耐砷真菌的分离鉴定及其砷累积与挥发机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用微生物对砷(As)的累积与挥发来降低土壤中砷的环境风险已被认为是一种经济、有效且无二次污染的修复措施。近年来许多研究者在相关方面做了有益的探索,但从总体看,具有高累积与挥发砷能力真菌的报道还较少,真菌累积与挥发砷机理的研究还处于理论阶段。因此本研究首先采集了砷污染土壤,从中分离、筛选出耐砷真菌,经鉴定后研究了真菌对砷的累积与挥发能力,最后探讨了其可能机理。取得如下主要结果:
     1.稀释涂布法对耐砷真菌进行了分离。结果表明,6个土壤样品中共分离得到13株耐砷真菌,其中,菌株SM-12F1、SM-12F4和CZ-8F1分别在20000、30000、30000 mg·L-1砷胁迫下表现出更好的菌落生长状况;液态培养2d后,当As (V)浓度分别为50、80、50 mg·L-1时,SM-12F1、SM-12F4、CZ-8F1的生物量显著高于不加砷的对照。此外,As (V)并没有影响该三株真菌的产孢能力;扫描电镜(SEM)分析表明,As (V)并没有影响菌株SM-12F1、SM-12F4、CZ-8F1的菌丝生长,该三株真菌具有较高的耐砷能力。
     2.形态学与基于18S rRNA的分子生物学方法进行了菌株的鉴定。结果表明,真菌SM-12F1、SM-12F4和CZ-8F1的菌落形态、产孢结构等均分别与棘孢木霉(Trichoderma asperellum)、微紫青霉(Penicillin janthinellum)和尖孢镰刀菌(Fusarium oxysporum)的特征形态相同;系统发育树分析表明,SM-12F1、SM-12F4和CZ-8F1分别与T. asperellum、P. janthinellum和F. oxysporum在同一发育枝上,相似度分别为99%、96%和99%;序列递交GenBank后,该三株真菌获得登陆号分别为GU212867、GU212865、GU212866。
     3.室内条件下研究了真菌对砷的累积与挥发能力。结果表明,T. asperellum SM-12F1、P. janthinellum SM-12F4和F. oxysporum CZ-8F1均具有一定的累积与挥发砷能力,当培养液中As (V)含量为2500μg,浓度为50 mg·L-1时,SM-12F4在培养10d时表现出最高的砷累积能力,砷累积量为39.54μg,而CZ-8F1在培养时间为15d时表现出最高的砷挥发能力,砷挥发量为304.06μg;菌株SM-12F1和CZ-8F1细胞壁外吸附砷和胞内累积砷的含量分别占其总累积砷量的82.2%和63.4%,而SM-12F4在细胞内与细胞壁外累积的砷含量比例大约相同;浸有AgNO3的滤纸吸附砷实验表明,砷在处理(滤纸+砷+菌)中的含量均显著高于对照(滤纸+砷、滤纸+菌、滤纸),该结果进一步证实了三株真菌对砷的挥发能力。
     4.高效液相-氢化物发生-原子荧光(HPLC-HG-AFS)分析了真菌培养液及细胞内砷形态的变化。结果表明,培养2-3d后,T. asperellum SM-12F1、P. janthinellum SM-12F4和F. oxysporum CZ-8F1培养液中的As (V)全部转化为As (III);各培养时间下,三株真菌细胞内砷形态均以As (V)为主,当培养时间为15d时,SM-12F1细胞内可检测到少量的As (III)、MMA(一甲基砷)、DMA(二甲基砷),真菌细胞内存在着无机砷向甲基态砷的转化;培养液中pH、Eh随着培养时间的变化表明,As (V)向As (III)的转化主要发生于真菌细胞内,培养环境中Eh的变化并不是As (V)向As (III)转化的原因。培养7d后,SM-12F1和CZ-8F1培养液中pH分别为6.69和8.38,而SM-12F4培养液中pH为3.78,酸性的培养环境可能促进了无机砷在真菌细胞壁上的吸附。
Arsenic (As) accumulation and volatilization by microorganism decreasing environmental risk of As in soil has been recognized as an economically efficient remediation method without secondary pollution. However, few fungi highly capable of As accumulation and volatilization have been identified, and the mechanisms of As accumulation and volatilization in fungi are unclear. In this study, three As resistant fungal strains were isolated and identificated from As contaminated soil samples, the abilities of As accumulation and volatilization of fungi were evaluated, and the possible mechanisms were investigated. The major findings were obtained as follows:
     1. Thirteen As resistant fungal strains were isolated from six soil samples. Among them, SM-12F1, SM-12F4, and CZ-8F1 performed better at As concentration of 20000, 30000, and 30000 mg·L-1 respectively. When incubated in liquid medium containing the As (V) concentration of 50, 80, 50 mg·L-1 for 2 days, the biomass for SM-12F1, SM-12F4, CZ-8F1 were significantly increased compared to CK, and the sporalation of SM-12F1, SM-12F4, CZ-8F1 was not affected by addition of As (V). Scanning Electron Microscope (SEM) analysis suggested that little impact on mycelium growth of the three fungal strains was found, the fungi SM-12F1, SM-12F4, CZ-8F1 showed higher ability of As resistance.
