的硒.湖北民族学院学报(自然科学版),2000,18(1):43-46
    19.叶春和.土壤污染的植物修复技术:现状与前景.山东科学,2004,17(1):45-50
    20.周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响.植物营养与肥料学报,1999,5(4):335-340
    21.Abedin M J,Feldmann J,Meharg A A.Uptake kinetics of arsenic species in rice plants.PlantPhysiol,2002,128:1120-1128
    22.Abrams M M,Burau R G,Zasoski R J.Organic selenium distribution in selected california soils.Soil Sci Soc Am J,1990,54:979-982
    23.Ainsworth N,Cooke J A,Johnson M S.Distribution of antimony in contaminated grassland:Ⅰ-Vegetation and soils.Environ Pollut,1990a,65:65-77
    24.Ainsworth N,Cooke J A,Johnson M S.Distribution of antimony in contaminated grassland:Ⅱ-Small mammals and invertebrates.Environ Pollut,1990b,65:79-87
    25.Ainsworth N,Cooke J A,Johnson M S.Biological significance of antimony in contaminated grassland.Water Air Soil Pollut,1991,57-58:193-199
    26.A1-Attar A F,Nickless G.Response surface methodology for an investigation of the influence of selenium,cadmium and mercury on the growth of Lolium perenne seedlings.Chemosphere,1988,17:1851-1861
    27.An Z Z,Huang Z C,Lei M,Liao X Y,Zheng Y M,Chen,T B.Zinc tolerance and accumulation in Pteris vittata L and its potential for phytoremediation of Zn- and As-contaminated soil.Chemosphere,2006,62:796
    28.Anderson J W.Selenium interactions in sulfur metabolism.In:De Kok,L J ed.,Sulfur Nutrition and Assimilation in Higher Plants:Regulatory,Agricultural and Environmental Aspects.The Hague,the Netherlands:SPB Academic Publishing,1993,49-60
    29. Anderson J W, Scarf A R. Selenium and plant metabolism. In: Robb D A, Pierpoint W S eds. , Metals and Micronutrients: uptake and utilization by plants. London: Academic Press, 1983, 241-275
    
    30. Andreae M O, Froelich P N. Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea. Tellus, 1984, 36: 101-117
    
    31. Andrewes P, Cullen W R, Polishchuk E. Arsenic and Antimony Biomethylation by Scopulariopsis brevicaulis: Interaction of Arsenic and Antimony Compounds. Environ Sci Technol, 2000, 34(11): 2249-2253
    
    32. Andrewes P, Kitchin K T, Wallace K. Plasmid DNA damage caused by stibine and trimethylstibine. Toxicol Appl Pharmacol, 2004, 194: 41 -48
    
    33. Arvy M P, Thiersault M, Doireau P. Relationship between selenium, micronutrients, carbohydrates, and alkaloid accumulation in Catharanthus roseus cells. J Plant Nutr, 1995,18: 1535-1546
    
    34. Arvy M P. Selenate and Selenite Uptake and Translocation in Bean Plants (Phaseolus vulgaris). J Exp Bot, 1993, 44: 1083-1087
    
    35. Asada K. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiol, 2006, 141: 3 91 -396
    
    36. Asher C J, Butler G W, Peterson P J. Selenium transport in root systems of tomato. J Exp Bot, 1977, 23: 279-291
    
    37. Ashley P M, Craw D, Graham B P, Chappell D A. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. J Geochem Explor, 2003, 77: 1-14
    
    38. Assche F Van, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ, 1990, 13: 195-206
    
    39. Baker A J M. Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr, 1981, 3: 643-654
    
    40. Baker C J, Orlandi E W. Active Oxygen in Plant Pathogenesis. Annu Rev Phylopathol, 1995, 33: 299-321
    
    41. Baroni F, Boscagli A, Protano G, Riccobono F. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut, 2000, 109: 347-352
    42. Bebien M, Lagniel G, Garin J, Touati D, Vermeglio A, Labarre J. Involvement of Superoxide Dismutases in the Response of Escherichia coli to Selenium Oxides. J Bacteriol, 2002, 184:1556-1564
    
    43. Bell P F, Parker D R, Page A L. Contrasting selenate sulfate interaction in selenium accumulating and nonaccumulating plant species. Soil Sci Soc Am J, 1992, 56: 1818-1824
    
