崇明岛冲积土重金属污染毒理效应及生物修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展崇明岛生态环境修复和整治对上海市未来发展具有重要的战略意义,围垦土地的环境修复可以有效地缓解农业中耕地使用的压力,又可以保证农产品免受污染,不仅体现以人为本的科学发展观,而且研究成果可为环境资源的可持续发展提供有力的技术保证。
     本研究以崇明岛冲积土壤为研究对象,分析不同土地利用方式下土壤重金属污染及相关酶活性与微生物群落结构特征,并通过室内模拟实验研究重金属复合污染下土壤生态毒理效应以及如何减轻重金属危害,最后利用从重金属污染地筛选出的两株耐重金属Pb和Cd的真菌并联合螯合剂添加到土壤中以提高植物累积土壤重金属效率。
     研究主要结论如下:
     1.崇明岛冲积土壤高重金属含量的区域主要集中在中部,土壤Ni和Cr的含量在西部长江下游冲积沙区较高;工业用地对土壤重金属含量影响显著,而商业用地则不然,东部农田和湿地区域土壤中的重金属含量较低;Pb、Zn、Cu、Cd这4种重金属应作为重点防治对象,着重控制Pb和Cd污染,崇明岛西部应重点监测Ni和Cr污染。
     2.利用随机扩增多态性DNA(RAPD)的分子检测方法发现:不同土地利用方式下崇明岛土壤的总DNA多态性条带呈显著差异,其多态性条带数量大小顺序为:农业用地>商业用地>工业用地>湿地;农业土壤的总DNA相似性系数显著高于其他土地利用类型,湿地与工业土壤DNA基因相似性要低于其他土地利用类型;不同土地利用方式下崇明岛土壤酶的活性主要由中部的镇中心以及居民和工业区向东部的东滩湿地和西部以及北沿农场逐渐降低,并且随土层深度增加,土壤酶高活性的区域逐渐减小。
     3.通过模拟实验发现:单一Pb污染对土壤呼吸强度和酶活性的影响要小于单一Cd污染及Cd、Pb复合污染,种植龙葵及玉米等作物有助于提高土壤微生物活性和土壤酶活性;单一Pb和Cd、Pb复合污染下土壤DNA的多态性条带要多于单一Cd污染;种植龙葵及玉米等作物在不同程度上提高了土壤DNA的多态性以及基因丰富度;不同栽培方式对脲酶、磷酸酶等土壤酶活性释放作用的大小顺序为:混合栽培>单一栽培>未栽培植物。
     4.通过不同植物对比研究发现:重金属超富集植物龙葵的超氧化物歧化酶(SOD)、丙二醛(MDA)、酸溶性硫醇化合物(TAST)、总谷胱甘肽(GSH)和植物鳌合肽(PC)随土壤重金属毒性系数增加呈逐渐增加或减小的趋势;SOD、MDA、TAST、GSH和PC与土壤中的重金属毒性系数呈多元回归关系(R2> 0.95);SOD、TAST和PC的相关酶基因在超富集植物抗氧化防御系统中显著表达,TAST和PC在不同超积累与非超积累植物体内对重金属胁迫的响应机制不同。
     5.利用生物联合技术修复Cd、Pb复合污染的研究中发现:添加柠檬酸或具有耐铅功能的绿色木霉菌(Hypocrea virens)及耐镉功能的淡紫拟青霉菌(Paecilomyces lilacinus)能显著能提高30-45%龙葵生物量;不同重金属浓度处理下龙葵生物量的大小顺序:柠檬酸与微生物联合添加>添加柠檬酸>添加微生物>空白>未添加酸或微生物菌处理;柠檬酸和微生物两者联合添加将提高30%Cd的累积量,不同处理下龙葵对Cd的累积大小顺序为:柠檬酸与微生物联合添加>添加微生物>添加柠檬酸>未添加酸或微生物菌处理;龙葵对Pb无显著的超积累特征,Pb主要集中在根部累积,茎和叶累积率较低,而添加筛选的具有耐铅功能的绿色木霉菌及耐镉功能的淡紫拟青霉菌有助于显著提高龙葵对Pb的积累,但添加柠檬酸反而降低龙葵对Pb的积累。
Development of ecological environmental remediation and repair on reclaimed land has strategical meaning, which can effectively allivieate useness pressure of agricultural land and avoid pollution on agricultural product, and from which it embody scientific development view based on human and provide maintance logistics for environmental resource’s sustainable development. This study take reclaimed land in Chongming Island as subject investigated, and research on heavy metal pollution and microbe community characteristic under different land use, and then through pot-culture simulated experiment, study on soil ecological molecule toxicological effect and improve soil health under heavy metal combined pollution. At last, two strain fungi which can tolerate Cd and Pb isolated from heavy metal polluted soil combined with chelate are applied to heavy metal polluted soil in order to improve phytoextraction efficiency. The main conclusion as follow:
     1. The highest heavy metal polluted areas of the Chongming Island are centralized in middle part of Chongming Island, and high Ni and Cr pollution in the western Chongming Island is the alluvial area of Yangtse River; the effect of industrial land use on heavy metal content in soil is significant, whereas the effect of commercial land on heavy metal pollution isn’t observed, and eastern farmland and wetland are at low heavy metal index; Pb, Zn, Cu and Cd must be considered as key controlled object, in which must emphasize on controlling Pb and Cd pollution and Ni and Cr pollution in western Chongming Island.
     2. The soil DNA polymorphism bands under different land use is different, and the order of which is: agricultural land > commercial land > industrial land > wetland; the gene similarity of agricultural soil is significantly higher than that of other land use, and the gene similarity of wetland and industrial land are lower; the spatial evolving characteristic of soil enzyme and organic matter under different land use in Chongming Island follow gradually decreasing order : industrial and commercial land→agricultural land→wetland, and wetland reversely disclose soil health evolving process.