     2. The colony morphology, spore structure of SM-12F1, SM-12F4, and CZ-8F1 were respectively similar to those of Trichoderma asperellum, Penicillium janthinellum, and Fusarium oxysporum. Phylogenetic tree based on comparative analysis of 18S rRNA sequence data from the three isolates and their relatives indicated that SM-12F1, SM-12F4, and CZ-8F1 were homology with T. asperellum, P. janthinellum, and F. oxysporum, respectively, with 99%, 96%, and 99% of the similarity. Online sequences comparison to GenBank obtained accession number as follow: GU212867, GU212865, and GU212866.
     3. T. asperellum SM-12F1, P. janthinellum SM-12F4, and F. oxysporum CZ-8F1 were all capable of As accumulation and volatilization, the highest level of As was accumulated by P. janthinellum SM-12F4, with 39.54μg after 10 days in the culture system amended with 50 mg·L-1 As (V). F. oxysporum CZ-8F1 showed the highest amount of volatilized As, with 304.06μg after 15 days. T. asperellum SM-12F1 and F. oxysporum CZ-8F1 showed greater abilities for the absorption of extracellular As and the accumulation of intracellular As, which accounted for 82.2% and 63.4% of the total accumulated As, respectively. However, P. janthinellum SM-12F4 presented an approximately equipotent distribution of intracellular and extracellular As. The As content in the treated system (filter paper + arsenic + fungi) was significantly higher than that in the control (filter paper + arsenic; filter paper + fungi; filter paper), the abilities of As volatilization by three fungal strains were further certified.
     4. After cultivated for 2-3 days, As (V) was totally transferred into As (III) in medium of T. asperellum SM-12F1, P. janthinellum SM-12F4, and F. oxysporum CZ-8F1. During the whole cultivation period, As (V) was predominant in cells of three fungal strains, and after cultivated for 15 days, As (III), MMA (Monomethylarsonite), and DMA (Dimethylarsinite) were found in cells of T. asperellum SM-12F1. The change in pH and Eh in medium of three fungal strains showed that the transformation of As (V) into As (III) was conducted in fungal cells. After cultivated for 7 days, the pH in cultural medium of T. asperellum SM-12F1, F. oxysporum CZ-8F1, and P. janthinellum SM-12F1 was 6.69, 8.38, and 3.78 respectively. The adsorption of inorganic As on the cellular wall might be improved in the acidic culture environment.
引文
1.蔡保松,陈同斌,廖晓勇,谢华,肖细元,雷梅,等.土壤砷污染对蔬菜砷含量及食用安全性的影响.生态学报, 2007, 24(4): 711~717.
    2.陈怀满,陈能场,陈英旭,韩凤祥,李勋光,林玉锁,等. (主编).土壤-植物系统中的重金属污染.北京:科学出版社. 1996, 22~35.
    3.陈荣山,郭徐魁,刘长辉,王海斌,陆锦池,刘琳,等.无机砷对稻田土微生物活性的影响.环境科学与管理, 2009, 34(9): 136~138.
    4.陈同斌,范稚莲,雷梅,黄泽春,韦朝阳.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报, 2002, 47(15): 1156~1159.
    5.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报, 2002, 47(3): 207~210.
    6.陈同斌.土壤溶液中的砷及其与水稻生长效应的关系.生态学报, 1996, 16(20): 147~153.
    7.陈同斌.土壤中砷的吸附和砷对水稻的毒害效应与的关系.中国农业科学, 1993, 26(1): 63~68.
    8.范秀山,彭国胜.分子、离子对及离子状态在固液吸附中的作用浅析.土壤, 2002, 34(1): 36~41.
    9.高丽霞,刘水,陈阳春,莫爱琼,李秀娃.印度木豆及丛枝菌根真菌在镉污染土壤中的抗性研究.广东农业科学, 2009, 12: 180~182.
    10.格鲁德夫, S. N.重金属和砷污染土壤的微生物净化.国外金属矿选矿, 1999, 40~42.
    11.蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤, 2004, 36(3): 264~270.
    12.蒋友芬,甘子明,许晏,郑树涛,刘涛,余亮.新疆奎屯地区高砷环境中抗砷菌的初步筛选.中国现代医药杂志, 2009, 11(6): 21~23.
    13.李道林,何方,马成泽,田超.砷对土壤生物学活性及蔬菜毒性的影响.农业环境保护, 2000, 19(3): 148~151.
    14.李银生,曾振灵,陈杖榴,邱江平.洛克沙砷对养猪场周围环境的污染.中国兽医学报, 2006, 26(6): 665~667.