    44. Belokobylsky A I, Ginturi E I, Kuchava N E, Kirkesali E I, Mosulishvili L, Frontasyeva M V, Pavlov S S, Aksenova N G. Accumulation of selenium and chromium in the growth dynamics of spirulina platensis. J Radioanal Nucl Ch, 2004, 259: 65-68
    
    45. Berg M, Tran H C, Nguyen T C, Pham H V, Schertenleib R, Giger W. Arsenic Contamination of Groundwater and Drinking Water in Vietnam: A Human Health Threat. Environ Sci Technol, 2001, 35: 2621-2626
    
    46. Bertolero F, Pozzi G, Sabbioni E, Saffiotti U. Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis, 1987, 8: 803-808
    
    47. Biswas S, Talukder G, Sharma A. Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo. Mutat Res, 1999, 441: 155-160
    
    48. Borovicka J, Randa Z, Jeliek E. Antimony content of macro fungi from clean and polluted areas. Chemosphere, 2006, 64: 1837-1844
    
    49. Bosma W, Schupp P, De Kok L J, Rennenberg H. Effect of selenate on assimilatory sulfate reduction and thiol content spruce needles. Plant Physiol Biochem, 1991, 29: 131-138
    
    50. Box G E P, Hunter W G, Hunter J S. Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. New York: Wiley, 1978, 653
    
    51. Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
    
    52. Brennan T, Frenkel C. Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear. Plant Physiol, 1977, 59: 411-416
    53. Brochu C, Wang J, Roy G, Messier N, Wang X Y, Saravia N G, Ouellette M. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony resistant parasites. Antimicrob Agents Chemother, 2003, 47: 3073-3079
    
    54. Brooks R R, Shaw S, Asensi M A. The chemical form and physio-logical function of nickel in some Iberian Alyssum species. Plant Physiol, 1981, 51: 167-170
    
    55. Broyer T, Johnson C, Huston R. Selenium and nutrition of Astragalus. Plant Soil, 1972,36:651-669
    
    56. Brun C B, Astrom M E, Peltola P, Johansson M B. Trends in major and trace elements in decomposing needle litters during a long-term experiment in Swedish forests. Plant Soil, 2008, 306:199-210
    
    57. Cao X D, Ma L Q, Tu C . Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L). Environ Pollut,2004,128:317-325
    
    58. Carbonell-Barrachina A A, Aarabi M A, DeLaune R D, Gambrell R P, Patrick Jr W H. Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ, 1998, 217: 189-199
    
    59. Carbonell-Barrachina A A, Aarabi M A, DeLaune R D, Gambrell R P, Patrick, Jr W H. The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil, 1998, 198: 33-43
    
    60. Carbonell-Barrachina A A, Burlo F, Lopez E, Martinez-Sanchez F. Arsenic toxicity and accumulation in radish as affected by arsenic chemical speciation. J Environ Sci Health, 1999,34:661-679
    
    61. Cartes P, Gianfreda L, Mora M L. Uptake of Selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil, 2005, 276: 359-367
    
    62. Cartes P, Shene C, Mora M L. Selenium distribution in ryegrass and its antioxidant role as affected by sulfur fertilization. Plant Soil, 2006, 285: 187-195
    
    63. Chaoui A, Mazhoudi S, Ghorbal M H, Ferjani Eel. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Sci, 1997, 127: 139-147
    
    64. Chen T B, Wei C Y, Huang Z C, Huang Q F, Lu Q G. Arsenic hyperaccumulator Pteris vittata L and its arsenic accumulation. Chinese Sci Bull, 2002, 47: 902-905
    
    65. Chen R X, Smith B W, Winefordner J D, Tu S, Kertulis G, Ma L Q. Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography inductively coupled plasma mass spectroscopy. Anal Chim Acta, 2004, 504: 199-207
    
    66. EU. 129-18/05/1976. Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community. Official Journal L, 1976
    
    67. EU. 330-05/12/1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal L, 1998
    
    68. Crecelius E A, Bothner M H, Carpenter R. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of Puget Sound. Environ Sci Technol, 1975,9:325-333
    
    69. Crornnientuijn T, Sijm D, de Bruijn J, van den Hoop M, van Leeuwen K, van de Plassche E. Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. J Environ Manage, 2000, 60:121-143
    
