蜈蚣草富集砷能力的基因型差异及其对环境因子的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复技术是一种利用超富集植物提取污染土壤中有害物质的技术。超富集植物能够将吸收的重金属大部分运输到地上部,人们通过收集地上部并进行适当处理从而减少污染土壤中的重金属含量,使之达到清洁安全。植物修复是一种价格低廉、易于工业化和环境友好的技术,有非常广阔的应用前景。
     蜈蚣草是最近发现的砷超富集植物,具有生长快、适应性广和吸收积累砷能力强等特点,是一种理想的砷超富集植物,而我国蜈蚣草野生资源丰富。研究表明,不同地域生长的蜈蚣草外形指标和砷富集能力存在着很大的差异;另外,一些外源物质也影响蜈蚣草对砷的吸收,添加外源物质是提高蜈蚣草砷污染土壤修复效率的一个有效措施。然而,有关蜈蚣草富集砷能力的基因型差异尚未有过系统研究。
     本研究首先调查了湖南砷污染区的植物生长环境,发现砷污染已导致植物种类减少,群体生物量下降;污染区栽培的蔬菜有54%砷含量超标,其中菠菜、茼蒿和莴笋等超过最大许可量(MPC)的5倍左右。因此,这些地区的砷污染对人们的饮食健康构成了巨大威胁。
     不同基因型的蜈蚣草的直接播种试验研究表明,来自我国不同地区的蜈蚣草基因型在萌发特性有显著差异,萌发时间变动在12-40 d之间,萌发到成苗时间变化在13-46d。因为蜈蚣草种子小,贮藏的营养物质少,故具有快速萌发和成苗特性的基因型易于田间直接育苗。根据研究结果,我们筛选到3、4、5、9、13和15号等6个野外育苗比较容易成功的基因型。
     研究了分布于我国不同地区的蜈蚣草基因型的生长特性、砷耐性和富集特性,结果显示:蜈蚣草基因型间株高、羽叶数、芽苞数、地上部鲜重、根部鲜重均有显著的差异,株高变化在29.6-68.2 cm,羽叶数变化在13.3-60.0个/株,芽苞数变化在9.0-65.7个/株,地上部和地下部鲜重分别变化在150—540克/株和20.3-94.9克/株。蜈蚣草基因型间砷富集量差异明显,供试基因型的地上部砷浓度变幅在643.1—3009.03mg/kg,地下部变动在44.4-112.4 mg/kg;地上部砷积累量变化在49.7-174.7 mg/株,地下部在0.48-2.84 mg/株:富集系数(BF)变化在17.2-81.9,转运系数(TF)变化在10.8-50.4。蜈蚣草基因型在生物性状和砷富集特性上的广泛差异启示出,通过筛选可
    
    中文摘要
    以获得砷富集能力强、植株根系扩展范围大的基因型,从而提高植物修复效率。
     娱蛤草对砷的耐性是决定修复范围的一个重要因素,耐性越强,利用娱蛤草修复
    的范围越大。对娱蛤草不同基因型砷耐性的研究显示,娱蛤草对砷的耐性较强,远大
    于目前报道的其它砷耐性植物;耐性不同的娱蛤草基因型在富集砷的能力上也存在显
    著的差异,高耐性基因型根吸收砷的总量小于低耐性基因型,相反,向地上部运输的
    能力则大于低耐性基因型。由于高耐性基因型的砷总吸收量显著少于低耐性基因型,
    最终表现为地上部砷积累量明显较少。回归分析表明,娱蛤草对砷的耐性和对砷的富
    集特性呈反比。因此,为了提高娱蛤草植物的修复效率,在植物修复实践中应选择砷
    耐性相对较低的娱蛤草基因型,同时砷耐性可以作为娱蛤草砷富集特性的田间鉴定指
    标。
     砷污染修复的目标环境一般土壤贫瘩,从而限制娱蛤草的生长和对砷吸收及积累
    的能力。因此,开发利用廉价、有效的肥源是植物修复过程中重要的一环。同时土壤
    水分状况与植物生长发育以及砷的有效性关系密切。研究土壤水分状况与娱蛤草生物
    量积累及砷吸收的关系发现,在极度干早(土壤含水量40%)情况下,娱蛤草地上部
    的砷浓度虽然很高,但由于生物量较小,修复效果不好;反之,土壤水分过多(土壤
    含量水高于80%),娱蛤草生长也不好;在50一60%的土壤水分范围内,娱蛤草地上
    部砷浓度虽较低,但由于生物量大,砷富集量也大,因此这是植物修复实践中最佳的
    土壤含水量。水分对娱蛤草富集砷的影响是通过影响娱蛤草的吸收功能实现的,研究
    表明,随着土壤水分含量的提高,土壤中可交换砷和可溶性砷含量增加。在种植有娱
    蛤草的情况下,当土壤含水量为50一60%时,土壤可交换性砷和可溶性砷浓度最小,
    说明此时娱蛤草对砷有最大的吸收:水分也影响砷的淋溶性,在50一60%水分含量
    下,种植有娱蛤草的土壤砷淋溶最小。
     堆肥是城市固体废弃物经过脱水、发酵、除臭加工制成的肥料,堆肥中含有丰富
    的有机物和微生物,堆肥的资源化利用是解决城市固体废弃物的一个重要方面。磷石
    膏是磷肥生产过程中产生的主要副产物,每生产1吨磷肥产生3吨磷石膏,磷石膏含
    有磷和钙。鉴此,我们研究了植物修复实践上是否可以利用堆肥和磷石膏作为肥源,
    从而达到以污治污的目的。结果证明,堆肥和磷石膏能够显著增加娱蛤草的株高和生
    物量:堆肥增加土壤中可溶性有机碳(DOC)和可溶性砷含量,从而促进娱蛤草对砷
    的吸收;磷石膏也具有增加土壤中可溶性砷的含量和促进娱蛤草对砷的富集作用。
     对娱蛤草的超富集机理研究证实,植物鳌合肤(PC)参与娱蛤草富集砷的过程。
    乙
    