     3. Soil respiration and enzyme activity is higher under single Pb treatment than under single Cd and combined pollution, and plant is helpful to improve soil microbe and enzyme activity; soil gene polymorphism bands are higher under single Pb and combined pollution than under single Cd pollution; plant will improve soil gene polymorphism bands and richness and the order of improving soil enzyme activity under different culture manners is: mixed planting> monoculture> unplanted treatment.
     4. superoxide dismutase (SOD), malondialdehyde (MDA), total acid soluable thiol (TAST), total glutathione (GSH) and phytochelatins (PC) of hyperaccumulator change with heavy metal toxicity coefficient and significantly relate with heavy metal toxicity coefficient (y= a+bx+cx2, R2>0.95); SOD, TAST and PC of hyperaccumulator significantly express under heavy metal stress, and the detoxification function of TAST and PC in different plant is different.
     5. Addition of critic acid or microbe can enhance 30-45% Solanum nigrum. L biomass under Cd and Pb combined pollution, and the order of biomass under different treatment is: combined application> addition of critic acid > addition of microbe > control > no addition of critic acid or microbe; combined addition of critic acid and microbe can enhance 30% Cd accumulation in plant, and the order of transfer coefficient for Cd is: combined application> addition of microbe > addition of critic acid > control > no addition of critic acid or microbe; Solanum nigrum. L don’t show significantly hyperaccumulating characteristic on Pb, and Pb accumulation is centralized on root and the item and leaf in Solanum nigrum. L is at low extraction coefficient; additions of microbe significantly enhance Pb accumulation on plant and addition of critic acid decreases Pb accumulation reversely.
引文
[1] John, W. D. Soil health and global sustainability: translating science into practice. Agriculture Ecosystems & Environment, 2001, 18(26): 1-9.
    [2] Pankhurst, C.E., Hawke, B.G., McDonald, H.J. et al. Evaluation of soil biological properties as potential bioindicatiors of soil health. Austrian Journal of Experimental Agriculture, 1995, 35: 1015-1028.
    [3]周启星.健康土壤学-土壤健康质量与农产品安全.北京:科学出版社, 2005.
    [4]周启星.复合污染生态学,北京,中国环境科学出版社, 1995.
    [5]何勇田,熊先哲.复合污染研究进展.环境科学, 1994, 15 (6): 79-83.
    [6]沈国清,陆贻通,周培.重金属-多环芳烃复合研究进展,上海交通大学学报(农业科学版), 2005, 23(1): 102-106.
    [7] Bliss, C.I. The toxicity of poisons applied jointly. Ann. Appl. Biol., 1939, 26: 585-615.
    [8] Shehata, S.A., Lasheen, M.R., Kobbia, I.A. Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water Air Soil Pollut., 1999, 110, 119-135.
    [9] Forget, J., Pavillon, J.F., Beleaeff, B. Joint Action of Pollutant combinations (Pestivcides and Metals) on Survial (LC50Values) and Acetylcholinesterase Activity of Tigriapus Brevicomis (Copeapoda, Harpacticoida). Environ. Toxicol. Chem., 1999, 18 (5): 912-918.
    [10] Ribryre, F., Amiard-Triquet, C., Boudou, A. et al. Experimental study of interactions between five trace elements-Cu, Ag, Se, and Hg---toward their bioaccumulation by fish (Brachydanio rerio) from the direct route. Ecotoxicol. Environ. Saf., 1995, 32: 1-11.
    [11] Hamilton, S.J., Buhl, K.J. Hazard evaluation of inorganics singly and in mixtures to Flannelmouth sucker Catostormus Latipinnis in the San Juan River, New Mexico. Ecotoxicol. Environ. Saf., 1997, 38: 296-308.
    [12] Kumar, V., Singh, M. Inhibitiong of soil urease activity and nitrification with some metallic cations. Australian Journal of Soil Research, 1986, 24(4): 527-532.
    [13]尹军,高如泰,刘文菊,等.土壤酶活性与土壤Cd污染评价指标.农业环境保护, 1999, 18 (3): 130-132.
    [14]周名江,李正炎,颜天,等.海洋环境中的有机锡及其对海洋生物的影响.环境科学进展, 1994, 2(4): 67-71.
    [15] Sylvia, D.M. Principles and applications of soil microbiology, Prentice Hall, New Jersey, 1998, 550.
    [16]陈杰,骆国保.基础土壤科学研究的契机,北京:中国农业科技出版社, 1995, 55-56.
    [17]吴金水,肖和艾.土壤微生物对硫素转化及有效性的控制作用,农业现代化研究, 1999, 20 (6): 350-354.
    [18] Singh, J.S., Gupta, S.R. Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev., 1977, 43: 449-528.
    [19]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环,地学前缘, 2002, 9 (2): 351-357.
    [20] B??th E. Effects of heavy metals in soils on microbial processes and population (a review). Water Air Soil Pollut, 1989, 47: 335-379.
    [21]张清敏,李得翔,熊瑛,等.涕灭威复合污染体系对土壤微生物的生态毒理效应.农业环境保护, 2001, 20(5): 302-304.
    [22]张惠文,张倩如,周启星,等.乙草胺及铜离子复合施用对黑土农田生态系统土著微生物的急性毒性效应.农业环境科学学报, 2003, 22 (2): 129-133.
    [23]杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报, 2002, 8(5): 564-570.
    [24]周礼恺,张志明,曹承锦,等.土壤的重金属污染与土壤酶活性.环境科学学报, 1985, 5(2): 176-183.
    [25] Kitagish. Heavy metal pollution in Soil of Japan, Jokyo: Japan Scientific Societies Press, 1981, 81-91.
    [26]杨志新,刘树庆.重金属Cd, Zn, Pb复合污染对土壤酶活性的影响.环境科学学报, 2001, 21(1): 60-63.
    [27] Brookes, P.C., McGrath, S.P. Effects of metal toxicity on the size of the soil microbial biomass, J. Soil Sci., 1984, 35: 341-346.
