沥青及沥青混合料老化过程中的粘弹性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路沥青及沥青混合料作为目前最为重要的路面工程材料,同时又是一种复杂的粘弹性材料,在其长期的使用过程中,由于受到行车荷载、环境、人为等因素的影响会导致沥青路面的性能劣化,减少路面的使用寿命。对沥青及沥青混合料在老化过程中的粘弹性能进行研究,对掌握路面变形规律,预测沥青路面的使用寿命,掌握老化机理有十分重要的意义。本文采用试验室模拟老化和室外自然老化的方法,研究沥青及沥青混合料在老化过程中的粘弹性能、动态粘弹特性和疲劳性能,并结合热力学理论,建立沥青及沥青混合料的本构模型。
     本文首先采用动态剪切试验研究了老化方式、温度及作用荷载频率等因素对基质沥青和改性沥青的复数剪切模量、相位角等粘弹参数的影响规律。研究结果表明,老化作用使基质和改性沥青的复合剪切模量增大,而相位角降低,沥青呈现出较强的弹性,但改性沥青复数剪切的增加幅度小于基质沥青,说明改性剂可改善沥青的抗老化性能,采用时-温等效原理得到复数剪切模量主曲线,老化可增大沥青的复数剪切模量,使沥青变硬;与基质沥青对比,低温(高频)条件下改性沥青可以改善沥青的低温抗裂性,高温(低频)条件下改性沥青可以改善沥青的高温稳定性。
     第二,采用动态剪切蠕变试验研究了基质和改性沥青的蠕变特性,并选择合适模型对其粘弹特性进行描述。研究结果表明,基质沥青在各种老化方式后,蠕变总变形和永久变形都随着老化程度的加深而减小,改性剂的掺入一方面能降低沥青加载过程的总蠕变变形,同时又能提高沥青总变形中的弹性变形和可恢复弹性变形成分,使沥青承受外加荷载时产生的永久变形降低;沥青的劲度模量随时间的变化关系可以由幂函数S(t)=Bt(-m)的形式来表征,并建立了沥青的劲度模量与加载时间的函数关系;基于连续介质热力学中的Biot理论,导出了广义Kelvin蠕变型的粘弹性本构方程,采用Burgers模型能有效的描述基质沥青和改性沥青在老化过程中的粘弹特性,拟合曲线与实测曲线相关系数良好。
     第三,采用动态模量试验对基质沥青混合料和改性沥青混合料老化前后的动态力学参数进行对比研究。研究结果表明,沥青混合料的动态模量随着温度的升高和频率的减小而降低,而相位角在低温时随着频率增大一直减小,在高温时则出现先增加后减小的变化规律;改性剂的掺入使沥青混合料的动态模量增大而相位角降低;用时温等效原理得到不同老化方式下的沥青混合料的动态模量主曲线,结果表明老化使沥青混合料的动态模量在整个频率(或温度)范围内增大。采用间接拉伸疲劳试验评价沥青混合料在老化过程中的疲劳性能,建立5℃和15℃下沥青混合料老化过程中的疲劳寿命方程,在应力控制模式下,随着老化程度的加深,混合料的疲劳寿命增加。
     最后采用静载压缩蠕变试验对沥青混合料在老化过程中的蠕变特性进行研究,结果表明,温度升高使加载时总变形和卸载后的永久变形增加,老化使沥青混合料的总变形和永久变形减小,混合料的劲度模量和沥青的模量表现出一致的规律,都随着温度的升高而降低,随着老化程度加深而增加,劲度变化速率m值随着温度升高而增大,而随着老化时间的延长而降低;修正Burgers模型能很好的描述沥青混合料在老化过程中的粘弹特性,模型拟合结果与实测数据相关系数达到0.978以上,该模型拟合的结果显示,老化后沥青混合料的弹性系数E1和E2增加,在20℃和40℃下,粘性系数η1增大,而在低温时粘性系数η1减小,这表明老化使沥青混合料高温的抗变形能力增强而低温抗裂性能变差。
As the main high-grade construction materials, while at the same time is a complex viscoelastic materials, through a long period of usage, due to the impact of traffic load, natural and human factors will result in the deterioration of asphalt pavements and reduce the service life of the road. The research on the viscoelastic properties of asphalt and asphalt mixtures in the ageing are very important for understanding the deformation law, predicting the service life of asphalt pavement and understanding the aging mechanism. Based on the dynamic mechanical, creep and fatigue damage, the viscoelastic constitutive model of asphalt and asphalt mixtures are establish by combining thermodynamics theoretical in this pape.
     Firstly, the viscoelastic characteristics of asphalt are study by dynamic shear rheology test in this paper. The effects of ageing type, temperature and loading frequency on the complex shear modulus and phase angle of base asphalt and modified asphalt are investigated. The findings indicate that the complex modulus was increased, while the phase angle was decreased by aged, which suggests that asphalt became more elastic in the process of ageing, which results in the enhancement of resistance to deformation. The complex modulus was increased by aged, but it grew more slowly than base asphalt. Modifier improved the resistance of asphalt, whereas the complex modulus of modified asphalt grew more slowly than base asphalt. Adopting the Time-Temperature equivalence principle, the complex modulus master curves of asphalt in the ageing can be obtained. It suggests that the complex modulus is increased in the whole working frequency or temperature range. In contrast with base asphalt, the modified asphalt in the enhancement of resistance to deformation at a high temperature or low frequency and in the reduction of resistance to crack at a low temperature or high frequency.