     博士论文:娱蛤草富集砷能力的基因型差异及其对环境因子的反应
    在砷胁迫环境中,娱蛤草地上部PC
Phytoremediation is a special technoloque of remediating contaminated soil by using the plant hyperaccumulators to remove pollutants in soil. The hyperaccumulators has the great capacity of absorbing heavy metals from soil and transporting most of them into the above-ground parts, which are then harvested artificially and dealt with properly, making a dramatic reduction of heavy metal content in soil. It is commonly recognized that phytoremediation is a cost-effective, engineering-economical and environmental friendly technique, and shows great prospect in the practice of contaminated soil remediation.
    Pteris vittata is a newly discovered As-hyperaccumulator, and has been identified as a reasonable material for use in phytoremediation of As-contaminated soil. There are abundant germplasm of Pteris vittata in China It is shown in the field investigations that there exists a large variation in morphology and growth characterizations, and As-acumulating ability among Pteris vittata genotypes, inhabited in the different ecological zone of China. It is also demonstrated in the field trials that some exotic substance have substantial influence on As uptaking by Pteris vittata, indicating the significance of applying proper chemicals into the soil to be remidiated in improving remediation efficiency. However, little research has been done in study on the genotypic difference of Pteris vittata in As-accumulating ability.
    In a survey aiming at making clear of the environmental conditions of plants in the As-contaminated areas in Hunan Province, it is found that As-contamination has caused a marked decrease in plant species and reduction in biomass of the plants grown there. Moreever, there is higher than 54% of cultivated vegetables with As content beyond the critical value of safety for food. Of them, spinach, crown daisy and lettuce are particularly severe in terms of their As content, being 5 fold as high as Maximum Permitted Concentration (MPC) based on Chinese Stardard of Vegetable Sanitation. It may be concluded that As-contamination in the soils of these areas has posed the great threat to human health.
    The direct seeding experiments of different Pteris vittata genotypes showed that there was significant difference in germination and emergence traits among Pteris vittata genotypes collected from different areas in China, with germinating time ranging from 12-40
    
    
    days, duration from germination to emergence varying between 13-46 days. As the seeds of Pteris vittata are very small, with little stored nutrition, the genotypes, which are quick in germination and emergence, are suitable for direct seeding in the field. According to the results, 6 genotypes, coded as No. 3, 4, 5, 9, 13 and 15, are scrrened out for their more probability in success of directly seeding in field.
    The growth traits, As-tolerance and bioaccumulation of different Pteris vittata genotypes, which were collected from different areas of China, were studied. The result showed that there was a remarkable difference in plant height, number of frond and sprout, fresh weight of above-ground parts and roots among different genotypes. Plant height varied from 29.6 to 68.2 cm, frond from 13.3 to 60.0 per plant and sprout from 9.0 to 65.7 per plant, fresh weight of aboveground parts and soil ranged from 150 to 540 g and from 20.3 to 94.9 g per plant, respectively. Meanwhile, the significant difference was also noted in As concentration and accumulation in plants among Pteris vittata genotypes. The As concentration in aboveground parts and roots ranged from 643.1 to 3009.03 mg/kg, and from 44.4 to 112.4 mg/kg, respectively. Correspondingly, As accumulation in aboveground and roots ranged from 49.7 to 174.7 mg per plant and from 0.48 to 2.84 mg per plant, respectively. Bioaccumulation factors (BF) varied from 17.2-81.9 and transport factors (TF) from 10.8-50.4. The wide difference in biological traits and As-accumulating ability among Pteris vittata genotypes illuminated that it is possible to develop the Pteris vittata genotypes with higher As-bio
引文
1.安志庄,王校常等.植物螯合肽及其在重金属胁迫下的适应机制.植物生理学通讯,2001,37:463-467.
    2.蔡保松,陈同斌等.砷污染区砷对蔬菜的污染及其食用安全.生态学报,2004,24:57-63.
    3.蔡保松,雷梅等,植物螯合肽及其在抗重金属胁迫中的作用.生态学报,2003,23:2125-2132.
    4.陈同斌,黄泽春等.砷超富集植物中砷化学形态及其转化的EXAFS研究.科学通报,2003 48:1163-1168.
    5.陈同斌,刘更另等.湖南省高砷地区土壤含量及其作物污染的临界值.土壤肥料,1992,2:1-4.
    6.陈同斌,韦朝阳等.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47:207-210.
    7.陈同斌,Struwe S等.砷对土壤微生物碳、氮代谢的影响.应用基础与工程科学学报,1996,4:288-293.
    8.陈同斌,范稚莲等.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报,2002,47:1156-1158.
    9.高华,张玉秀等.植物络合素和植物络合素合成酶的研究.西北植物学报,2001,21:779-790.
    10.高粱.土壤污染及其防治措施.农业环境保护,1992,11(6):272-273.
    11.顾微,杨惠芬,氢化物发生-原子荧光光谱法(HG-AFS)测定食品中不同价态的无机砷.卫生研究,1999,28:372-374.
    12.顾兴平,顾永柞.环境砷污染与健康.四川环境,1999,18:11-22.
    13.郭笃发.环境中的铅和镉的来源及其对人和动物的危害.环境科学进展,1994,2:71-75.
    14.国家环保局.环境检测分析方法.北京,环境科学出版社,1986.
    15.国家环境监测总站,中国土壤元素背景值,中国环境科学出版社,1990,87.
    16.洪仁远,蒲长回.镉对小麦幼苗的生长和生理生化反应的影响.华北农学报,1991,6(3):70-75.
    
