黄龙钙华沉积速率及景观演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙华由泉、河、湖水的次生碳酸钙过饱和而形成的地表沉积。钙华是环境、气候、生物等信息的载体。世界上其它地区的钙华多在岩溶地区发育,而黄龙钙华景观形成过程特殊。黄龙钙华的分布受地下水出露的控制,被钙华胶结的冰碛层是浅层地下水活动的隔水底板。黄龙地区特殊的地质背景和水文特征是黄龙钙华景观形成的重要前提条件,宽缓的沟谷成为黄龙沟内地表水、地下水缓慢径流、运移的良好场所。
     关于黄龙地区地质、地貌、水文、生物、旅游等方面的调查研究,前人的研究已经相当深入。近些年,黄龙核心景区水流改道与变迁,水循环转化段地表水严重漏失,使黄龙钙华景观水减少、部分钙华池干涸,个别地段景观变黑、开裂甚至坍塌。本文通过室内钙华沉积模拟实验、野外监测点的水质分析资料以及钙华沉积速率测定实验,估算黄龙钙华沉积速率。本文的创新点在于,从钙华沉积-溶蚀的对立过程研究其沉积速率与溶蚀速率在空间上的变化规律,进而研究黄龙钙华景观的成长、演化与消亡过程。
     在该课题研究中提出了黄龙钙华沉积具有“时空动态变化性”,并不存在常态沉积速率的观点,认为黄龙钙华沉积具有时段性,钙华形成的地质时期初期,其速率比较均一,达10-20mm/a,而中后期水量开始重新分配,钙华沉积与溶蚀作用并存。特别是现今阶段,钙华沉积表现出明显的时空差异,某些地段的钙华沉积速率可达0.37-5.57mm/a,某些地段只是维持沉积-溶蚀的动态平衡状态,局部地段钙华未呈现沉积状态,而是呈现溶蚀状态,并形成地下管道和洞穴,某些地段甚至出现钙华消亡的现象。
     气候环境、水动力条件、水物理化学条件、微地貌环境的变化,藻类的生物效应,这些影响因素只是外因,而其内因中起着主导作用的是黄龙钙华含水层的水文地质条件的变化。地表漫流方式的变换与地下水改道,新的地下钙华通道的形成、景观水漏失的加大,造成局部瀑布等景观衰退或位置转移。钙华的完整结构和水流状态的破坏可能加速钙华衰退、消亡演化。
     黄龙钙华景观退化主要是由黄龙的水文地质??引起的。在研究黄龙钙华沉积速率和景观演化的基础上,完善钙华沉积理论,为黄龙钙华景观的科学保护提出切实可行的措施与建议。
Travertine deposits on the surface of the karst spring, the river, the lake where format the secondary calcium carbonate, is the information carrier of environment, climate, biology and so on. Other regions of the world, travertine more exist in the karst area, but the formation of travertine landscape is a special in Huanglong. The distribution of travertine controlled by the appearing of karst groundwater in Huanglong, the moraine layer cemented with travertine is the impermeable floor in shallow groundwater activities. The special characteristics of geological and hydrological background is an important prerequisite for the travertine landscape formation in Huanglong, the wide and slow valley is a good place, surface water and groundwater riched in Heavy calcium carbonate runoff slowly in Huanglong.
     Previous research on the geology, geomorphology, hydrology, biology, tourism has considerable depth in Huanglong area. In recent years, the main reasons leading to reducing travertine landscape and water serious loss in Huanglong, is diversion of core landscape water, and changes in surface water cycle, part of travertine pool dried up, cracked or even collapsed. Through the simulation of travertine deposition in laboratory test, the analysis of water quality and field experiment estimate the travertine deposit rate. The paper’s innovation analyzes the change regularity in space of the deposition rate and corrosion rate in the travertine deposition-dissolution process, and then study the the process of growth, evolution and extinction of travertine landscape in Huangl??