    15.廖晓勇,陈同斌.磷肥对砷污染土壤的植物修复效率的影响-田间实例研究.环境科学学报, 2004, 24(3): 456~460.
    16.廖自基. (主编).微量元素的环境化学及生物效应.北京:中国环境科学出版社. 1992, 124-162.
    17.刘更另,陈福兴.土壤中砷对植物生长的影响-南方"砷毒田”的研究.中国农业科学, 1985, 4: 9~16.
    18.刘玲,刘毅,于萍萍,尹翠,张玲,陶阳春.白腐真菌降解硝基苯化合物的研究.安徽农业科学, 2009, 37(27): 13214~13215.
    19.刘演兵,韩恒斌.砷形态分析方法研究进展.环境科学进展, 1994, 2(4), 1~12
    20.卢新卫,王五一,解庆林,马东升.湘西地层中的砷锑汞及其赋存特征.广东微量元素科学, 2000, 7(10): 16~20.
    21.尚琪,任修勤,李晋蓉.环境砷污染区人群健康危害经济损失分析.环境与健康杂志, 2003, 20(2): 72~74.
    22.宋红波,范辉琼,杨柳燕,吴剑,陶仙聪.砷污染土壤生物挥发的研究.环境科学研究, 2005, 18(1): 61~63.
    23.韦朝阳,陈同斌.高砷区植物的生态与化学特征.植物生态学报, 2002, 26(6): 695~700.
    24.魏景超. (主编).真菌鉴定手册.上海:上海科学技术出版社. 1979, 405~645.
    25.翁焕新,张宵宇,邹乐君,张兴茂,刘广深.中国土壤中砷的自然存在状况及其成因分析.浙江大学学报(工学版), 2000, 34(1): 88~92.
    26.吴剑,杨柳燕,肖琳,宋红波,蒋丽娟,陈鹏,等.砷污染土壤生物挥发研究进展.土壤, 2007, 39(4): 522~527.
    27.武斌,廖晓勇,陈同斌,阎秀兰.石灰性土壤中砷形态分级方法的比较及其最佳方案.环境科学学报, 2006, 26(9): 1467~1473.
    28.小山雄生.土壤和作物中砷的农业化学.土壤农化, 1976, 6: 41~45.
    29.谢华,廖晓勇,陈同斌,林鉴钊.污染农田中植物的砷含量及其健康风险评估-以郴州邓家塘为例.地理研究, 2005, 24, 151~159.
    30.谢正苗.铅锌砷复合污染对水稻生长的影响.生态学报, 1994, 14(2): 215~217.
    31.许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其影响因素.土壤, 1993, 26(6): 50~58.
    32.杨柳燕,肖琳. (主编).环境微生物技术.北京:科学出版社, 2003, 207~209.
    33.喻龙,龙江平,李建军,冯慕华,郝玉.生物修复技术研究进展及在滨海湿地中的应用.海洋科学进展, 2002, 20(4): 99~108.
    34.曾斌,宁大亮,王慧.白腐真菌降解五氯酚的初步研究.环境化学, 2008, 27(2): 181~185.
    35.曾希柏,李莲芳,白玲玉,梅旭荣,杨佳波,胡留杰.山东寿光农业利用试对土壤砷累积的影响.应用生态学报, 2007, 18(2): 310~316.
    36.张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响.土壤学报, 2002, 39(1): 24~28.
    37.张玲. (主编).微生物学实验指导.北京:清华大学出版社. 1999.
    38.赵其国.发展与创新现代土壤科学.土壤学报, 2003, 40(3): 321~327.
    39.周爱民,王东升,汤鸿霄.磷(P)在天然铁氧化物的吸附.环境科学学报, 2005, 25(1): 64~69.
    40.àlvarez-Benedí, J., Bolado, S., Cancillo, I., Calvo, C., & García-Sinovas, D. Adsorption-desorption of arsenic in three Spanish soil. Vadose Zone Journal, 2005, 4: 282~290.
    41. Anderson, C. R., & Cook, G. M. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Current Microbiology, 2004, 48: 341~347.
    42. Asensio, L., Lopez-Llorca, L. V., & López-Jiménez, J. A. Use of light, scanning electron microscopy and bioassays to evaluate parasitism by entomopathogenic fungi of the red scale insect of palms (Phoenicococcus marlatti Ckll., 1899). Micron, 2005, 36: 169~175.
    43. Barrett, D. K. An improved selective medium for isolation of Phaeolus schweinitzii. Transactions of the British Mycological Society, 1978, 71: 507~508.
    44. Bentley, R., & Chasteen, T.G. Microbial methylation of metalloids: arsenic, antimony and bismuth.Microbiology and Molecular Biology Reviews, 2002, 66(2): 250~271.
    45. Beretka, J., & Nelson, P. The current state of utilisation of fly ash in Australia. In“Ash A Valuable Resource”. South African Coal Ash Association, 1994, 1: 51~63.