    
    17.黄泽春.砷超富集植物的筛选及其富集机理研究.中国科学院博士论文,2003,7-12.
    18.季之华,王随元.饲料工业标准汇编.中国标准出版社,北京,1999,56-62.
    19.将先军,骆永明.土壤重金属污染的植物提取修复技术及其应用前景.农业环境保护,2000,19:179-183.
    20.孔另韶,陈清朗等.广州市一些植物中某些元素背景值的初步研究.北京:科学出版社.1982.
    21.雷梅.陈同斌等.磷对土壤中砷吸附的影响.应用生态学报,2003,14:1989~1992.
    22.李强,莫大伦.土壤环境中砷污染的危害及其研究进展.热带亚热带土壤科学,1997,6:291-295.
    23.李文学,陈同斌等.超富集植物吸收、富集重金属的生理和分子生物学机制.应用生态学报,2003.14:627-631.
    24.李文学.超富集植物蜈蚣草中砷的分布及两种提高植物修复效率方法的探讨.中国科学院地理科学与资源研究所博士后出站报告.2003.
    25.廖晓勇,陈同斌等.污染水稻田土壤含砷量的空间变异特征.地理研究,2003,22:635-643.
    26.廖自基,环境中微量重金属元素的污染与危害.北京:科学出版社,1989,101-138.
    27.刘威,束文圣等.宝山堇菜(Viola baoshanensis)—一种新的镉超富集植物,2003,48:2046-2049.
    28.刘志红,杨秀环等.植物中砷的形态分析.分析测试化学,1994,23:56-59.
    29.娄来清,沈振国.金属硫蛋白和植物螯合肽在植物重金属耐性中的作用.生物学杂志,2001,18:1-4.
    30.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999:12-20.
    31.罗春玲,沈振国.植物对重金属的吸收与分布.植物学通报,2003,20:59-66.
    32.沈振国.不同Zn处理下重金属超量累集植物Thlaspi caerulescens对养分的吸收.南京农业大学学报,1998,21:47-53.
    33.沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境,2000,16:39-44.
    34.沈振国,刘良友.重金属超量积累植物研究进展.植物生理通讯,1998,34:133-139.
    35.孙波,骆永明.超积累植物吸收重金属机理的研究进展.土壤,1999,3:113-119.
    36.童健.重金属对土壤的污染不容忽视.环境科学,1989,10:37-38.
    
    
    37.王剑虹,麻密.植物修复的生物学机制.植物学通讯,2000,17:504-510.
    38.王庆仁,崔岩山等.植物修复重金属污染土壤整治有效途径.生态学报,2001,21:327-330.
    39.韦朝阳,陈同斌等.大叶井口边草—一种新发现的富集砷的植物.生态学报,2002,22(5):777-778.
    40.韦朝阳,陈同斌等.重金属超富集植物及植物修复技术研究进展,生态学报,2001,21:1196-1203.
    41.韦朝阳.砷的超富集植物及其植物修复技术研究,中国科学院博士研究生学位论文,2001,15-16.
    42.吴燕玉.重金属复合污染对土壤-植物系统的生态效应.应用生态学报,1997,8(2):207-212.
    43.夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997.18(3):74-76.
    44.夏增禄,穆丛如.Cd、Zn、Pb及其相互作用对烟草小麦的影响.生态学报.1984,4(3):231-236.
    45.谢学锦,徐邦梁.铜况指示植物海州香薷.地质学报,1952,4:32.
    46.熊先孝,刘昌涛.湖南石门砷(金)矿床中雄黄的矿物学研究.岩石矿物学杂志,1998,17:378-384.
    47.徐红宁,许嘉琳.我国砷异常区的成因及分布.土壤,1996,28:80-84.
    48.徐照丽,吴启堂等,重金属植物螯合肽(PC)的研究进展,农业环境保护,2001,20:468-470.
    49.许嘉琳,杨居荣.砷污染土壤的作物效应及其影响因素.土壤,1996,28:85-89.
    50.杨居荣,任燕.砷对土壤微生物及土壤生化活性的影响.土壤,1996,28:101-104.
    51.杨肖娥,龙新宪等.古老铅锌矿山生态型东南景天对锌耐性及超积累特性的研究.植物生态学报,2001,25:665-672.
    52.杨肖娥,龙新宪等.超富集植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8:8-15.
    53.杨学春,牟树森等.紫色土区重金属污染与迁移.农业环境保护,1992.11:61-65.
    54.张素芹,杨居荣.农作物对镉铅砷的吸收与动力.农业环境保护,1992,11:171-175.
    55.张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17 (2):199-204.
    