    [28]龚平,李培军,孙铁珩. Cd、Zn、菲和多效唑复合污染土壤的微生物生态毒理效应.中国环境科学, 1997, 17(1): 58-62.
    [29] Atlas, R .M. Diversity of microbial community, Ad. Microb. Ecol., 1993, 7: 1-47.
    [30] Zak, J.C., Willing, M.R., Moorehead, D.L., et al. Functional diversity of microbialcommunities: a quantitative approach, Soil Biochem., 1994, 26: 1101-1108.
    [31]吴春华.植物多样性对铅污染土壤的响应及其生态效应.杭州:浙江大学, 2004.
    [32]龚平,孙铁珩.重金属土壤微生物的生态效应,应用生态学报, 1997, 8(2): 218-224.
    [33] Babich, E., Stotzky, G. Developing standard for environmental toxicants: The need to consider abiotic environmental factors and microbe mediated eco logical processes. Environ Health Perspect, 1983, 49: 345-353.
    [34]周启星,宋玉芳.植物修复的技术内涵及展望.安全与环境学报, 2001, 1: 48-53.
    [35] Wenzel, W.W., Jockwer, F. Accumulation of heavy metals in plants grown on mineralised soils ofthe Austrian Alps. Environmental Pollution, 1999, 104: 145–155.
    [36] Salt, D.E., Smith, R.D., Raskin, I. Phytoremediation. Annual Review of Plant Physiology & Plant Molecular Biology, 1998, 49: 643–668.
    [37] Lombi, E., Zhao, F.J., Dunham, S.J., et al. Phytoremediation of heavy metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 2001, 30: 1919–1926.
    [38] Blaylock, M., Salt, D., Dushenkov, S., et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 1997, 31: 860–865.
    [39] Turgut, C., Pepe, K.M., Cutright, T.J. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 2004, 131: 147–154.
    [40] Huang, J.W., Blaylock, M.J., Kapulnik, Y., et al. Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science & Technology, 1998, 32: 2004–2008.
    [41] Lombi, E., Zhao, F., McGrath, S., et al. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescenseco type. New Phytologist, 2001, 149: 53–60.
    [42] Schnoor, J. Phytoremediation: ground water remediation technologies analysis center evaluation report TE-98-01, 1997.
    [43] Salt, D.E., Smith, R.D., Raskin, I. Phytoremediation. Annual Review of Plant Physiology & Plant Molecular Biology, 1998, 49: 643–668.
    [44] Suresh, B., Ravishankar, G. Phytoremediation–A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 2004, 24: 97–124.
    [45] Newman, L., Strand, S., Choe, N., et al. Uptake and biotransformation of trichloroethylene by hybrid poplars. Environmental Science & Technology, 1997, 31: 1062–1067.
    [46] Thompson, P., Ramer, L., Guffey, A.P., et al. Decreased transpiration in poplar trees exposed to 2, 4, 6-trinitrotoluene. Environmental Toxicology and Chemistry, 1998, 17: 902–906.
    [47] Yoon, J.M., Oh B-T, Just, C.L., et al. Uptake and leaching of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7- tetrazocine by hybrid poplar trees. Environmental Science & Technology, 2002, 36: 4649–4655.
    [48] Schnoor, J., Licht L., Mccutcheon, S., et al. Phytoremediation of organic and nutrient contaminants. Environmental Science & Technology, 1995, 29: 318–323.
    [49] Jones, R., Sun, W., Tang, C.S., et al. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Environmental Science and Pollution Research, 2004, 11: 340–346.
    [50] Kirk, J., Klironomos, J., Lee H., et al. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, 2005, 133: 455–465.
    [51] Anderson, T.A., Guthrie, E.A., Walton, B.T. Bioremediation. Environmental Science and Technology, 1993, 27: 2630–2636.
    [52] Narayanan, M.T., Tracy, J.C., Davis, L.C., et al. Modeling the fate of toluene in a chamber with alfalfa plants 2. Numerical results and comparison study. Journal of Hazardous Substance Research, 1998, 1: http:/ /www.enpg.ksu.edu/HSRC.
    [53] Pieper, D.H., Martins dos-Santos V.A.P., Golyshin, P.N. Genomic and mechanistic insights into the biodegredation of organic pollutants. Current Opinions in Biotechnology, 2004, 15: 215–224.
    [54] Maier, R. Phytostabilization of mine tailings in the southwestern United States: plant-soil-microbe interactions and metal speciation dynamics, superfund project. Superfund Basic Research Program, University of Arizona, 2004.
    [55] Suresh, B., Ravishankar, G. Phytoremediation–A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 2004, 24: 97–124.
    [56] Berti, W. R., Cunningham, S. D. Phytostabilization of metals. In: Raskin, I., Ensley, B. (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, New York: 2000.
    [57] Tollsten, L., Muller, P. Volatile organic compounds emitted from beech leaves. Phytochemistry, 1996, 43: 759–762.
    [58] Davis, L.C., Vanderhoof, S., Dana, J., et al. Movement of chlorinated solvents and other volatile organics through plants monitored by Fourier transform infrared (FT-IR) spectrometry. Journal of Hazardous Substances Research, 1998, 1: 4-1, 4-26.
    [59] Rugh, C. L., Wilde, H. D., Stack, N. M., et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing, 1996.
    [60] Rugh, C. L., Senecoff, J. F., Meagher, R. B., et al. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology, 1998, 16: 925–928.
    [61] Neumann, P. M., De-Souza, M. P., Pickering, I. J., et al. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell and Environment, 2003, 26: 897–905.
    [62] Rubin, E., Ramaswami, A. The potential for phytoremediation of MTBE. Water Research, 2001, 35: 1348–1353.
    [63] Negri, C., Hinchman, R. Plants that remove contaminants from the environment. Laboratory Medicine, 1996, 27: 36–40.