    46. Bird, M. L., Challenger, F., Charlton, P. T., & Smith, J. O. Studies on biological methylation. 11. The action of moulds on inorganic and organic compounds of arsenic. Biochemistry Journal, 1948, 43: 73~83.
    47. Bizily, S. P., Rugh, C. L., & Meagher, R. B. Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnology, 2000, 18: 213~217.
    48. Bowen, H. J. M. Elemental.Chemistry of the Elements. London and New York: Academic Press, 1979, pp: 60.
    49. British Geologic Survey/Department of Public Health and Engineering. Groundwater studies for arsenic contamination in Bangladesh, final report, summary. Dhaka: Department of Public Health and Engineering, Government of Bangladesh, DFID, British Geologic Survey, 2000.
    50. Calzada, A. T., Villa-Lojo, M. C., Beceiro-González, E., Alonso-Rodríguez, E., & Prada-Rodríguez, D. Accumulation of arsenic (III) by Chlorella vulgaris. Applied Organometallic Chemistry, 1999, 13(3): 159~162.
    51. Cánovas, D., Vooijs, R., Schat, H., & de Lorenzo, V. The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. The Journal of Biological Chemistry, 2004, 279(49): 51234~51240.
    52. Carrasco, J. A., Armario, P., Pajuelo, E., Burgos, A., Cavledes, M. A., Lopez, R., et al. Isolation and Characterization of Symbiotically Effective Rhizobium Resistant to Arsenic and Heavy Metals after the Toxic Spill at the Aznalcóllar Pyrite Mine, Soil Biology and Biochemistry. 2005, 37(6), 1131~1140.
    53. ?erňansky, S., Kolen?ík, M., ?evc, J., Urík, M., & Hiller, E. Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresource Technology, 2009, 100: 1037~1040.
    54. ?erňansky, S., Urík, M., ?evc, J., & Khun, M. Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environmental Science Pollution and Research, 2007, 14: 31~35.
    55. Challenger, F. Biological Methylation. Chemical Reviews, 1945, 36: 315~361.
    56. Challenger, F., & Higginbottom, C. The production of trimethyl-arsine by Penicillium Brevicaule (Scopulariopsis Brevicaulis). Biochemical Journal, 1953, 29: 1758~1778.
    57. Chrenekva, E. Power station fly ash applied to the soil and its effect on plants. Soils & Fertilizers, 1977, 40(4): 3220.
    58. Cox, D. P., & Alexander, M. Production of trimethylarsine gas from various arsenic compounds by three sewage fungi. Bulletin of Environmental Contamination Toxicology, 1973, 9: 84~88.
    59. Cox, D., & Alexander, M. Effect of phosphate and other anions on trimethylarsine formation by Candida humicola. Applied Environmental Microbiolgy, 1973, 25(3): 408~413.
    60. Crecelius, E. A. Contamination of soils near a copper smelter by arsenic, antimony and lead. Water Air and Soil Pollution, 1974, 3(3): 337~342.
    61. Cullen, W. R., & Reimer, K. J. Arsenic speciation in the environment. Chemical Review, 1989, 89, 713~764.
    62. Cullen, W. R., Harrison, L. G., & Li, H. Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus. Applied Organometallic Chemistry, 1994, 8: 313~324.
    63. Cullen, W. R., McBride, B. C., & Reglinski, J. The reduction of trimethylarsine oxide to trimethylarsine by thiols: a mechanistic model for the biological reduction of arsenicals. Journal of Inorganic Biochemistry, 1984, 21: 45~60.
    64. Dahal, B. M., Fuerhacker, M., Mentler, A., Karkl, K. B., Shrestha, R. R., & Blum, W. E. H. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environmental Pollution, 2008, 155: 157~163.
    65. Datta, R., & Sarkar, D. Arsenic geochemistry in three soils contaminated with sodium arsenite pesticide: An incubation study. Environmental Geosciences, 2004, 11(2): 87~97.
    66. Datta, R., Makeris, K. C., & Sarkar, D. Arsenic Fractionation and Bioaccessibility in Two Alkaline Texas Soils Incubated with Sodium Arsenate. Archives of Environmental Contamination and Toxicology. 2007, 52: 475~482.
    67. Dhankher, O. P., Li, Y., Rosen, B. P., Shi, J., Salt, D., Senecoff, J. F., et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase andγ-glutamylcysteine synthetase expression. Nature Biotechnology, 2002, 20: 1140~1145.
    68. Dib, J., Motok, J., Zenoff, V. F., Ordoňez, O., & Farías, M. E. Occurrence of resistance to antibioticvs, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Aadean wetlands. Current Microbiology, 2008, 56: 510~517.
    69. Dixit, T., & Hering, J. G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxid minerals: implications for arsenic mobility. Environmental Science and Technology, 2003, 37: 4182~4189.