    
    56.张玉秀,柴团耀等.植物耐重金属机理研究进展.植物学报,1999,41:453-457.
    57.中国农业持续发展和综合生产力研究组.中国农业持续发展和综合生产力研究.济南:山东科技出版社,1995,306.
    58. Abedin MT, Feldmann J, Meharg AA. Uptake kinetics of arsenic species in rice (Oryza Sativa L.) plant. Plant Physiology, 2002, 128:1120-1128.
    59. Akahoshi E, Fujiwara T. Higher plant metallothionein genes confer Cu resistance to yeast. In: Ando T, Fujita K, Mac T et al. (eds). Plant nutrition for sustainable food production and environment. Netherland: Kluwer Academic Publishers. 1997, 407-408.
    60. Anderson CWN, Brooks RR, Chiarucci A et al. Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 1999, 67: 407-415.
    61. Anonymous. Health effects of arsenic, arsenic in drinking water, Washington, DC: National Academy Press. 1999: 83-149.
    62. Tu C, Ma LQ. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaeeumulator ladder brake. J. Environ. Qual, 2002, 31: 641-647.
    63. Turpeinen R, Pantsar-Kallio M, Haggblom M et al. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci. Total Environ, 1999, 236: 173-180.
    64. Asher CJ, Reay PF. Arsenic uptake by barley seedlings. Australian Journal of Plant Physiology, 1979, 6: 459-466.
    65. Baker AJM. Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 1981, 3: 643-654.
    66. Baker AJM, McGrath SP, Sidoli CMD et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants, Resourse, Conservation and Recycling, 1994, 11: 41-49.
    67. Baker AJM. Resources. Conservation and Recycling. 1994, 11: 41-49.
    68. Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery. 1989, 1: 81-126.
    69. Banuelos GSM, Shannon C, Ajwa H et al. Phytoextraction and accumulation of boron and selenium by polar hybrid clones. International Joural of Phytoremediation, 1999, 1: 81-96.
    70. Berg M, Tran HC, Nguyen TC et al. Arsenic contamination of ground water and
    
    drinking water in Vietnam: A human health threat. Environment Science & Technology, 2001, 35: 2621-2626.
    71. Bernhard WR, Kigi HR. Purification and characterization of a typical cadmium-binding polypeptides from zea mays. Experientia. 1987, 52:309-315.
    72. Bissen M, Frimmel FH, Fresenius. J. Anal. Chem. 2000, 367:51.
    73. Blaylock MJ. Environmental Science & Technology, 1997, 31: 860-865.
    74. BrdshawA. Nature, 1952, 169: 1098.
    75. Brooks RR, Lee J, Reeves RD et al. Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. Journal of Geochemical Exploration, 1977, 7:49-57.
    76. Brooks RR. Phytochemistry of Hyperaccumulators. In R.R. Brooks(eds) Plants That Hyperaccumulate Heavy Metals. CAB international. New York, NY, 1998, 55-94.
    77. Brown SL. Phytoremediation potential of Thlaspi caerulescens and blader campion for zinc and cadmium-contaminated soil. J. Environ. Qual. 1994, 23:1151-1157.
    78. Brown SL, Chaney RL, Angle JS et al. Zinc and Cadmium uptake by hyperaccmulator Thlaspi caerulescenc grown in nutrient solution. Soil Sci. Soc. Am. J., 1995, 59:125-133.
    79. Buckley WT, Buckley KE, Grant CA. Absorption and translocation of cadmium in high cadmium and low cadmium accumulation lines of durum wheat in I. K. Iskandar, S.E. Hardy, A.C. Chang, and G.M. Pierzynski, eds. Proc. Forth International Conference on the Biogeochemistry of Trace Elements, Berkeley. 1997, 129-130.
    80. Cakmak I, Welch RM, Erenoglu B et al. Inflence of varied zine supply on retranslation of cadmium and Rubidium applied on mature leaf of durum wheat seedling. Plant and Soil, 2000, 219:279-284.
    81. Cakmak I, Welch RM, Hart J et al. Uptake retranslation of leaf applied cadmium in diploid tetraploid and hexaploid wheat. Journal of Experimental Botany, 2000, 51: 221-226.
    82. Chaney RL, Plant uptake of inorganic waste constitents in land treatment of hazardrous wastes (Eds: James F. Parr et al), Noyes Data Corporation, Park Ridge, New Jersey, USA. 1983, 50-75.
    83. Chassaigne H, Vacchina V. Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Ohytochemistry, 2001, 56: 657-668.
    84. Chaudhry TM, Hayes WJ, Khan AG et al. Phytoremediation: Focus on accumulator
    