    [64] Hansen, D., Duda, P. J., Zayed, A., et al. Selenium removal by constructed wetlands: role of biological volatilization. Environmental Science & Technology, 1998, 32: 591–597.
    [65] USEPA Cleaning up the nation’s waste sites: Markets and Technology Trends. Washington, DC: Office of Solid Waste and Emergency Response. 1997.
    [66] Baker, A. J. M., Reeves, R. D., Hajas, A. S. M. Heavy metal accumulation and tolerance in britishpopulation of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae). New Phytologist, 1994, 127: 61-68
    [67] Baker, A. J. M., Brooks, R. R. Terrestrial higher plants which hyperaccumulate metallic elements- a review of their distribution, ecology and phytochemistry. Biorecovery, 1989, 1: 81-126.
    [68]陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报, 2002, 47 (3): 207-210.
    [69] Delhaize, E., Ryan, P. R. Aluminum toxicity and resistance in plants. Plant Physiol., 1995, 107: 315-321.
    [70] Romheld, V., Awad, F. Significance of root exudates in acquisition of heavy metal from a contaminated calcareous soil by graminaceous species. J. Plant Nutr., 2000, 23: 1857-1866.
    [71] Yang, H., Wong, J.W.C., Yang, Z.M., et al. Ability of Agrogyron elongatum to accumulate the single metal cadmium, copper, nickel and lead and root exudation of organic acids. J. Environ. Sci., 2001, 13 (3): 368-375.
    [72] Meagher, R.B. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol., 2000, 3: 153-162.
    [73] Romkens, P., Bouwman, L., Japenga, J., Draaisma, C. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ. Pollut., 2002, 116: 109-121.
    [74] Palmgren, M.G. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52: 817-845. [75 ]Raskin, L., Smith, R.D., Salt, D.E. Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 1997, 8: 221-226.
    [76] Brooks, R. R., Shaw, S., Marfil, A. A. The chemical form and physiological function of nickel insome Iberian Alyssum species. Plant Physiol., 1981, 51: 167-170.
    [77]Dushenkov, S., Mikheev, A., et al. Phytoremediation of radiocesium contaminated soil in thevicinity of Chernobyl, Ukraine. Environ. Sci. Technol., 1999, 33 (3): 469-475.
    [78]Tsao, D.T. Overview of Phytotechnologies. Advances in Biochemical Engineering. Biotechnology, 2003, 78: 4-46.
    [79]Ouyang, Y. Phytoremediation: modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. Journal of Hydrology, 2002, 266: 66-82.
    [80]Terry, N., Carlson, C., Raab, T. K., et al. Rates of selenium volatilization among crop species. J. Environ Qual., 1992, 211: 341-344.
    [81] Rugh, C. L., Wilde, H. D., Stack, N. M. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. USA.1996, 93: 3182-3187.
    [82] Heaton, A. C. P., Rugh, C. L., et al. Phytoremediation of mercury and methylmercury polluted soils using genetically engineered plants. J. Soil Contam., 1998, 7(4): 497-509.
    [83] Blinda, A., Abou-Mandour, A., Azarkovich, M., et al. Heavy metal-induced changes in peroxidase activity in leaves, roots and cell suspension cultures of Hordeumvulgare L, In: Obinger, C., Burner, U., Ebermann, R., Penel, C., Greppin, H. (Eds.). Plant Peroxidases: Biochemistry and Physiology, University of Geneva, 1996, pp. 374-379
    [84] Pilon-Smits, E.A.H., Huang, S. Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol., 1999, 119: 123-132.
    [85] Neuhierl, B., B?ck, A. On the mechanism of selenium tolerance in selenium-accumulating plants: purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur. J. Biochem., 1996, 239: 235-238.
    [86]沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境, 2000, 16(2): 39-44.
    [87] Cotter-Howells, J. D., Caporn, S. Remediation of contaminated land by formation of heavy metals phosphates. Appl. Geochem., 1996, 11: 335-342.
    [88] James, B. R. Remediation by reduction strategies for chromate-contaminated soils. Environ. Geochem. Health, 2001, 23: 175-179.
    [89] Wong, M. H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 2003, 50: 775-780.
    [90] Smith, R. A. H., Bradshaw, A. D. The use of metal tolerant plant population for the reclamation of metalliferous wasters. J. Appl. Ecol., 1979, 16: 595-612.
    [91]周启星,孙铁珩.土壤-植物系统污染生态学研究与展望.应用生态学报. 2004, 15 (10): 1698-1702.
    [92]张义贤.重金属对大麦毒性的研究.环境科学学报, 1997, 17 (2): 129-134.
    [93]李元,王焕校,吴玉树等. Cd、Fe及其复合污染对草草叶片几项生理指标的影响.生态学报, 1992, 12 (2): 147-153.
    [94]孔祥生,张妙霞,郭秀璞. Cd毒害对玉米幼苗细胞膜透性及保护酶活性的影响.农业环境保护, 1999, 18(3): 133-134.
    [95]储玲,刘登义,王友保等.铜污染对三野草幼苗生长及活性氧化代谢影响的研究.应用生态学报, 2004, 15 (1): 119-122.
    [96] P?tsikk?, E., Kairavuom, M. Excess copper predisposes photosystemПto photoinhibition in vivo by out competing iron and causing decrease in leaf chlorophyll. Plant Physiol., 2002, 129: 1359-1367.
    [97]王焕校.污染生态学基础.昆明:云南大学出版社, 1990, 91-108.
    [98]刘厚田.土壤镉污染对水稻叶片光谱反射特性的影响.生态学报, 1986, 6 (2): 89-99.
    [99]陈国祥,施国新. Hg、Cd对蔬菜越冬芽光合膜光合膜光合作用活性及多肽组分的影响.环境科学学报, 1999, 19 (5): 521-525.