    70. Dombrowski, P. M., Long, W., Farley, K. J., Mahony, J. D., Capitani, J. F., & Di-Toro, D. M. Thermodynamic analysis of arsenic methylation. Environmental Science and Technology, 2005, 39: 2169~2176.
    71. Dong, D. X., Liu, H. M., Peng, H. S., Huang, X. Q., Zhang, X. H., & Xu, Y. Q. Rapid differentiation of Fusarium oxysporum isolates using PCR-SSCP with the combination of pH-variable electrophoretic medium and low temperature. Electrophoresis, 2005, 26: 4287~4295.
    72. Donnelly, P. K., & Fletcher, J. S. PCF metabolism by ectom ycorrhizal fungi. Bull of Environmental Contamination and Toxicology, 1995, 54: 507~513.
    73. Edvantoro, B. B., Naidu, R., Megharaj, M., Merrington, G., & Singleton, I. Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Applied Soil Ecology, 2004, 25: 207~217.
    74. Fernández, P., Sommer, I., Cram, S., Rosas, I., & Gutiérrez, M. The influence of water-soluble As (III) and As (V) on dehydrogenase activity in soils affected by mine tailings. Science of the TotalEnvironment, 2005, 348: 231~243.
    75. Frankenberger, W., & Arshad, M. Volatilization of Arsenic. In Frankenberger, W. (Eds), Environmental chemistry of arsenic. Marcel Dekker. 2002, 363~380.
    76. Franklin, N. M., Stauber, J. L., & Apte, S. C. Effect of initial cell density on the bioavailability and toxicity of copper in micro-algal bioassays. Environmental Toxicology and Chemistry, 2002, 21: 742~751.
    77. Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., & Ikeda, H. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 2003, 18: 1267~1278.
    78. Gadd, G. M. Interactions of fungi with toxic metals. New Phytologist, 1993, 124: 25~60.
    79. Gao, S., & Burau, R. G. Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil. Journal of Environmental Quality, 1997, 26: 753~763.
    80. Goldberg, S., & Johnston, C. T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface comp lexation modeling. Journal of Colloid and Interface Science, 2001, 234: 204~216.
    81. Gosio, B. Action of microphytes on solid compounds of arsenic: a recapitulation. Science, 1892, 19: 104~106.
    82. Granchinho, S. C. R., Franz, C. M., Polishchuk, E., Cullen, W. R., & Reimer, K. J. Transformation of arsenic (V) by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri. Applied Organometallic Chemistry, 2002, 16: 721~726.
    83. Halttunen, T., Finell, M., & Salminen, S. Arsenic removel by native and chemically modified lactic acid bacteria. International Journal of Food Microbiology, 2007, 120: 173~178.
    84. Haque, M. N., Morrison, G, M., Perrusquia, G., Gutierrez, M., Aguilera, A. F., Cano-Aguilera, I., et al. Characteristics of arsenic adsorption to sorghum biomass. Journal of Hazardous Materials, 2007, 145: 30~35.
    85. Huysmans, D., & Frankenberger, W. Evolution of trimethylarsine by a Penicillium sp. Isolated from agricultural evaporation pond water. The Science of the Total Environment, 1990, 105: 13~28.
    86. Kallio, M. P., & Korpela, A. Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry. Analytica Chimica Acta, 2000, 410: 65~70.
    87. Karadjova, I. B., Slaveykova, V. I., & Tsalev, D. L. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquatic Toxicity, 2008, 87: 264~271.
    88. Karna, R. R., Sajani, L. S., & Mohan, P. M. Bioaccumulation and biosorption of Co2+ by Neurospora crassa. Biotechnology letters, 1996, 18: 1205~1208.
    89. Katsoyiannis, I. A., Hug, S. J., Amman, A., Zikoudi, A., & Hatziliontos, C. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 2007, 383: 128~140.
    90. Komar, K. M., Rockwood, L. Q., & Syed, D. Identification of arsenic tolerant and hyperaccumulating plants from arsenic contaminated soils in Florida. Agronomy Abstract, 1998, 343.
    91. Kostal, J., Yang, R., Wu, C. H., Mulchandani, A., & Chen, W. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Applied and Environmental Microbiology, 2004, 70: 4582~4587.
    92. Kumaresan, M., & Riyazuddin, P. Overview of speciation chemistry of arsenic. Current Science, 2001, 80(7): 837~846.
    93. Ladeira, A. C. Q., Ciminelliv, S. T., Duarte, H. A., Alves, M. C. M., & Ramos, A. Y. Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (V) adsorbed on gibbsite. Geochimica et Cosmochimica Acta, 2001, 65(8): 1211~1217.
    94. Leblanc, M., Achard, B., Othman, D. B., Luck, J. M., Bertrand-Sarfati, J., & Personne, J. C. Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Applied Geochemistry, 1996, 11: 541~554.
    95. Levy, J. L., Stauber, J. L., Adams, M. S., & Maher, W. A. Toxicity biotransformation and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environmental Toxicology and Chemistry, 2005, 24: 2630~2639.