    plants that remediate metal-contaminated soil. Australia Joumal of Ecotoxilogy, 1998, 4: 37-51.
    85. Chausseau M, Roussel C, Gilon N et al. J. Anal. Chem, 2000, 366: 476.
    86. Chen J, Goldsbrough PB. Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol., 1994, 106: 233-239.
    87. Chino M, Baba A. The effect of some environmental factors on the partitioning of zine and cadmium between roots and top of rice plants. J. Plant nutr., 1981, 3: 203-214.
    88. Chirenje T, Rivero C, Ma LQ. Leaching of As and Cr in wood-ashamended soil columns. Soil and Sediment Contamination, 2002, 11: 359-375.
    89. Chowdhury TR, Basu GK, Mandal BK. Arsenic poisoning in the Ganges delta. Nature, 1999, 401: 545-546.
    90. Christen K. The arsenic threat worsens. Environmental Science & Technology, 2001, 35: 286-291.
    91. Clemens S, Kim EJ, Neumannd D. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J., 1999, 18: 3325-3333.
    92. Cobbett CS, Peter GB. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol, 2002, 53:159-182.
    93. Cobbett CS. A family of phytochelatin synthase genes from plant fungal and animal species. Trends in Plant Sci., 1999, 4: 335-336.
    94. Cobbett CS. Phytochelatin and their roles in heavy metal detoxification. Plant Physiol, 2000, 123: 825-832.
    95. Creger TL, Peryea FJ. Phosphate fertilizer enhances arsenic uptake by apricot liners grown in lead-arsenic-enriched soil. Hortscience, 1994, 29: 88-92.
    96. Cullen WR, Reimer KJ. Arsenic speciation in the environment. Chemical Review, 1989, 89: 713-764.
    97. Cutler JM, Rains DW, Characterization of cadmium uptake by plant tissue. Plant Physiology, 1974, 54: 67-71.
    98. Dahmani-Mulle H, Van oort F, Gelie B et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 2000, 109:231-238.
    99. Das D, Chatterjee C, Mandal BK et al. Arsenic in groundwater in six districts of West Bengal. India: The biggest arsenic calamity in the world. Part 2: Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue of the affected people.
    
    Analyst, 1995, 120: 917-924.
    100. Deba PS, Kunnath SS. Arsenic poisoning in West Bengal. Science, 1996, 274: 1285-1289.
    101. Dushenkove V, Kumar PBAN, Harry Motto et al. Rhizofiltration: The use of plants to remove heavy metals from aqueous stream. Environ. Sci. Technol. 1995, 29: 1239-1245.
    102. Ebbs SD, Lasat MM. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality. 1997, 26:1424-1430.
    103. Ei-kherbawy M, Angle JS, Heggo A et al. Soil pH, rhizobia and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa. Biol. Fertil. Soils, 1989, 8: 61-65.
    104. EPA 3010A. www.epa.gov/epaoswer/hazwaste/test main.htm, revision 2, 1996, 3010A: 1-5.
    105. EPA 3050B. www.epa.gov/epaoswer/hazwaste/test main.htm, revision 2, 1996, 3050B: 1-12.
    106. Flowler Bruce A. Biological and environmental effects of arsenic. Elsevier, 1983,277.
    107. Geiger G, Federer P, Sticher H. Reclamation of heavy metal-contaminated soils: field studies and germination experiments. J. Environ. Qual, 1993, 22:201-207.
    108. Gekeler W, Grill E, Winnacker EL et al. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z. Naturforsch, 1989, 44: 361-369.
    109. Grill E, Loffler S, Winnacker EL et al. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci., 1989, 86: 6838-6842.
    110. Grill E, Winnacker EL, Zenk MH. Phytochelatins: a class of heavy-metal-binding peptides from plant are functionally anaologous to metallothioneins. Proc. Natl. Acad. Sci., 1987, 84: 439-443.
    111. Grill E, Winnacker EL, Zeek MH. Synthesis of seven different homologuous phytochelatins in metal-exposed Schizasaccharomyces pombe cells. FEBS Lett., 1986, 197:115-120.
    112. Grill E, Winnacker EL, Zenk MH. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 1985, 230: 674-676.
    113. Ha SB, Smith AP. Phytochelatin synthase gene from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell, 1999, 11:1153-1163.
    114. Hasegawa I, Tarada E. Genetic improvement of heavy metal tolerance in plant by
    
    transfer of the yeast metallothionein gene (CUP1). In: Ando T, Fujita K, Mae T et al. (eds). Plant nutrition for sustainable food production and environment. Netherland: Kluwer Academic Publishers. 1997, 391-395.
    115. Howden R, Goldsbroμgh PB, Andersen CR et al. Cadmium-sensitive, cadl, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol., 1995, 107: 1059-1066.
    116. Huang Jianwei, Michael J, Blaylock et al. Phytoremediation of uranium-contaminated soil: role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 1998, 32: 2004-2008.
    117. Huang JW, Cunningham SD. New Phytologist, 1996, 134: 75-84.
    118. Jacobs LW, Keeney DR. Arsenic-phosphorus interaction on corn. Communications in Soil Science and Plant Analysis. 1970, 1: 85-93.
    119. Jeanette HW, Gillian A, Riet V. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiology. 2001, 126: 299-306.
    120. Jones CA. Arsenic transport in contaminated mine tailings following liming. J. Environ. Qual, 1997, 20: 433-439.
    121. Kaiser Jocelyn. Toxicologist shed new light on old poisons. Science, 1998, 297: 1850-1851.
    122. Karim MM. Arsenic in groundwater and health problems in Bangladesh. Water Research, 2000, 34:304-310.
    123. Kirk DN. Worldwide occurrences of arsenic in ground water. Science, 2002, 296:2143-2145.
    124. Klapheck S, Schlunz S, Bergmann L. Synthesis of phytochelatins and homophytochelatins in Pisum sativum L. Plant Physiol., 1995, 107: 515-521.
    125. Klocke, A. "Soil contamination by heavy metals", Proceedings of Int. Workshop on Risk Assessment of Contaminated Soil, Deventer, Netherlands, 1986: 42-54.
    126. Kneer R, Zenk MH. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochem., 1992, 31: 2663-2667.
    127. Kondo N, Isobe M, Imai K et al. Synthesis of metallothionein-like peptides Cadystin A and B occurring in a fission yeast and their isomers. Agric. Biol. Chem., 1985, 49: 71-83.
    128. Koppolu L, Clements LD. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass, Biomass and Bioenergy. 2003, 24: 69-79.
    129. Krishnamurti GSR, Cieslinski G, Huang PM et al. Kinetics of cadmium resease from
    