    [100] Branquinho, C., Brown, D.H., Catarino, F. The cellular location of Cu in lichens and its effectson membrane integrity and chlorophyll fluorescene. Environ. Experim. Bot., 1997, 38: 165-179.
    [101]马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探.植物生态学报, 1998, 22 (4): 373-378.
    [102]杨树华,曲仲湘,王焕校.铅在水稻中的迁移积累及其对水稻生长发育的影响.生态学报, 1986, 6 (4): 312-328.
    [103]李坤,李琳,侯和胜等. Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用.应用与环境生物学, 2002, 8(4): 395-398.
    [104]彭鸣,王焕校,吴玉树.镉铅诱导的玉米幼苗细胞超微结构的变化.中国环境科学, 1991, l1(6): 426-431.
    [105]张义贤.三价铬和六价铬对大麦毒性效应的比较.中国环境科学, 1997, 17 (6): 565-567.
    [106]段吕群,王焕校,曲仲湘.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究.环境科学, 1992, 13 (5): 31-35.
    [107]常学秀,王焕校. Cd2+、Al3+对蚕豆(Vicia faba)DNA合成和修复的影响.生态学报, 1999,19 (6): 855-859.
    [108]葛才林,阳小勇,刘向农等.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与分子生物学学报, 2002, 28 (5): 363-368.
    [109]张玉秀,柴团耀, Gerard Burkard.植物耐重金属机理研究进展.植物学报, 1999, 41(5): 451-457.
    [110] Poschenrieder, C., Bech, J., Llugany, M., et al. Copper in plant species in a copper gradient in Catalonia(North East Spain) and their potential for phytoremediation. Plant and Soil. 2001; 230: 247-256.
    [111] Brewin, L.E., Mehra, A., Lynch, P.T., et al. Mechanisms of copper tolerance by Armeria maritima in Dolfrwynog Bog, North wales-initial studies. Environmental Geochemistry and Healty. 2003, 25: 147-156.
    [112] Seregin, I.V., Kozhevnikova, A.D., Kazyumina, E.M., et al. Nickel toxicity and distribution in Maize roots. Russian Journal of Plant Physiology. 2003, 50 (5): 711-716.
    [113] Ortiz, D.F., Ruscitti, T., McCue, K.F., et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 1995, 270: 4721-4728.
    [114] Kramer, U., Cotter-Howells, J.D., Charnock, J.M., et al. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996, 379: 635-638.
    [115]江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报. 2001, 7 (1): 92-99.
    [116]孔令韶.植物对重金属元素的吸收积累及忍耐、变异.环境科学.1982, 1: 65-69.
    [117]陶守林,黄贤文,秦光才,等.论农作物种子包衣技术的推广与应用子. 2002, 4: 61-62.
    [118]张红辉,石传勇.种衣刘研究的新进展.种子.2002, 4:39-40.
    [119]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社, 1998.
    [120]周启星,黄国宏.环境生物地球化学及全球环境变化.北京:科学出版社, 2001.
    [121]骆永明.强化植物修复的螯合诱导技术及其环境风险.土壤, 2000, 4: 57-61.
    [122]孟飞,刘敏,史同广.上海农田土壤重金属的环境质量评价.环境科学, 2008, 29 (2): 428-433.
    [123]王开运,邹春静,孔正红,等.生态承载力与崇明岛生态建设.应用生态学报, 2005, 16 (12): 2447-2453.
    [124] GB15618-1995.中华人民共和国土壤环境质量标准.
    [125]王初,陈振楼,王京,等.上海崇明岛交通干线两侧农田土壤和蔬菜Pb、Cd污染研究.农业环境科学学报, 2007, 26 (2): 634-638.
    [126]王初,陈振楼,王京,等.上海市崇明岛公路两侧土壤重金属污染研究.长江流域资源与环境, 2008, 17(1): 105-108.
    [127]王军,陈振楼,王初.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估.环境科学, 2007, 28(3): 647-653.
    [128]孟飞,刘敏,崔健.上海农田土壤重金属含量的空间分析.土壤学报, 2008, 45 (4): 725-728.
    [129]吴国清.崇明岛土壤资源评价初探.水土保持研究, 1995, 2 (1): 9-14.
    [130]郑国璋.农业土壤重金属污染研究的理论与实践.中国环境科学出版社, 2007.
    [131]王云.上海市土壤环境背景值.环境科学出版社, 1992.
    [132] Williams, C.H., David, D.J. The effect of superphosphate on the cadmium content of soils and palants. Aust. J. Soil Res., 1973, 11: 43-56.
    [133] Alloway, B. J. 1995. The origins of heavy metals in soils. Blackie Academic and Professional, London,1995, pp.38-57.
    [134] Hakanson L. An ecological risk index for quality pollution control: a sediment ecological approach. Water Res., 1980, 14: 975-1001.
    [135]唐银健. Hankanson指数法评价水体沉积物重金属生态风险的应用进展.环境科学导刊,2008, 27(3): 66-68.
    [136]刘庆,王静,汪庆华,等.基于GIS的县域土壤重金属生态风险评价.测绘科学, 2008, 33 (3): 90-93.
    [137]李星,刘鹏,徐根娣,等.人工湿地植物对电镀废水的净化和修复效果研究.浙江林业科技, 2008, 28(4): 16-21.
    [138]李勤奋,李志安,任海,等.湿地系统中植物和土壤在治理重金属污染中的作用.热带亚热带植物学报, 2004,12 (3): 273-279.
    [139]朱颖,李俊祥,孟陈,等.上海崇明岛东部近20年土地利用变化.应用生态学报, 2007, 18 (9): 2040-2044.
    [140] Dragovic, S., Mihailovic, N., Gajic, B. Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 2008, 72: 491-495.
    [141]王铁宇,罗维,吕永龙,等.官厅水库周边土壤重金属空间变异特征及风险分析.环境科学, 2007, 28(2): 225-231.