    70. Cullen W R, Reimer K J. Arsenic speciation in the environment. Chem Rev, 1989, 89: 713-764
    
    71. De Gregori I, Fuentes E, Rojas M, Pinochet H, Potin-Gautier M. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J Environ Monitor, 2003, 5: 287-295
    
    72. De Kok L J, Kuiper P J C. Effect of short-term dark incubation with sulfate, chloride and selenate on the glutathione content of spinach leaf discs. Physiol Plantarum, 1986,68:477-482
    
    73. Decuypere S, Rijal S, Yardley V, DeDoncker S, Laurent T, Khanal B, Chappuis F, Dujardin J C. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemoter, 2005, 49: 4616-4621
    
    74. Del Rio L A, Fernandez V M, Ruperez F L, Sandalio L M, Palma J M. NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes. Plant Physiol, 1989,89:728-731
    
    75. Delnomdedieu M, Basti M M, Otvos J D, Thomas D J. Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact, 1994,90: 139-155
    
    76. Djanaguiraman M, Devi D D, Shanker A K, Sheeba J A, Bangarusamy U. Selenium - an antioxidative protectant in soybean during senescence. Plant Soil, 2005, 272: 77-86
    
    77. Dodd M, Pergantis S A, Cullen W R, Li H, Eigendorf G K, Reimer K J. Antimony speciation in freshwater plant extracts by using hydride generation gas chromatography mass spectrometry. Analyst, 1996, 121: 223-228
    
    78. Donahue J L, Okpodu C M, Cramer C L, Grabau E A, Alscher R G. Responses of antioxidants to paraquat in pea leaves (relationships to resistance). Plant Physiol, 1997,113:249-257
    
    79. Ebbs S, Weinstein L. Alteration of selenium transport and volatilization in barley (Hordeum vulgare) by arsenic. J Plant Physiol, 2001, 158: 1231-1233
    
    80. Eikamann T, Kloke A. Nutzungs- und schutzgutbezogene Orientierungswerte fur (Schad-) stoffe in Boden. In: Rosenkranz D, Bachmann G, Einsele G, Harress H M eds, Bodenschutz Erganzbares Handbuch der MaBnahmen und Empfehlungen fur Schutz, Pflege und Sanierung von Boden, Landschaft und Grundwasser-1. Berlin, Germany: Erich Schmidt, 1993, Band, 14, Lfg X/93
    
    81. Elstner E F. Oxygen Activation and Oxygen Toxicity. Annu Rev Plant Physiol, 1982,33:73-96
    
    82. Fargasova A, Pastierova J, Svetkova K. Effect of Se-metal pair combinations (Cd, Zn, Cu, Pb) on photosynthetic pigments production and metal accumulation in Sinapis alba L seedlings. Plant Soil Environ, 2006, 52: 8-15
    
    83. Filella M, Belzile N, Chen Y W. Antimony in the environment: a review focused on natural waters: I Occurrence. Earth Sci Rev, 2002, 57: 125-176
    
    84. Filella M, Belzile N, Lett M C. Antimony in the environment: A review focused on natural waters III Microbiota relevant interactions. Earth Sci Rev, 2007, 80: 195-217
    
    85. Flynn H C, Meharg A A, Bowyer P K, Paton G I. Antimony bioavailability in mine soils. Environ Pollut, 2003, 124: 93-100
    
    86. Fordyce F M, Zhang G D, Green K, Liu X P. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Appl Geochem, 2000, 15: 117-132
    
    87. Fournier E, Adam C, Massabuau J C, Gamier-Laplace J. Bioaccumulation of waterborne selenium in the Asiatic clam Corbicula fluminea: influence of feeding-induced ventilatory activity and selenium species. Aquat Toxicol, 2005, 72: 251-260
    
    88. Fowler B A, Goering P L. Antimony. In: Merian E ed, Metals and their Compounds in the Environment. New York, Basel, Cambridge: VCH, Weinheim, 1991
    
    89. Foyer C H, Noctor G. Oxygen processing in photosynthesis: regulation and signalling New Phytol, 2000,146: 359-388
    
    90. Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramm a calom elanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ, 2002, 284: 27-35
    