    soils as influenced by organic acids-implication in cadmium availability. J. Environ. Qual., 1997, 26: 271-277.
    130. Kubota H, Sato K, Yamada T. Phytochelatins homologs induced in hairy roots of horseradish. Phytochem., 2000, 53: 239-245.
    131. Lee RB. Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency. Annals of Botany., 1982, 50: 429-449.
    132. Lepp NW. Effect of Heavy metal pollution on plants. Volume 2. Applied Science Publication. London and New Jersey. 1981.
    133. Li YM, Chancy RL, Brewer EP et al. Phytoextraction of Nickel and Cobalt by Hyperaccumulator Alyssum Species Grown on Nickel-Contaminated Soils. Environmental Science & Technology, 2003, 37:1463-1468.
    134. Liao XY, Chen TB et al. Root distributions and elemental accumulations of Chinese brake(Pteris vittata L.) from As-contaminated soils. Plant and Soil, 2003, 0: 1-8.
    135. Lombi E, Zhao FJ, Dunham SJ et al. Cadmium accumulation in population of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 2000, 145:11-20.
    136. Lombi E, Zhao FJ, Dunham SJ et al. Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 2001, 30: 1919-1926.
    137. Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat Ⅱ Oxalic acid detoxifies aluminum intemally. Plant Physiol., 1998, 117: 753-759.
    138. Ma LQ, Kenneth M. Komart et al. A fern that hyperaccumulates arsenic: a hardy versatile, fast-growing plant helps to remove arsenic from contaminated soil. Nature. 2001, 409: 579.
    139. Maaccnza B, Delana S, Pintore M. The complexes of cadmium with phytochelatins: a quantum mechanics study. In: Wenzel WW, Adriano on the Biogeochemistry of Trace Elements. Austria. International Society for Trance Element Research, 1999, 884-885.
    140. Maitani T. The composition of metals bound to class Ⅲ metallothionein (phytochelation and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol, 1996, 110:1145-1150.
    141. Marin AR, Masscheleyn PH, Patrick JWH. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant and Soil, 1993, 152: 245-253.
    142. Mary LB, Reina H, Lee M et al. Arsenic laced water in Chile. Science, 1998, 281: 783.
    143. Masscheleyn PH, DeLaune RD, Patrick Jr WH. Effect of redox potential and pH on
    
    arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 1991, 25(8): 1414-1419.
    144. May MJ, Vernoux T, Leaver C et al. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 1998, 49: 649-667.
    145. McGrath SP, Lombi E, Zhao FJ. What's new about cadmium hyperaccumulation? New Phytologist, 2001, 149: 2-3.
    146. Meagher RB. Phytoremediation of toxic elemental and organic pollutans. Curr. Opin. Plant Biol. 2000, 3: 153-162.
    147. Mebarg AA. The role of the plasmalemima in metal tolerance in angiosperms. Physoilogia Plantarum, 1993, 88:191-198.
    148. Meharg AA, MacNair M R. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. Journal of Experimental Botany, 1992, 43(249): 519-524.
    149. Meharg AA, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist. 2002, 154: 29-43.
    150. Meharg AA, Rahman MD. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science & Technology, 2003, 37: 229-234.
    151. Meharg AA. Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvetgrass. J. Environ. Qual., 1994, 23: 234-238.
    152. Meharg AA. Variation in arsenic accumulation hyperaccumulation in ferns and their allies. New Phytologist, 2003, 157:25-31.
    153. Meharg AA, Macnair MR. Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L. New Phytol, 1991, 117, 225-231.
    154. Meharg AA, Naylor J, Macnair MR. Phosphorus nutrition of arsenatetolerant and nontolerant phenotypes of velvetgrass. J. Environ. Qual. 1994, 23: 234-238.
    155. Mehra RK, Tabet EB, Gray WR et al. Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata. Proc. Natl. Acad. Sci., 1988, 85: 8815-8819.
    156. Mench M, Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil, 1991, 132: 187-196.
    157. Meuwly P, Thibault P, Rauser WE, γ-Glutamylcysteinylglutamic acid-a new
    