    [142] Mitsch, W.J., Cronk, J. K., Wu, X., et a1. Phosphorus retention in constructed freshwater riparian marshes. Ecol. Appl., 1995, 5: 830-845.
    [143] Acosta-Mart?′nez, V., Acosta-Mercado, D., Sotomayor-Ram?′rez, D. L., et al. Microbial communities and enzymatic activities under different management in semiarid soils. Applied Soil Ecology, 2008, 38: 249-260.
    [144] Sudipta, T., Ashis, C., Kalyan, C., et al. Enzyme activities and microbial biomass in coastal soils of India. Soil Biology and Biochemistry, 2007, 39: 2840–2848.
    [145]万忠梅,宋长春.三江平原不同类型湿地土壤酶活性及其与营养环境的关系.水土保持学报, 2008,22 (5): 158-161.
    [146]余彬彬,金则新,李钧敏.常绿阔叶林次生演替系列群落土壤微生物生物量及酶活性.西北林学院学报, 2008, 23 (5): 30-33.
    [147]张锋,郑粉莉,安韶山.近100年植被破坏加速侵蚀下土壤养分和酶活性动态变化研究.植物营养与肥料学报, 2008, 14(4): 666-672.
    [148]蒲小鹏,李春荣,白小明,等.不同生长年限的草坪土壤酶活性研究.甘肃农业大学学报, 2008, 4: 121-123.
    [149] Haraguchi, A., Hisaya, K. Decomposition of organic matter in peat soil in a minerotrophic. European Journal of Soil Biology, 2002, 38: 89-95.
    [150] Petr, B., Josef, T., Jan, F., et al. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry, 2008,1-9.
    [151] Gao, Y., Zhou, P., Miao, C. Y., et al. Assessment of Heavy Metal Pollution of Industrial Soils in Shanghai by Multivariate Analysis, China. Risk and Reliability Management, 2008, 486-492.
    [152]许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社, 1986, 227.
    [153]关松荫.土壤酶及其研究法.北京:农业出版社, 1986.
    [154]甘肃农业大学.草原生态化学.北京:农业出版社, 1985, 30-75.
    [155] Isaaks, E.H., Srivastava, R.M. An introduction to applied geostatistics. NewYork: Oxford University Press, 1989.
    [156]侯景儒,黄竞先.地质统计学的理论与方法.北京:地质出版社,1990.
    [157] Gao, Y., Zhou, P., Mao, L., et al. Assessment of Effects of Heavy Metals Combined Pollution on Soil Enzyme Activities and Microbial Community Structure: modified ecological dose-response model and PCR-RAPD [J]. Envri. Ear. Sci. DIO: 10.1007/s 12665-009-0200-8.
    [158]高扬,朱波,王玉宽,等.自然降雨和人工降雨条件下紫色土坡地磷素迁移比较.水土保持学报, 2006,20 (5): 34-37.
    [159]刘久俊,方升佐,谢宝东,等.郝娟娟生物覆盖对杨树人工林根际土壤微生物、酶活性及林木生长的影响.应用生态学报, 2008, 19 (6) : 1204-1210.
    [160] Insam, H. Developments in soil microbiology since the mid 1960’s. Geoderma, 2001,100: 389–402.
    [161] Kandeler, E., Kampichler, C., Horak, O. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils, 1996, 23: 299–306.
    [162] Chander, K., Dyckmans, J., Joergensen, R.G.J., et al. Different sources of heavy metals and their long-term effects on soil microbial properties. Biol. Fertil. Soils, 2001, 34: 241-247.
    [163] Belyaeva, O.N., Haynes, R.J., Birukova, O.A. Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol. Fertil. Soils, 2005, 41: 85-94.
    [164] Moreno, J.L., García, C., Hernández, T. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge, Eur. J. Soil Sci., 2003, 54: 377-386.
    [165]段学军,闵航. Cd胁迫下稻田土壤生物活性与酶活性综合研究.农业环境科学学报, 2004, 23(3): 422-427.
    [166]黄峥,闵航,吕镇梅,等.铜离子与铜镉离子复合污染对稻田土壤酶活性的影响研究.浙江大学学报(农业与生命科学版), 2006, 32(5): 557-562.
    [167] Viketoft, M., Palmborg, C., Sohlenius, B., et al. Plant species effects on soil nematode communities in experimental grasslands. Appl. Soil Ecol., 2005, 30: 91-103.
    [168] Chen, X., Tang, J.J., Fang, Z.G., et al. Effects of weed communities with various species numbers on soil features in a subtropical orchard ecosystem. Agric. Ecosyst. Environ., 2004, 102: 377-388.
    [169] Nguyen, C. Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie, 2003, 23: 375-396.
    [170] Martens, D.A., Johanson, J.B., Frankerberger, W.T. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci., 1992, 153: 53–61.
    [171]Yang, Y.H., Yao, J., Hu, S. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb. Ecol., 2000, 39: 72-79.
    [172] Speir, T.W., Kettles, H.A., Parshotam, A., et al. A simple kinetic approach to derive the ecological dose value ED50 for the assessment of Cr (VI) toxicity to soil biological properties. Soil Biol. Biochem., 1995, 27:801-810.
    [173] He, M.C., Wang, Z.J., Tang, H.X. The chemical, toxicological and ecological studies in assessing the heavy metal pollution in Le An River, China. Wat. Res. 1998, 32(2): 510-518.
    [174]Cookson, P. Special variation in soil urease activity around irrigated date palms. Arid Soil Research and Rehabilitation, 1999, 13: 155-169.
    [175]Dick, R.P. Soil enzyme activities as integrative indicators of soil health, in: Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R. (Eds.) Biological Indicators of Soil Health, CAB, Wallingford, 1997, pp: 121-156.
    [176]Nannipieri, P. The potential use of soil enzymes as indicators of productivity, sustainability and pollution, in: Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Grace, P.R. (Eds.) Soil Biota Management in Sustainable Farming Systems, CSIRO, Melbourne, 1994, pp:238-244.