    91. Frey B, Keller C, Zierold K, Schulin R. Distribution of Zn in function-ally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ, 2000, 23(7): 675-687
    
    92. Frost D V, Lish, P M. Selenium in Biology. Annu Rev Pharmacol, 1975, 15: 259-284
    
    93. Fu J, Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot, 2001, 45: 105-114
    
    94. Gebel T . Suppression of arsenic-induced chromosome mutagenicity by antimony. Mutat Res, 1998, 412: 213-218
    
    95. Gebel T . Confounding variables in the environmental toxicology of arsenic. Toxicol, 2000, 144: 155-162
    
    96. Giannopolitis C N, Ries S K. Superoxide Dismutases I Occurrence in Higher Plants. Plant Physiol, 1977, 59: 309-314
    
    97. Gonzalez C M, Casanovas S S, Pignata M L. Biomonitoring of air pollutants from traffic and industries employing Ramalina ecklonii (Spreng) Mey and Flot in Cordoba, Argentina. Environ Pollut, 1996,91:269-277
    
    98. Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen B P, Mukhopadhyay R. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem, 2004, 279: 31010-31017
    
    99. Guo X, Fujino Y, Kaneko S, Wu K G, Xia Y J, Yoshimura T. Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. Mol Cell Biochem, 2001, 222: 137-140
    