    homologue of glutathione in maize seedings exposed to cadmium. FEBS Lett., 1993, 336: 472-746.
    158. Meuwly P, Thibault P, Schwan AL et al. Three families of thiol peptides are induced by cadmium in maize. Plant J. 1995, 7: 391-400.
    159. Mohammed Joinal Abedin, Uptake kinetics of arsenic species in rice plant. Plant physiology, 2002, 128:1120-1128.
    160. Mutoh N, Hayashi Y. Isolation of mutants of Scizosaccharomyces pombe unable to synthesize cadystin, small Cd-binding peptides. Biochem. Biophys. Res. Commun, 1988, 151: 32-39.
    161. Nicholson FA, Jones KC. Effect of phosphate fertilizers and atmospheric deposition on long-time changes in the cadmium content of soil and crop. Environ. Sci. Tech., 1994, 28: 2170-2175.
    162. Nickson R, Mcarthur J, Burgess W et al. Arsenic poisoning of Bangladesh groundwater. Nature, 1998, 395:338.
    163. Noctor G, Foyer CH. Ascorbate glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49: 249-279.
    164. Onken BM, Hossner LR. Plant uptake and determination of arsenic species in soil solution under flooded conditions. Journal of Environmental Quality, 1995, 24:373-381.
    165. Pandey PK, Yadav S, Nair S et al. Arsenic contamination of the environment: A new perspective from central-east India. Environment Intemational, 2002, 28: 235-245.
    166. Parker DR, Chancy RL, Norvell WA. Chemical equilibrium models: application to plant nutrition research. Page 1995, 163-196 in RH. Loeppert, AP. Schawb and S. Goldberg, Eds. Soil c hemical equilibrium and reaction models soil science society of america, Madison, WI.
    167. Pergantis SA., Winnik W, Betowski DJ. Anal. Atom. Spectrosc. 1997, 12:531.
    168. Piekering IJ, Prince RC, George MJ et al. Reduction and coordination of arsenic in Indian mustard. Plant Physiology, 2000, 122:1171-1177.
    169. Rabinowitzn JC. Analysis of acid-labile sulfide and sulfhydryl groups. Methods Enzymol, 1987, 53: 275-277.
    170. Rauser WE. Phytochelatins and related peptides: structure, biosynthesis and function. Plant Physiol., 1995, 109:1141-1149.
    171. Rauser WE. Phytoehelatins. Annu. Rev. Biochem., 1990, 59: 61-86.
    172. Reese RN, White CA, Winge DR. Cadmium-sulfide crystallites in Cd-(γEC)_nG peptide
    
    complexes from tomato. Plant Physiol., 1992, 98: 225-229.
    173. Reeves RD, Baker A. Metal-accumulating plants. In (Iiya Raskin eds) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons, Inc., 2000, 193-229.
    174. Reeves RD, Baker A. Studies on metal uptake by plants from serpertine and nonserpentine populations of Thlaspi goesingense Halacsy (Cruciferae). New Phytol., 1984, 98:191-204.
    175. Reeves RD, Brooks RR. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe. Environmental pollution (Series A), 1983, 31: 277-285.
    176. Robinson BH, Leblanc M, Daniel P et al. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 1998, 203: 47-56.
    177. Rumburg CB, Engel RE, Meggitt WF. Effect of phosphorus concentration on the absorption of arsenate by oats from nutrient solution. Agron. J., 1960, 52: 452-453.
    178. Ryan JA, Pahren HR., Lucas JB. Controlling cadmium in human chain: review and rationale based on health effect. Environ. Res., 1982, 28:251-302.
    179. Salt DE, Blaylock M, Kumar PBAN et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants, Boi/Techology. 1995, 13: 468-474.
    180. Salt DE, Prince RC, Picking IJ et al. Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiol., 1995, 109: 1427-1433.
    181. Salt DE, Smith RD. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol., 1998, 49: 643-668.
    182. Salt DE. Phytoextraction: Present applications and future promise. In: Wise, DL. Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister, U. Bioremediation of Contaminated Soils. Marcel Dekker, 2000, New York.
    183. Sandberg GR, Allen IK, in: E.A. Woolson(Ed), Arsenical pesticides, American chemical society, Washington, DC, 1975.
    184. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot., 1999, 41: 105-130.
    185. Schafer HJ, Haag KA., Rausch T. cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulator Brassica juncea L.: evidence or Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol. Biol., 1998, 37: 87-97.
    
    
    186. Schmide C, Reisser W, Mattusch J et al. J. Chromatogr. A., 2000, 889: 83.
    187. Schmger MEV, Oven M, Grill E. Detoxification of arsenic by phytochelatins in plants. Plant Physiology, 2000, 122: 793-801.
    188. Scott N, Hatlelid KM, MacKenzie NE et al. Reactions of Arsenic(Ⅲ) and Arsenic(V) Species with Glutathione. Chemical Research in Toxicology, 1993, 6:102-106.
    189. Senden MHMN, Van der Meer AJGM, Vergurn TG et al. Citric acid in tomato plant roots and its effect on cadminm uptake and distribution. Plant Soil, 1995, 171: 333-339.
    190. Senden MHMN, Wolterbeek H. Effect of citric acid on the transport of cadmium through xylem vessels of tomato stem-leaf systems. Acta Bot. Neerl., 1990, 39: 297-303.
    191. Shen ZG, Zhao FJ, McGrath SP. Uptake and transport of zinc in the hyperaccumulator Thalspi caerulescens and the non-hyperaccmulator Thlaspi ochroleucum. Plant Cell and Environment, 1997, 20: 898-906.
    192. Shi JB, Tang ZY, Jin ZX et al. Determination of As (Ⅲ) and As (V) in soil using sequential extraction combined with flow injection hydride generation atomic fluorescence detection, Analytica chimica Acta, 2003, 477:139-147.
    193. Sigrid K, Wolfgany F, Ina Z. Hydroxymethyl-Phytochelat [(γ-Glutamylcysteine)_n-Serine] are metal-induced peptides of the Poaceae. Plant Physiol., 1994, 104:1325-1332.
    194. Smeyers-Verbeke J, De Graeve M, Francois M et al. Cd uptake by intact wheat plants. Plant Cell Environ. 1978, 1: 291-296.
    195. Sneller FEC, Heerwaarden LMV. Toxicity of arsenate in Silene vulgaris accumulation and degradation of arsenate-induced phytochelatins. New Phytol., 1999, 144: 223-232.
    196. Sneller FEC, Van HLM. Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: Comparison of derivatization with Ellman's reagent and monobromobimane. Journal of Agricultural and Food Chemistry, 1999, 48: 4014-4019.
    197. Stolt JP, Sneller FEC. Phytochelation and cadmium accumulation in wheat. Environmental and Experimental Botany, 2003, 49:21-28.
    198. Subhash CG, Peter BG. Phytochelatin accumulation and cadmium in selected tomato cell lines. Plant Physiol. 1991, 97: 306-312.
    199. Szmigielask AM, Van Rees KCJ, Cieslinski G et al. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat. J. Agric. Food chem. 1996, 44: 1036-1040.
    200. Tervahuta AI, Hassinen V. Metalllothionein gene of Silene vulgaris increases tolerance of heavy metal sensitive yeast. In: WW Wenzel, DC Adriano, B Alloway et al(eds).
    