     In the research, it proposed the view that travertine deposition of a "dynamic change of time and space", it doesn’t exist normal deposition rate; that with a time of travertine deposition in Huanglong, in the early geological period of travertine formation, and the rate is relative uniform, up to 10-20mm/a, and the re-allocation of water appears in late period, travertine deposition co-exist with the dissolution.Especially, it shows clear differences in time and space in this stage, the travertine deposition rate in some sections up to 0.37-5.57mm/a, certain areas maintain the deposition- solution dynamic balance, in some areas, travertine is not a state of deposition but a state of dissolution which formate the buried pipes and caves, there's the phenomenon of the disappearance of travertine. Climate environment, hydrodynamic conditions, water physico-chemical conditions, micro-topography environment, the biological effects of algae, which only external factors, and the travertine aquifer hydrogeological conditions plays a leading role as internal factors in Huanglong. Transform the way of the surface flooding and groundwater diversions, the new formation of underground travertine channels, the greater loss of landscape water, resulting recession in the local landscape, such as falls, or transfermation of the location. The destruction of the state of travertine structure, and the integrity of the flow may accelerate the recession, demise evolution of travertine.
     The essence of travertine landscape degradation is the hydro-geological problems in Huanglong. On basis of research in travertine deposition rate and landscape evolution, perfecting the theory of travertine deposition, protection of the travertine landscape in scientific and practical measures and recommendations in Huanglong.
引文
[1]FORD T D,PEDLEY H M. A Review of Tufa and Travertine of theWorld [J]. Earth-Science Reviews,1996,41:117-175.
    [2]Viles.H A and Goudie A S,Tufa travertines and allied carbonate deposits. Progress in physical geograpHy,1990,14(1):19-41
    [3]Kano, A.,Kawai, T.,Matsuoka, J. and Ihara, T. (2004) High-resolution records of rainfall events from clay bands in tufa. Geology, 32:793-796.
    [4]Kano,A.,Matsuoka,J.,Kojo, T.,and Fujii, H.,2003, Origin of annual laminations in tufa deposits,southwest Japan:Palaeogeography, Palaeoclimatology, Palaeoecology, v.191,p.243-262.
    [5]Pentecost,A.,Spiro, B.,1990. Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae. Geomicrobiol. J.8, 17-26.
    [6]Freytet,P.,Plet, A.,1996. Modern freshwater microbial carbonates:the hormidium stroma -tolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France).Facies 34, 219-238.
    [7]Janssen,A.,Swennen, R.,Podoor,N., Keppens,E.,1999. Biological and diagenetic influence in Recent and fossil tufa deposits from Belgium. Sediment. Geol. 126, 75-95.
    [8]成都水文地质工程地质队,四川黄龙-九寨旅游地质景观及矿泉水资源调查研究报告[R].1987.09:3-33.
    [9]刘再华,袁道先,W. Dreybrodt,等.四川黄龙钙华的形成[J].中国岩溶,1993. 09,12(3):185-191.
    [10]陈先,朱学稳,周绪纶.黄龙风景区岩溶水及泉华沉积的同位素研究[J].中国岩溶,1988. 09,7(3):209-212.
    [11]胥良,姜泽凡.基于钙均衡估算黄龙钙华沉积速率的探讨[J].中国岩溶,2007.6,26(2):132-135
    [12]Chafetz HS,and Folk RL..Travertines:Depositioned Morphology the Bacterially constructed Constit??s.[J].Jour,Sed.Petro.1984,54:289-316.
    [13]张捷.川西北岷山灰岩区喀斯特堰塞湖形成中的生物作用[J].湖泊科学,1993 ,5(1):32-39
    [14]Golubic S. The relationship between blue-green algae and carbonate deposits[A]. In:Carr N G. Whitton B A (ed) . The biology of Blue-green alage[M] . Oxford Blackwell , 1973. 434-472.
    [15]Scholl D W, and Taft W H. Alage contribtors to the Formation of calcareous tufa [J]. Monolake. California . Jour. Sed. Petro , 1984,34 :309-319.
    [16]张英骏,莫仲达.黄果树瀑布成因初探[J].地理学报,1982,37(3).
    [17]Pentecost A,Lord T. Postglacial tufas and travertines from the craver district of Yorkshire. Cave Science,1988,15:15-19.
    [18]张英骏,程星,等.钙华沉积机制的实验研究[J].中国岩溶,1994,13(3):197-206
    [19]朱德浩.九寨沟风景区和南斯拉夫普里特维湖泊公园之比较[f].大自然探索,1987,6(20)
    [20]包浩生等,生物喀斯特微形态特征研究,见:包浩生主编,任美愕教授八十华诞地理文集,南京大学出版社,1993,23:172-173
    [21]田友萍,何复胜等,钙华的生物成因研究[J].中国岩溶,1998,17(1):49-56
    [22]Emeis K C., Richnow H H and Kemps S. Travertine formation in Plitvice National Park,Yugoslavia:chemical versus biological control[J]. Sedimentology ,1987,34:595-609.