    100.Hamilton S J. Review of selenium toxicity in the aquatic food chain. Sci Total Environ, 2004, 326: 1-31
    l01.Hammel W, Debus R, Steubing L. Mobility of antimony in soil and its availability to plants. Chemosphere, 2000, 41: 1791-1798
    102.Hans J W. Subcellular distribution and chemical form of cadmium in bean plant. Plant Physiol, 1980, 46: 480-482
    103.Hartikainen H, Xue T, Piironen V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil, 2000, 225: 193-200
    104.Hartikainen H, Xue T. The promotive effect of selenium on plant growth as trigged by ultraviolet irradiation. J Environ Qual, 1999, 28: 1272-1275
    105.Hartley-Whitaker J, Ainsworth G, Meharg A A. Copper- and arsenate-induced oxidative stress in Holcus lanatus L clones with differential sensitivity. Plant Cell Environ, 2001, 24: 713-722
    106.Hawkesford M J, Davidian J C, Grignon C. Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L: increased transport in membranes isolated from sulphur-starved plants. Planta, 1993, 190: 297-304
    107.He M C. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ Geochem Hlth, 2007, 29: 209-219
    108.He P P, Lv X Z, Wang G Y. Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environ Int, 2004, 30: 167-172
    109.He M, Xie N, Yu W, Yang R. Study on the rice pollution and amendment of antimony in soils. J Hunan agri college (China), 1994, 20(1): 47-51
    110.He M, Yang J. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Sci Total Environ, 1999,243-244:149-155
    111.Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Calif Agric Expt Stn Circ, 1938, 347: 1-39
    112.Hopper J, Parker D. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil, 1999, 210:199-207
    113.Ismail C. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci, 2005, 168: 521 -530
    114.Iturbe-Ormaetxe I, Moran J F, Arrese-Igor C, Gogorcena Y, Klucas R V, Becana M. Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ, 1995, 18: 421-429
    115 Jenkins R O, Craig P J, Goessler W, Miller D, Ostah N, Irgolic K J. Biomethylation of inorganic antimony compounds by an aerobic fungus: Scopulariopsis brevicaulis. Environ Sci Technol, 1998, 32: 882-885
    116.Kabata-Pendias A, Pendias H. Trace elements in soils and plants. 3nd edn. Boca Raton, FL, USA: CRC Press, 2001
    117.Kashem M D A, Kawai S. Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Sci Plant Nutr, 2007, 53: 246-251
    118.Kelepertsis A, Alexakis D, Skordas K. Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environ Geol, 2006, 50: 76-84
    119.Keltjens W G, Tan K. Interactions between aluminium, magnesium and calcium with different monocotyledonous and dicotyledonous plant species . Plant Soil. 1993,155-156:485-488
    120.Khattak R A, Page A L, Parker D R, Bakhtar D. Accumulation and Interactions of Arsenic, Selenium, Molybdenum and Phosphorus in Alfalfa. J Environ Qual, 1991, 20:165-168
    121 .Koricheva J, Roy S, vranjic J A, Haukioja E, Hughes P R, Hanninen O. Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ Pollut, 1997, 95: 249-258
    122.Kramer U, Pickering I J, Prince R C. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol, 2000, 122:1343-1353
    123.Kramer G F, Ames, B N. Mechanisms of mutagenicity and toxicity of sodium selenite (Na_2Se(IV)) in Salmonella typhimurium. Mutat Res, 1988, 201: 169-180
    124.Lagrimini L M. Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase. Plant Physiol, 1991, 96: 577-583
    125.Lakin H W. Selenium Accumulation in Soils and Its Absorption by Plants and Animals. GSA Bulletin, 1972, 83: 181-189
    126.Leigh R A, Wyn Jones R G. A Hypothesis Relating Critical Potassium Concentrations For Growth To The Distribution And Functions Of This Ion In The Plant Cell. New Phytol, 1984, 97:1-13
    127.Lemly A D. Aquatic selenium pollution is a global environmental safety issue. Ecotox Environ Safe, 2004, 59: 44-56
    128.Li W X, Chen T B, Huang Z C, Lei M, Liao X Y. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L.. Chemosphere, 2006, 62: 803-809
    129.Liu Q, Hu C, Tan Q, Sun X, Su J, Liang Y. Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L) under hydroponic conditions. J Environ Sci-china, 2008, 20: 326-331
    130.Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J, 1999, 13: 1169-1183
    131.Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R. Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil, 2005, 269: 369-380
    132.Ma L Q, Komar K M, Tu C, Zhang W, Cai Y, Kennelley E D. A fern that hyperaccumulates arsenic. Nature, 2001, 409: 579-579
    133.Mallick N. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol, 2004, 161:591-597
    134.Mandal B K, Suzuki K T. Arsenic round the world: a review. Talanta, 2002, 58: 201-235