    Proceeding of 5th International Conference on the Biogeochemistry of Trace Elements. Austria, International Society for Trance Element Research, 1999, 1172-1173.
    201. Thumarm J, Grill E, Winnacker EL et al. Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett., 1991, 284: 66-69.
    202. Toppi S, Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot., 1999, 41: 105-130.
    203. Tu C, Ma LQ. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Journal of Environmental Quality, 2002, 31: 641-647.
    204. Turpeinen R, Pantsar-Kallio M, Haggblom M et al. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. The Science of the Total Environment, 1999, 236: 80-173.
    205. Ullrich-Eberius CI, Sanz A, Novacky AJ. Evaluation of arsenate- and vanadateassociated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. Journal of Experimental Botany, 1989, 40:119-128.
    206. US EPA (1997) Recent development for in-situ treatment of metal contaminated soils. Office of Solid Waste and Emergency Response, EPA-542-R-97-004, p. 8.
    207. Van Assche F, Clijsters H. Effects of metal on enzyme activity in plant, Plant Cell Environ. 1990, 13:195-206.
    208. Vatamaniuk OK, Mari S. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution. Proc. Natl. Acad. Sci., 1999, 96:7110-7115.
    209. Vatamaniuk OK, Mari S, Lu YP et al. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution. Proc. Natl. Acad. Sci., 1999, 96:7110-7115.
    210. Verkleij JAC, Koewoets P. Poly(γ-gluylcysteinyl) glucines or phytochelatins and their role in cadmium tolerance of silene vulgaris. Plant Cell and Environ., 1990, 13:913-921.
    211. Wagner GJ. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron, 1993, 51: 173-212.
    212. Wang J, Zhao FJ, Meharg AA et al. Mechanisms of arsenic hyperaccumulation in Pteris vittata: Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 2002, 130: 1552-1561.
    213. White MC, Decker AM, Chaney RL. Metal complexation in xylem fluid. Ⅰ. Chemical composition of tomato and soybean stem exudate. Plant Physiol., 1981, 67: 292-300.
    214. Whiting SN, Leake JR, McGrath SP et al. Positive responses to Zn and Cd by roots of
    
    the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytologist, 2000, 145: 199-210.
    215. World Health Organization (WHO). Drinking Water Guidelines and Standards. In: United Nations Synthesis Report on Arsenic in Drinking Water, 2001. Chapter 5.
    216. Wilk DA. A technique for the measurement of lead tolerance in plant. Nature, 1957:180: 37-38.
    217. Woolson EA, Axley JH, Kearney PC. The chemistry and phytotoxicity of arsenic in soils: Ⅱ. effects of time and phosphorus. Soil Sci. Soe. Am. Proc. 1973, 37: 254-259.
    218. World Health Organization (WHO). Environmental Health Criteria 18, arsenic, international programme on chemical safety, guidelines for drinking-water quality. Geneva, Switzerland, 1984, 1: 53.
    219. Xu H, Allard B, Grimvall A. Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water, Air, and Soil Pollution, 1991, 57-58.
    220. Balasoiu CF, Zagury G J, Deschenes L. Partitioning and speciation of chromium, copper and arsenic in CCA-contaminated soils: influence of soil composition. Sci. Total Environ., 2001, 280: 239-255.
    221. Yong LZ, Pilon-Smits EAH, Tarun AS et al. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol., 1999, 121: 1169-1177.
    222. Zayed A, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetlands plants J. Environ. Qual., 1998, 27: 715-721.
    223. Zeng W, Hemmasi B. Solution synthesis of phytochelatins isopepetides from the plant kingdom. Liebigs Ann. Chem., 1992, 311-315.
    224. Zenk MH. Heavy metal detoxification in higher plants: a review. Gene, 1996, 179:21-30.
    225. Zhao FJ, Dunharn SJ, McGrath SP et al. Arsenic hyperaccumulation by different fern species. New Phytologist, 2002, 156:27-31.
    226. Zhao FJ, Wang JH. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New phytologist, 2003, 159: 403-410.
    227. Zhao H, Butler E, Rodgers Jet al. J. Biol. Chem. 1998, 273: 28713-28720.
    228. Zhu YL, Pilon-smit SEAH, Tarun AS. Cadmium tolance and accumulation in Indian Mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol., 1999, 121: 1169-1177.
    229. Zhu YL, Pilon-Smits EAH, Jouanin L et al. Overexpression of glutathione synthetase in
    
    indian mustard enhances cadmium accumulation and tolerance. Plant Physiol., 1999, 119: 73-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700