    [23]周长艳,彭俊,李跃清.九寨沟、黄龙地区水资源的变化特征及成因分析[J]. 2007,3,2(29):60-66
    [24]章典.洞穴碳酸钙沉积的水运动条件[J].中国岩溶,1983,2(1):31-38.
    [25]李华举,廖长君等钙华沉积机制的研究现状及展望[J]. 2006,25(1):57-62
    [25]祝安.河成石灰华成因—掺气效应研究.贵州师范大学学报,1994,12(1):33-39.
    [26]程星,周忠发.碳酸钙溶解过程中的水运动条件[J].贵州地质,1995,10(3):30-40.
    [27]刘再华,W.Dreybrodt. DBL理论模型及方解石溶解、沉积速率预报[J].中国岩溶. 1998,3,17(1):1-6
    [28]Mitsutaka Kitamura, Haruo Konno. Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions[J]. Journal of Crystal Growth, 2002(236): 323-332.
    [29]Zeshan Hu, Yulin Deng. Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants[J]. Journal of Colloid and Interface Science, 2003(266): 359-365.
    [30]于炳松,赖兴运,成岩作用中的地下水碳酸体系与方解石溶解度[J].沉积学报.2006,10,24(5):627-634
    [31]Winsborongh. B. M. and Golubic. S..The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J. PHyeol. 1987, 23:195-201
    [32]Allan pentecost and Zhaohui Zhang.The travertine flora of Juizhaigou and Munigou, China, and its relationship with calcium carbonate deposition. Cave and Karst Science. 2000, 2: 71-78
    [33]Pedley, M..Ambient temperature freshwater microbial tufas. 2000, 179-186 in Riding, R E and Awramik, SM(editors), Microbial Sediments.
    [34]四川地矿局成都水文队.黄龙-九寨沟旅游地质景观及矿泉水资源调查研究报告[R].1987.
    [35]刘再华,游省易,李强,等.云南白水台景区的水化学和碳氧同位素特征及其在古环境重建研究中的意义[J].第四纪研究,2002,22(5).
    [36]范立学,基于灰色系统的黄龙钙华景观演化研究,200??四川师范大学,硕士论文,12-13
    [37]四川黄龙-九寨沟旅游地质景观资源调查、寻找矿(温)泉探索研究,四川省地矿局成都水文地质工程地质队,1987.
    [38]杨俊义,万新南等.九寨沟黄龙地区钙华漏斗的特征与成因讨论[J].水文地质工程地质,2004,2:90-93
    [39]刘星.云南石林地区钙华的ESR测年及其地质意义[J].中国岩溶, 1998,17(1):9-14.
    [40]周绪伦,李振伦.钙华洞穴的形成与保护[J].中国岩溶, 2004,(02):110
    [41]李振栓.山西延河泉域方解石溶解及沉淀速度分带[J].煤田地质与勘探, 1994.12:22(6),41-42
    [42]刘再华、W .Dreybrodt.方解石沉积速率控制的物理化学机制及其古环境重建意义.[J].中国岩溶,2002 21 (4):252-257.
    [43]A.Bogli.Karst Hydrology and Physiccal Speleology.Springer-Veriag.1980
    [44]T.C.Atkinson. Cabon Dioxide in the Atmosphere of the Unsaturated Zone. An Important Control of Groundwater Hardness in Limestone, Journal of Hydrology 1977,35
    [45]蔡杰兴.方解石、白云石、菱铁矿分别与含CO2水溶液反应平衡时的温度和压力[J].矿物岩石,1993,(02):41
    [46]钱会,刘国东.不同PCO2条件下水溶液的pH值及溶液中水化学组分平衡分布的计算[J].中国岩溶,1994,(6):133-139
    [47]吴庆余.藻类生物与自然界CO2循环的生物地球化学[J].《大自然探索》.1987.3
    [48]Liu Z ,Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Hunaglong Ravine,China : Field measurements and theoretical prediction of deposition rates [J]. Geochim. Cosmochim. Acta,1995,59(15):3087-3 097

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700