    [177] Delorme, T.A., Gagllardi, J.V., Angle, J.S., et al. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol., 2001, 47: 773-776.
    [178] Hinojosa, M.B., Carreira, J.A., Rodríguez-Maroto, J.M., et al. Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose–response model. Science Total Environment, 2008, 396: 89-99.
    [179] McBride, M.B. Reactions controlling heavy metals solubility in soils. In: Stewart BA, editor. Advances in soil science. New York: Springer, 1989, pp:1-56.
    [180]Renella, G., Ortigoza, A.L.R., Landi, L., et al. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biol. Biochem., 2003, 35: 1203-1210.
    [181] Renella, G., Mench, M., Gelsomin, A., et al. Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol. Biochem., 2005, 37: 1498-1506.
    [182] Mench, M., Renella, G., Gelsomino, A., et al. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environ Pollut., 2006, 144: 24-31.
    [183] Babich, H., Bewley, R.J.F., Stotzky, G. Application of the ecological dose concept to the impact of heavy metals on some microbe-mediated ecological processes in soil, Arch. Environ. Contam. Toxicol., 1983, 12: 421-426.
    [184] Rovira, A.D. Interactions between plants and soil micmorganisms. Annu. Rev. Microbiol., 1965, (19): 241-266.
    [185]李湘民,兰波,黄瑞荣,等.植物与微生物的互作和微生物群落管理研究进展.江西农业学报, 2008, 20(1): 41-43.
    [186]王学翠,童晓茹,温学森,等.植物与根际微生物关系的研究进展.山东科学, 2007, 20(6): 40-44.
    [187]Gray, D.B., Mary, K.T., Julie, E.J. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities, Soil Biology and Biochemistry, 2002, 34: 1073-1082.
    [188]胡亚林,汪思龙,黄宇,等.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响.生态学报, 2005, 25(10): 2662-2668.
    [189]柴强,冯福学.玉米根系分泌物的分离鉴定及典型分泌物的化感效应,甘肃农业大学学报, 2007, 5(42): 43-48.
    [190] Bej, A.K., Perlin, M., Atlas, R.M. Effect of introducing genetically engineered microorganisms on soil microbial community diversity. Microbiol Ecol., 1992, 86: 169-176.
    [191] Delorme, T. A., Gagllardi, J.V., Angle, J.S., et al. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol., 2001, 47: 773-776.
    [192] Nelson, J.R., Lawrence, C.W., Hinkle, D.C. Thymine–thymine dimmer bypass by yeast DNA-polymerase-zeta, Science, 1996, 272: 1646-1649.
    [193] Hsiao, C.J., Stapleton, S.R. Characterization of Cd- induced molecular events prior to cellular damage in primary rat hepatocytes in culture: activation of the stress activated signal protein JNK and transcription factor AP-1. J BiochemMol Toxicol, 2004, 18(3): 133-142.
    [194] Blaylock, M.J., Salt, D. E., Dushenkov, U.S., et al. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ Sci Technol, 1997, 31: 860-865.
    [195] Baker, A. J. M., Reeves, R. D., Hajar, A. S. M. Heavy metal accumulation and tolerance in British populations of metallophyte Thlaspi caerulescens J. and C. Presl (Brassica juncea). New Phytol, 1994,127: 61-68.
    [196] Ebbs., S.D., Kochian, L. V. Phytoextraction of Zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol, 1998, 32: 802-806.
    [197]苏德纯,黄焕忠,张福锁.印度芥菜对土壤中难溶态镉、铅的吸收差异.土壤与环境, 2002, 11(2): 125-128.
    [198] Quartacci, M.F., Argilla, A., Baker, A.J.M., et al. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, 2006, 918–925.
    [199]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵.科学通报, 2004, 49 (24): 2568-2573.
    [200]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征.环境科学, 2005, 26 (3): 167-171.
    [201]裴昕,郭智,奥岩松.镉锌复和污染对龙葵苗期生长和镉锌累积特性的影响.西北植物学报, 2008, 28 (7): 1377-1383.
    [202] Shützendübel, A., Schwanz, P., Teichmann, T., et al. Cadmium induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol., 2001, 127: 887-898.
    [203]王保义,李苏,刘鹏,等.荞麦叶内抗氧化系统对铝胁迫的响应.生态环境, 2006, 15 (4): 818-821.
    [204]冯丽贞,陈全助,郭文硕,等.植物防御酶与桉树对焦枯病抗性的关系.中国生态农业学报, 2008,16 (5): 1188– 1191.
    [205]邱琳,王娜,周青.镧对酸雨胁迫下高粱种子萌发及POD活性和MDA含量的影响.中国生态农业学报, 2009, 17(2): 343?347.
    [206]许桂芳,张朝阳.高温胁迫对4种珍珠菜属植物抗性生理生化指标的影响.中国生态农业学报, 2009, 17(3): 565?569.
    [207]丁国昌,林思祖,王爱萍,等.邻羟基苯甲酸对干旱胁迫下杉木幼苗保护酶的影响.中国生态农业学报, 2008, 16 (5) : 1183-1187.
    [208]王美娥,周启星.重金属Cd、Cu对小麦(Triticum aestivum)幼苗生理生化过程的影响及其毒性机理研究.环境科学学报, 2006, 26 (12) : 2033-2038
    [209] Cobbett, C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol., 2000, 123: 826-833
    [210] Milone, M.T., Sgherri, C., Cljisters, H., et al. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany, 2003, 50: 265-276.
    [211] Zenk, M. H. Heavy metal detoxification in higher plants. Gene, 1996, 179: 21-30.
    [212] Sun, R.L., Zhou, Q.X., Sun, F.H., et al. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental and Experimental Botany, 2007, 60: 468-476.
    [213] Cnubben, N.H.P., Rietjens, I.M.C.M.., Wortelboer, H., et al. The interplay of glutathione -related processes in antioxidant defense. Environmental Toxicology and Pharmacology, 2001, 10: 141-152.