    135.Mascher R, Lippmann B, Holzinger S, Bergmann H. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci, 2002, 163: 961-969
    136.Matschullat J. Arsenic in the geosphere-a review. Sci Total Environ, 2000, 249: 297-312
    137.Mazhoudi S, Chaoui A, Ghorbal M H, Ferjani E E l. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill). Plant Sci, 1997, 127: 129-137
    138.Meeta J, Gadre R P. Effect of As on chlorophyll and protein contents and enzymic activities in greening maize leaves. Water, Air and Soil Pollut, 1997, 93: 109-115
    139.Meharg A A, Jardine L. Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol, 2003, 157: 39-44
    140.Meharg A A, Macnair M R. An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L.. New Phytol, 1990,116: 29-35
    141 .Meharg A A, Macnair M R. The mechanisms of arsenate tolerance in Deschampsia cespitosa (L) Beauv and Agrostis capillaris L Adaptation of the arsenate uptake system. New Phytol, 1991,119: 291-297
    142.Meharg A A, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol, 2002, 154: 29-43
    143.Meng Y L, Liu Z J, Rosen B P. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem, 2004, 279: 18334-18341
    144.Milone M T, Sgherri C, Clysters H, Navari-Izzo F. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot, 2003, 50: 265-276
    145.Mora M, Pinilla L, Rosas A, Cartes P. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil, 2008, 303: 139-149
    146.Moran J F, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas R V, Aparicio-Tejo P. Drought induces oxidative stress in pea plants. Planta, 1994, 194: 346-352
    147.Mori C, Orsini A, Migon C. Impact of arsenic and antimony contamination on benthic invertebrates in a minor Corsican river. Hydrobiologia, 1999, 392: 73-80
    148.Mukhopadhyay R, Shi J, Rossen B P. Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem, 2000, 28: 21149-21157
    149.Murciego A M, Sanchez A G, Sanchez AG, Gonzalez M A R, Gil E P, Gordillo C T, Fernandez J C, Triguero T B. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ Pollut, 2007, 145: 15-21
    150.Murphy E A, Aucott M. An assessment of the amounts of arsenical pesticides used historically in a geographical area. Sci Total Environ, 1998, 218: 89-101
    151 .Ng B H, Anderson J W. Light dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochemistry, 1979, 18: 573-580
    152.Nissen P, Benson A A. Arsenic metabolism in freshwater and terrestrial plants. Physiol Plantarum, 1982, 54: 446-450
    153.Nowak J, Kaklewski K, Ligocki M. Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biol Biochem, 2004, 36: 1553-1558
    154.Odanaka Y, Tsuchiya N, Matano O, Goto S. Characterization of arsenic metabolites in rice plant treated with DSMA (disodium methanearsonate). J Agric Food Chem, 1985, 33: 757-763
    155.Paivoke A E, Simola L K. Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotox Environ Saf, 2001, 49: 111-121
    156.Pandey N, Pathak G C, Singh A K, Sharma C P. Enzymic changes in response to zinc nutrition. J Plant Physiol, 2002, 159:1151-1153
    157.Patel M J, Patel J N, Subramanian R B. Effect of cadmium on growth and the activity of H_2O_2 scavenging enzymes in Colocassia esculentum. Plant Soil, 2005, 273:183-188
    158.Pathore V S, Bajat Y P S, Wittwer S H. Subcellular localization of zinc and calcium in bean (Phaseolus vulgaris L) tissues. Plant Physiol, 1972, 49: 207-211
    159.Patsikka E, Kairavuo M, Sersen F, Aro E M, Tyystjarvi E. Excess copper predisposes photosystem ii to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol, 2002, 129: 1359-1367
    160.Paul B K. Arsenic contamination awareness among the rural residents in Bangladesh. SocSciMedicine, 2004, 59: 1741 -1755
    161.Pereira G J G, Molina S M G, Lea P J, Azevedo R A. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil, 2002, 239: 123-132
    162.Pickering I J, Prince R C, Salt D E, George G N. Quantitative, chemically specific imaging of selenium transformation in plants. Proc Nat Acad Sci USA, 2000, 97: 10717-10722
    163.Pickering I J, Wright C, Bubner B, Ellis D R, Persans M W, Yu E Y, George G N, Prince R C, Salt D E. Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol, 2003, 131: 1-8
    164.Raab A, Schat H, Meharg A A, Feldmann J . Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol, 2005, 168: 551 -558
    165.Rafel' IuB, Popov IuP, Zakusilova R M. Antimony accumulation in agricultural food crops. Voprosy pitaniia, 1985, Sep-Oct (5): 65-68
    166.Ragaini R C, Ralston H R, Roberts N. Environmental trace metal contamination in Kellogg, Idaho, near a lead smelting complex. Environ Sci Technol, 1977, 11: 773-781
    167.Rahman M M, Sengupta M K, Ahamed S, Chowdhury U K, Hossain M dA, Das B, Lodh D, Saha KC, Pati S, Kaies I, Barua A K, Chakraborti D. The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi-one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ, 2005, 338: 189-200