    96. Li, Q., Wu, S., Liu, G., Liao, X., Deng, X., Sun, D., et al. Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 2004, 34: 135~142.
    97. Loukidou, M. X., Matisa, K. A., Zouboulisa, A. I., & Liakopoulou-Kyriakidou, M. Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Research, 2003, 37: 4544~4552.
    98. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., & Kennelley, E. D. A fern that hyperaccumulates arsenic. Nature, 2001, 409: 579.
    99. Mackonzic, F. T., Lantzy, R. J., & Paterson, V. Global trace metals and predictions. Journal of International Association for Mathematical Geology, 1979, 11: 99~142.
    100. Macur, R. E., Wheeler, J. T., McDermott, T. R., & Inskeep, W. P. Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environmental Science Technology, 2001, 35: 3676~3682.
    101. Macy, J. M., Santini, J. M., Pauling, B. V., Neill, A. H. O., & Sly, L. I. Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Archives of Microbiology, 2000, 173: 49~57.
    102. Mass, M. J., Tennant, A., Roop, B. C., Cullen, W. R., Styblo, M., Thomas, D. J., et al. Methylated trivalent arsenic species are genotoxic. Chemical Research Toxicology, 2000, 14: 355~361.
    103. Masscheleyn, P. H., DeLaune, R. D., & Patrick, W. H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 1991, 25: 1414~1419.
    104. Meharg, A. A., & Hartley-Whitaker, J. Arsenic uptake and metabolism in arsenic-resistant and nonresistant plant species. Newphytol, 2002, 154: 29~43.
    105. Meharg, A. A., & Rahman, M. M. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science & Technology, 2003, 37: 229~234.
    106. Meharg, A. A., & Rahman, M. M. Suppression of the high-affinity phosphate-uptake system: A mechanism of arsenate tolerance in Holcus lanatus L. Journal of Experimental Botany, 1992, 43: 519~524.
    107. Meharg, A. A., Caimey, J. W. G., & Maguire, N. Mineralization of 2, 4-dihloro-phenol by cetanycorihizal fungi in axenic culture and in symbiosis with pine. Chemosphere, 1997, 34(12): 2495~2504.
    108. Mello, J. W. V., Talbott, J. L., Scott, J., Roy, W. R., & Stucki, J. W. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation. Environmental Science and Pollution Research. 2007, 14(6): 388~396.
    109. Merian, E. (Eds). Metals and their compounds in the environment: occurrence, analysis and biological Relevance. Weinheim, VCH, 1991, 751~773.
    110. Merrill, W., & French, D. W. The production of arsenous gases by wood-rotting fungi. Proceedings of Minnesota Academy of Sciences, 1964, 31: 105~106.
    111. Merwin, I., Pruyne, P. T., Ebel, J. E., Manzell, K. L., & Lisk, D. J. Persistence, phytotoxicity and management of arsenic, lead and mercury residues in old orchard soils of New York Sate. Chemosphere. 1994, 29: 1288~1290.
    112. Mohan, D., & Pittman, J. C. U. Arsenic removal from water/wastewater using adsorbents-A critical review. Journal of Hazardous Materials, 2007, 142: 1~53.
    113. Moore, A. J., & Kukuk, P. F. Quantitative genetic analysis of natural populations. Nature Reviews Genetics, 2002, 3: 971~978.
    114. Muhammad, S. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water, Air, and Soil Pollution, 2007, 93: 117~136.
    115. Murugesan, G. S., Sathishkumar, M., & Swaminathan, K. Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technology, 2006, 97: 483~487.
    116. Naidu, R., Smith, E., Owens, G., Bhattacharya, P., & Nadebaum, P. (Eds). Managing Arsenic in the Environment-from Soil to Human Health. Australia: Commonwealth Scientific and Industrial Research Organisation Press, 2006, 417~432.
    117. Nelson, P. E., Toussoun, T. A., & Marasas, W. (Eds). Fusarium species–An illustrated manual for identification. London: The Pennsylvania State University Press, 1983, 193.
    118. Newman, D. K., Kennedy, E. K., Coates, J. D., Ahmann, D., Ellis, D. J., Lovley, D. R., et al. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Archives of Microbiology, 1997, 168: 380~388.
    119. Nicholas, D. R., Ramamoorthy, S., Palace, V., Spring, S., Moore, J. N., & Roxenzweig, R. F.Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation, 2003, 14: 123~137.
    120. Nriagu, J. O. (Ed). Arsenic in the Environment: Part I. Cycling and characterization. Wiley & Sons, New York, 1994, 3~15.
    121. Oremland, R. S., & Stolz, J. F. The ecology of arsenic. Science, 2003, 300: 939~944.
    122. Páez-Espino, D., Tamames, J., de Lorenzo, V., & Cánovas, D. Microbial responses to environmental arsenic. Biometals, 2009, 22: 117~130.