    [214]张志良.植物生理学实验指导(第2版).北京:高等教育出版社, 1990, 154-155.
    [215]邹琪.植物生理学实验指导.北京:中国农业出版社, 2000, 168-170.
    [216]赵世杰,许长成,邹琪,等.植物组织中丙二醛测定方法的改进.植物生理学通讯, 1994, 30(3): 207-210
    [217] De-Vos, C. H. R., Vonk, M. J., Vooijs, R., et al. Glutathione depletion due to copper-induced phytochelatin synthesis caused oxidative stress in Silene cucubalus. Plant Physiol., 1992, 98: 853-858.
    [218] Nagalakshmi, N., Prasad, M.N.V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, 2001, 160: 291–299.
    [219] Hartley-Whitaker, J., Ainsworth, G., Meharg, A. A. Copper- and arsenate-induced oxidative stress in Holcus lanatus L., clones with differential sensitivity. Plant, Cell and Environment, 2001, 24: 713-722.
    [220] He, M. C., Wang, Z. J., Tang, H. X. The chemical, toxicological and ecological studies in assessing the heavy metal pollution in Le An River, China. Wat. Res., 1998, 32 (2), 510-518.
    [221]孙约兵,周启星,任丽萍.镉超富集植物球果菜对镉-砷复合污染的反应及其吸收积累特征.环境科学, 2007, 28 (3): 1355-1360.
    [222]杨卓,王伟,李博文,等.高羊茅和黑麦草对污染土壤Cd, Pb, Zn的富集特征.水土保持学报, 2008, 22 (2): 83-87.
    [223] Posmyk, M.M., Bailly, C., Szafránska, K, et al. Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedling. J. Plant Physiol. 2005, 162: 403-412.
    [224]李元.汞、铁及其复合污染物内对烟草叶片氨基酸含量的影响.植物生态学报, 1998, 18(6): 640- 647.
    [225] Yang, X, E, Long, X. X., Ye, H. B., et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alf redii Hance). Plant and Soil, 2004, 259 (1-2): 181-189.
    [226]周启星.镉-砷污染苜蓿的联合效应及机理的研究.应用基础与工程科学学报, 1994, 2(1): 81-87.
    [227]周启星.复合污染生态学.北京:中国环境科学出版社, 1995.
    [228]宋静,钟继承,吴龙华,等. EDTA与EDDS螯合诱导印度芥菜吸取修复重金属复合污染土壤研究.土壤, 2006, 38 (5): 619-625.
    [229] Barcel, J., Poschenrieder, C. Phytoremediation: principles and perspectives. Contributions to Science, 2003, 2 (3): 333-344.
    [230]孙约兵,周启星,任丽萍.镉超富集植物球果菜对镉-砷复合污染的反应及其吸收积累特征.环境科学, 2007, 28 (3): 1355-1360.
    [231] Pandey, V., Dixit, V., Shyam, R. Antioxidative responses in elation to growth of mustard (Brassica juncea cv. Pusa Jai Kisan) plants exposed to hexavalent chromium. Chemosphere, 2005, 61: 40-47.
    [232]周青,黄晓华.酸雨对3种木本植物的胁迫效应.环境科学, 2002, 23 (5): 42- 46.
    [233] Noctor, G., Arisi, A.C.M., Jouanin, L., et al. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol., 1998, 118: 471-482.
    [234] Xiang, C.B., Oliver, D.J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell, 1998, 10: 1539-1550.
    [235] Chen, J. J., Goldsbrough, P.B. Increased activity ofγ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol., 1994, 106: 233-239.
    [236] Hinojosa, M. B., García-Ruíz, R., Vi?egla, B., et al. Microbial rates and enzyme activities as indicators of functionality in soils affected by the Aznalcollar toxic spill. Soil Biol. Biochem., 2004, 36: 1637-1644.
    [237] Wu, J., Hsu, F.C., Cunningham, S.D., 1999. Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constraints. Environmental Science and Technology 33, 1898–1904.
    [238] Crèman, H., Velikonja-Bolta, S., Vodnik, D., Kos, B., Lestan, D., 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235, 105-114
    [239] Wenger, K., Gupta, S.K., Furrer, G., Schulin, R., 2003. The role of nitrilotriacetate in copper uptake by tobacco. Journal of Environmental Quality 32, 1669-1676.
    [240] Qureshi, M.I., Israr, M., Abdin, M.Z., Iqbal, M., 2005. Responses of Artemisia annua L.to lead and salt induced oxidative stress. Environmental and Experimental Botany 53, 185-193.
    [241] Glick B.R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 2001, 21: 383–393
    [242] Belimov A.A., Dietz K.J. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiological Research, 2000, 155: 113–121
    [243] Abou-Shanab R.A.I., Angle J.S., Chaney R.L. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry 2006, 38: 2882–2889
    [244] Gray E.J., Smith D.L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 2005, 37: 395–412.
    [245] Nigam, R., Srivastava, S., Prakash, S., Srivastava, M.M., 2001. Cadmium mobilisation and plant availability-the impact of organic acid commonly exuded from roots. Plant Soil 230, 107-113.
    [246] Gadd GM. Bioremedial potential ofmicrobialmechanisms ofmetalmobilization and immobilization. Current Op inion in Biotechnology, 2000, 11 (3) : 271 - 279.
    [247] Belimov, A.A., Hontzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S., Glick, B.R., 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry 37, 241–250.
    [248] Godbold, D. L., Jentschke, G., Winter, S., Marschner, P., 1998. Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36, 757–762.
    [249] Jentschke, G., Godbold, D.L., 2000. Metal toxicity and ectomycorrhizas. Physiol. Plantarum 109, 107–116.
    [250] Joachim, S., Achim, K., Rainer, S., Ivano, B., 2005. Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant and Soil 277, 245–253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700