    168.Rajan S S S, Watkinson J H. Adsorption of Selenite and Phosphate on an Allophane Clay. Soil Sci Soc Am J, 1976 , 40: 51 -54
    169.Ramos I, Esteban E, Lucena J J, Garate A. Cadmium uptake and subcellular distribution in plants of Lactuca sp Cd-Mn interaction. Plant Sci, 2002, 162:761-767
    170.Reeves R D, Baker A J M. Metal-accumulating plants. In: Raskin I ed. , Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons, Inc, 2000. 193-229
    171.Romero-Puertas MC, Corpas F J, Sandalio L M, Leterrier M, Rodriguez-Serrano M, del Rio L A, Palma J M. Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol, 2006, 170:43-52
    172.Sanders O I, Rensing C, Kuroda M, Mitra B, Rosen B P. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol, 1997, 179:3365-3367
    173.Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker P M. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot, 2002, 53: 2381-2392
    174.SchmOger M E V, Oven M, Gill E. Detoxification of Arsenic by Phytochelatins in Plants. Plant Physiol, 2000, 122: 793-801
    175.Schwarz K, Foltz C M. selenium as a integral post of factor-3 against dietacy necrotic liver degeneration. In: J Am ed. , New York: plenum press, 1957
    176.Seppanen M, Turakainen M, Hartikainen H. Selenium effects on oxidative stress in potato. Plant Sci, 2003, 165: 311-319
    177.Shotyk W, Krachler M, Chen B. Antimony: global environmental contaminant. J Environl Monitor, 2005, 7: 1135-1136
    178.Shumilin E, Paez-osuna F, Green-ruiz C, Sapozhnikov D, Rodriguez-meza G D, Godinez-orta L. Arsenic, Antimony, Selenium and other Trace Elements in Sediments of the La Paz Lagoon, Peninsula of Baja California, Mexico. Mar Pollut Bull, 2001,42: 174-178
    179.Simola L K. The effect of lead, cadmium, arsenate, and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Can J Bot, 1977, 90: 375-405
    180.Singh N, Ma L Q, Srivastava M, Rathinasabapathi B. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci, 2006, 170: 274-282
    181.Smith I K, Vierheller T L, Thorne C A. Properties and functions of glutathione reductase in plants. Physiol Plantarum, 1989, 77: 449-456
    182.Smith K S, Huyck H L O. An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In: Plumlee G S, Logsdon MJ eds. , The environmental geochemistry of mineral deposits, Part A: Society of Economic Geologists. Rev Econ Geol 6A, 1999. 29-70
    183.Sors T G, Ellis D R, Salt D E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res, 2005, 86: 373-389
    184. Srivastava A, Jaiswal V. Biochemical changes in duck weed after cadmium treatment Enhancement in senescence. Water Air Soil Pollut, 1990, 50: 163-170
    185.Srivastava M, Ma L Q, Singh N, Singh S . Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot, 2005, 56: 1335-1342
    186. Srivastava M, Ma L Q, Santos J A G. Three new arsenic hyperaccumulating ferns. Sci Total Environ, 2006, 364: 24-31
    187.Srivastava M, Ma L Q, Cotruvo J A. Uptake and distribution of selenium in different fern species. Int J Phytoremediat, 2005, 7: 33-42
    188.Steinnes E, Allen R O, Petersen H M, Ramb(?)k J P, Varskog P. Evidence of large scale heavy-metal contamination of natural surface soils in Norway from long-range atmospheric transport. Sci Total Environ, 1997, 205: 255-26
    189.Stemmer K L . Pharmacology and toxicology of heavy metals: antimony Pharmacol. Ther A, 1976, 1: 157-160
    190.Stolz J F, Basu P, Santini J M, Oremland R S. Arsenic and Selenium in Microbial Metabolism. Annu Rev Microbiol, 2006, 60: 107-130
    191 .Su L, Wang M, Yin S T, Wang H L, Chen L, Sun L G, Ruan DY. The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotox Environ Safe, 2008, 70: 483-489
    192.Sun G F. Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol, 2004, 198: 268-271
    193.Sun H, Yan S C, Cheng W S. Interaction of antimony tartrate with the tripeptide glutathione Implication for its mode of action. Eur J Biochem, 2000, 267: 5450-5457
    194.Terry N, Zayed A M, de Souza M P, Tarun A S. Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 401-432
    195.Tewari R K, Kumar P, Neetu, Sharma P N. Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Sci, 2005, 169: 1037-1045
    196.Thompson J E, Legge R L, Barber R F. The Role of Free Radicals In Senescence And Wounding. New phytol, 1987, 105: 317-344
    197.Tirmenstein M A, Mathias P I, Snawder J E, Wey H E, Toraason M A. Antimony-induced alterations in thiol homeostasis and adenine nucleotide status in cultured cardiac myocytes. Toxicol, 1997, 119: 203-211
    198.Tirmenstein M A, Plews P I, Walker C V, Woolery M D, Wey H E, Toraason M A Antimony-Induced Oxidative Stress and Toxicity in Cultured Cardiac Myocytes. Toxicol Appl Pharmacol, 1995, 130: 41-47