    123. Paikaray, S., Banerjee, S., & Mukherji, S. Sorption of arsenic onto vindhyan shales: role of pyrite and organic carbon. Current Science, 2005, 88(10): 1580~1585.
    124. Patel, P. C., Goulhen, F., Boothman, C., Gault, A. G., Charnock, J, M., Kalia, K., et al. Arsenic detoxification in a Pseudomonad hypertolerant to arsenic. Archives of Microbiology, 2007, 187(3): 171~183.
    125. Pearce, R. B., Callow, M. E., & Macaskie, L. E. Fungal volatilization of arsenic and antimony and the sudden infant death syndrome. FEMS Microbiology Letter, 1998, 158: 261~265.
    126. Pitt, J. I. (Ed). The Genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London: Academic Press. 1979, 634.
    127. Pokhrel, D., & Viraraghavan, T. Arsenate removal from an aqueous solution by a modified fungal biomass. Water Research, 2006, 40: 549~552.
    128. Pokhrel, D., & Viraraghavan, T. Organic arsenic removal from an aqueous solution by iron oxide-coated fungal biomass: an analysis of factors influencing adsorption. Chemical Engineering Journal, 2008, 140: 165~172.
    129. Pongratz, R. Arsenic speciation in environmental samples of contaminated soil. The Science of the Total Enviroment, 1998, 224: 133~141.
    130. Prasad, B. B., Banerjee, S., & Lakshami, D. An AlgaSORB column for the quantitative sorption of arsenic (III) from water samples. Water Quality Research Journal of Canada, 2006, 41: 190~197.
    131. Pümpel, T., & Schinner, F. Native fungal pellets as biosorbent for heavy metals. FEMS Microbiology Reviews, 1993, 11: 159~164.
    132. Qin, J., Rosen, B. P., Zhang, Y., Wang, G. J., Franke, S., & Rensing, C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences, 2006, 103: 2075~2080.
    133. Quaghebeur, M., Rate, A., Rengal, Z., & Hinz, C. Desorption kinetics of arsenate from kaolinite as influenced by pH. Journal of Environmental Quality, 2005, 34: 479~486.
    134. Raja, C. E., Anbazhagan, K., & Selvam, G. S. Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World Journal of Microbiology and Biotechnology, 2006, 22: 577~585.
    135. Ric-De-Vos, C. H., Vonk, M. J., Vooijs, R., & Schat, H. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiology, 1992, 198: 853~858.
    136. Robert, M., & Southworth, R. M. (Eds). The part 503 Land application pollutant limit for arsenic. U. S. Environmental Protection Agency. Washington, D. C. 1995.
    137. Romero, F. M., Armienta, M. A., & Carrillo-Chavez, A. Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México. Archives of Environmental Contamination and Toxicology, 2004, 47: 1~13.
    138. Rosen, B. P. Biochemistry of arsenic detoxification. FEBS Letters, 2002, 529: 86~92.
    139. Rosen, B. P. Families of arsenic transporters. Trends in Microbiology, 1999, 7: 207~212.
    140. Rosen, B. P., & Liu, Z. Transport pathways for arsenic and selenium: a minireview. Environment International, 2009, 35(3): 512~515.
    141. Roy, W. R. Competitive coefficients for the adsorption of arsenate molybdate and phosphate mixture by soils. Soil Science Society of America Journal, 1986, 50: 1176~1182.
    142. Roychowdhury, T., Tokunaga, H., & Ando, M. Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Science of the Total Environment, 2003, 308: 15~35.
    143. Sadiq, M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water, Air and Soil Pollution, 1997, 93: 117~136.
    144. Sarkar, D., & Datta, R. Arsenic fate and bioavailability in two soils contaminated with sodium arsenic pesticide: an incubation study. Bulletin of Environmental Contamination and Toxicology. 2004, 72: 240~247.
    145. Sauge-Merle, S., Cuine, S., Carrier, P., Lecomte-Pradines, C., Luu, D. T., & Peltier, G. Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin systhase. Applied and Environmental Microbiology, 2003, 69: 490~494.
    146. Say, R., Yilmaz, N., & Denizli, A. Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus penicillium purpurogenum. Separation Science Technology, 2004, 38: 2039~2053.
    147. Semple, T. K., Doick, J. K., & Jones, C. K. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology, 2004, 38: 228~231.
    148. Serafimovski, I., Karadjova, I. B., Stafilov, T., & Tsalev, D. L. Determination of total arsenic and toxicologically relevant arsenic species in fish by using electrothermal and hydride generation atomic absorption spectrometry. Microchemical Journal, 2006, 83: 55~60.
    149. Silver, S., & Phung, T. L. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 2005, 71: 599~608.
    150. Smith, E., & Naidu, R. Chemistry of inorganic arsenic in soils: kinetics of arsenic adsorption-desorption. Environmental Geochemistry and Health, 2009, 1: 49~59.