    199.Tu C, Ma L Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.. Environ Pollut, 2005, 135:333-340
    200.Tu S, Ma L Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L under hydroponic conditions. Environ Exp Bot, 2003, 50: 243-251
    201.Tu S, Ma L Q, MacDonald G E, Bondada B. Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L.. Environ Exp Bot, 2004, 51:121-131
    202.Ulrich J M, Shrift A. Selenium Absorption by Excised Astragalus Roots. Plant Physiol, 1968,43: 14-20
    203 .USEPA. EP-440/4-79-029 A Water Related Fate of the 129 Priority Pollutants, vol 1 USEPA. Washington DC, USA: USEPA, 1979
    204.USEPA .Doc 810-F-94-001 National Primary Drinking Water Standards. Washington, DC, USA: USEPA Office of Water, 1999
    205.Wang H B, Wong M H, Lan C Y, Baker A J M, Qin Y R, Shu W S, Chen G Z, Ye Z H. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut, 2007, 145: 225-233
    206.Wang H O, Shan X Q, Wen B, Zhang S Z, Wang Z J. Responses of Antioxidative Enzymes to Accumulation of Copper in a Copper Hyperaccumulator of Commoelina communis. Arch Environ Contam Toxicol, 2004, 47: 185-192
    207.Wang J R, Zhao F J, Meharg AA, Raab A, Feldmann J, McGrath S P. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation. Plant Physiol, 2002, 130: 1552-1561
    208.Wei C Y, Chen T B. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere, 2006, 63: 1048-1053
    209.Wei C Y, Sun X, Wang C, Wang W Y. Factors influencing arsenic accumulation by Pteris vittata: A comparative field study at two sites. Environ Pollut, 2006, 141: 488-493
    210.Wei C Y, Zhang Z Y. Multivariate analysis of elements in Chinese brake fern as determined using neutron activation analysis. Biol Trace Elem Resl, 2007, 15: 277-290
    211.White P J, Bowen H C, Parmaguru P, Fritz M, Spracklen W P, Spiby R E, Meachan M C, Mead A, Harriman M, Trueman L J, Smith B M, Thomas B, Broadley M R. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot, 2004, 55: 1927-1937
    212.Wilkinson S R, Welch R M, Mayland H F, Grunes D L. Magnesium in plants: uptake, distribution, function, and utilization by man and animals. In: Siegel H, Siegel A eds. , Metal ions in biological systems, vol 26 Compendium on magnesium and its role in biology, nutrition, and physiology. New York: Marcel Dekker, 1990. 33-56
    213.Wilson N J, Craw D, Hunter K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ Pollut, 2004, 129: 257-266
    214.Wu L, Huang Z Z. Selenium Assimilation and Nutrient Element Uptake in White Clover and Tall Fescue under the Influence of Sulphate Concentration and Selenium Tolerance of the Plants. J Exp Bot, 1992, 43: 549-555
    215.Wyllie S, Fairlamb A H. Differential toxicity of antimonial compounds and their effects on glutathione homeostasis in a human leukaemia monocyte cell line. Biochem Pharmacol, 2006, 71: 257-267
    216.Wysocki R, Chery C C, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein J M, Tamas M J. The glycerol channel Fpslp mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol, 2001, 40:1391-1401
    217.Wysocki R, Clemens S, Augustyniak D, Golik P, Maciaszczyk E, Tamas M J, Dziadkowiec D. Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem Biophys Res Com, 2003, 304: 293-300
    218.Xue T, Hartikainen H, Piironen V. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil, 2001, 237: 55-61
    219.Yang L S, Wang W Y, Hou S F, Peterson P J, Williams W P. Effects of Selenium Supplementation on Arsenism: An Intervention Trial in Inner Mongolia. Environ Geochem Health, 2002, 24: 359-374
    220.Yathavakilla S, Caruso J. A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC-ICPMS. Anal Bioanal Chem, 2007,389:715-723
    221 .Zayed A, Lytle C M, Terry N. Accumulation and volatilization of different chemical species of selenium by plants. Planta, 1998, 206: 284-292
    222.Zeng H W, Uthus E O, Combs GF Jr. Mechanistic aspects of the interaction between selenium and arsenic. J Inorg Biochem, 2005, 99: 1269-1274
    223 .Zhang W, Cai Y, Downum K R, Ma L Q. Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern). J Chromatogr A, 2004a, 1043: 249-254
    224.Zhang W, Cai Y, Downum K R, Ma L Q. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut, 2004b, 131:337-345
    225.Zhao F J, Dunham S J, McGrath S P. Arsenic hyperaccumulation by different fern species.New Phytol,2002,156:27-31
    226.Zhao F J,Wang J R,Barker J H A,Schat H,Bleeker P M,McGrath S P.The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata.New Phytol,2003,159:403-410
    227.Zhu Y G,Huang Y,Hu Y,Liu Y,Christie P.Interactions between selenium and iodine uptake by spinach(Spinacia oleracea L) in solution culture.Plant Soil,2004,261:99-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700