    151. Solozhenkin, P. M., Nebera, V. P., & Medvedeva-Lyalikova, N. N. Transformation of arsenic and tellurium in solution by fungi. Process Metallurgy, 1999, 9: 779~787.
    152. Su, S. M., Zeng, X. B., Bai, L. Y., Jiang, X. L., & Li, L. F. Bioaccumulation and Biovolatilization of Pentavalent Arsenic by Penicillin janthinellum, Fusarium oxysporum, and Trichodermaasperellum under Laboratory Conditions. Current Microbiology, 2010. (In press).
    153. Tabak, H. H., Lens, P., van Hullebusch, E. D., & Dejonghe, W. Developments in bioremediation of soils and sediments polluted with metals and radionuclides-1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Reviews in Environmental Science and Biotechnology, 2005, 4: 115~156.
    154. Takai, K., Hirayama, H., Sakihama, Y., Inagaki, F., Yamato, Y., & Horikoshi, K. Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Applied Environmental Microbiology, 2002, 68: 3046~3054.
    155. Tamaki, S., & Frankenberger, W. T. Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology, 1992, 124: 79~110.
    156. Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., et al. Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, Strain KR21-2. Environmental Science and Technology, 2004, 38: 6618~6624.
    157. Thompson-Eagle, E. T, Frankenberger, W. T., & Karslon, U. Volatilization of selenium by Alternaria alternate. Applied Environmental Microbiology, 1989, 55: 1406~1413.
    158. Thompson-Eagle, E. T., & Frankenberger, W. T. Bioremediation of soils contaminated with selenium. In: Lal & B. A. Stewart, (Eds). Advances in soil science. New York: Springer, 1992, 261~309.
    159. Thoresby, P., & Thornton, I. Heavy metals and arsenic in soil, pasture herbage and barley in some ineralised areas in Britain: significance to animal and human health. In D. D. Hemphill, (Ed), Trace Substances in Environmental Health XIII, Columbia: University of Missouri, 1979, 93~103.
    160. Tu, C., & Ma, L. Q. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Journal of Environmental Quality, 2002, 31: 641~647.
    161. Turpeinen, R., Kallio, M. P., & Kairesalo, T. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. The Science of the Total Environment, 2002, 285: 133~145.
    162. Visoottiviseth, P., & Panviroj, N. Selection of fungi capable of removing toxic arsenic compounds from liquid medium. Science Asia, 2001, 27: 83~92.
    163. Volesky, B. Advances in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews, 1994, 14: 291~302.
    164. Walker, D., Clemente, R., & Bernal, M. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemsphere, 2004, 57(3): 215~224.
    165. Wallace, A. Excess trace metal effects on calcium distribution in plants. Communications in Soil Science and Plant Analysis, 1979, 10(1-2): 473~479.
    166. Wang, S. L., & Zhao, X. Y. On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management, 2009, 90: 2367~2376.
    167. Wang, S., & Mulligan, C. N. Occurrence of arsenic contamination in Canada: sources, behaviorand distribution. Science of the Total Environment, 2006, 366: 701~721.
    168. Warwick, P., Inam, E., & Evans, N. Arsenics interaction with humic acid. Environment & Chemistry, 2005, 2: 119~124.
    169. White, T. J., Bruns, T., Lee, S., & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, et al., (Eds), PCR protocols: A Guide to Methods and Applications. New York: Academic Press, 1990, 315-322.
    170. WHO. Environmental health criteria 224: Arsenic and arsenic compounds. Geneva: World Health Organization, 2001.
    171. WHO. Guidelines for Drinking-Water Quality, Geneva: World Health Organization, 1998.
    172. Yamanaka, K., Hayashi, H., Tachikawa, M., Kato, K., Hasegawa, A., Oku, N., et al. Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics. Mutation Research 1997, 394: 95~101.
    173. Yamanaka, K., Ohba, H., Hasegawa, A., Sawamura, R., & Okada, S., Mutagenicity of dimethylated metabolites of inorganic arsenics. Chemical and Pharmaceutical Bulletin, 1989, 37: 2753~2756.
    174. Yamauchi, H., Kaise, T., Takahashi, K., & Yamamura, Y., Toxicity and metabolism of trimethylarsine in mice and hamsters. Fundamental Applied Toxicology, 1990, 14: 399~407.
    175. Zeng, X. B., Su, S. M., Jiang, X. L., Li, L. F., Bai, L. Y., & Zhang, Y. R. Capability of pentavalent arsenic bioaccumulation and biovolatilization of three fungal strains under laboratory conditions. CLEAN-Soil Air Water, 2010, 38(3): 238~241.
    176. Zhang, W. H., Cai, Y., Tu, C., & Ma, L. Q. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. The Science of the Total Environment, 2002, 300: 167~177.
    177. Zussman, R. A., Vicher, E. E., & Lyon, I. Arsenic production by Trichophyton rubrum. The Journal of Bacteriology, 1961, 81: 157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700