     Secondly, the viscoelastic characteristics of base asphalt and modified asphalt are investigated by the Dynamic Shear Test, and suitable models are selected to describe such viscoelastic characteristics. Results demonstrate that the total and permanent deformation of base asphalts are decreased during loading period. Due to the modifier, the deformation of asphalt is decreased, and the elastic and retardant elastic deformations are increased, which result in the reduction of irrecoverable deformation for asphalt. The relationship of creep stiffness modulus and loading time can be characterized by a power function for asphalt, and a relationship between the stiffness and loading time can be established for asphalt. The elastic strain and inelastic strain are both chosen as state variables. On the basis of Biot theory and by introducing a dissipation potential. Burgers model can be used to describe the viscoelastic characteristics for base and modified asphalt in the process of ageing.
     Thirdly, the Dynamic Modulus Test is applied to study the dynamic viscoelastic characteristics of base and modified asphalt mixtures. This Study Shows That the dynamic modulus of asphalt mixtures is increased with frequency decreasing and temperature increasing. The phase angle is decreases at a low temperature with the frequency increasing, while the phase angle increases firstly and then decreases with the frequency increasing at a high temperature. Due to modifier, the phase angle is decreased of asphalt mixtures and the dynamic modulus is increased. Adopting the Time-Temperature equivalence principle, the dynamic modulus master curves of asphalt in the ageing can be obtained. It suggests that the dynamic modulus are increased in the whole working frequency or temperature range. An indirect tensile test was used to evaluate the fatigue resistance of the modified asphalt mixtures in the process of ageing, and fatigue predictive equations were found at two temperatures. Results indicate that the fatigue life of asphalt mixtures is increased with the ageing in the stress control mode.
     Finally, the viscoelastic characteristics of asphalt mixtures in the process of ageing are studied by compression creep test, and suitable viscoelastic models are exerted to describe such properties. It indicates that the total deformation and irrecoverable deformation of mixtures are increased as temperature rise, while the total deformation and permanent deformation are decreased as ageing deepen. The relationship of creep stiffness modulus is decreased as temperature rise, and modulus are increased as ageing deepen. The revised Burgers model is more appropriate to the viscoelastic characteristics research of asphalt mixtures in the process of ageing, and the correlation coefficient reached over0.978. The model demonstrate that the coefficient of elasticity of asphalt mixtures increases, and coefficient of viscosity increases at20℃and40℃and decreases at a low temperature, which result in the enhancement of resistance to deformation at a high temperature and in the reductiont of resistance to crack at a low temperature for asphalt mixtures.
引文
[1]张登良.沥青路面.北京:人民交通出版社,1999.
    [2]张肖宁.沥青与沥青混合料的粘弹力学.北京:人民交通出版社,2006.
    [3]Gurtin M E, Sternberg E.On the Linear Theory of Viscoelasticity. Arch. Ration. Mech. Anal., 1962, H:291-356.
    [4]Flugge W. Viscoelasticity.2nd ED. New York:Spinger- Verlag,1975.
    [5]Christensen R M. Theory of Viscoelasticity. New York:Academic Press,1982.
    [6]杨挺青,罗文波,徐平等.黏弹性理论与应用..北京:科学出版社,2004
    [7]李其抚,固态高聚物静态粘弹性的实验研究,湘潭大学硕士学位论文,2002年
    [8]Ward I M. Mechanical Properties of Solid Polymers (2nd Edition). Wiley-Interscience,1983.
    [9]马德柱,何平笙,徐种德.高聚物的结构与性能.第二版.北京:科学出版社,1999.
    [10]何平笙.高聚物的力学性能.合肥:中国科学技术大学出版社,1997.
    [11]于同隐,何曼君,卜海山等.高聚物的粘弹性.上海:上海科学技术出版社.1986.
    [12]Aklonis J J, Macknight W J. Introduction to polymer viscoelasticity.2nd Edition. New York: John Wiley and Sons,1983.
    [13]柳永行,范耀华,张吕详编著.石油沥青.北京:石油工业出版社,1984
    [14]Boutin C, De La Boche C, Di Benedetto H. De la rheologie du liant a celle de lenrobe bitumineux-Theorie de I'homogenisation et validation experiment-ale. Brussels: Eurobitume/Eurasphalt Congress [C],1995.
    [15]Di Benedetto H, Des Croix. Binder-mix rheology:limits of linear domain and non linear behaviour[A]. Strasbourg:Eurobitume/Eurasphalt Congress [C],1996.
    [16]沈金安.沥青与沥青混合料路用性能[M].北京:人民交通出版社,2003.
    [17]Ferry JD. Viscoelastic properties of polymers. New York:John Wiley and Sons, Inc.; 1961.
    [18]Cheung C Y, Cebon D. Deformation mechanisms of pure bitumen. [J] Mater Civil Eng 1997:117-29.
    [19]Cheung C Y, Cebon D. Thin film deformation behavior of power-law creeping materials. [J]Eng Mech 1997:1138-52.
    [20]Airey G D, Rahimzadeh B, Collop AC. Linear viscoelastic limits of bituminous binders. [J]Assoc Asphalt Paving Technol 2002:160-96.
    [21]Airey G D, Rahimzadeh B, Collop AC. Linear rheological behavior of bituminous paving materials. [J] Mater Civil Eng 2004:212-20.
    [22]Kose S, Guler M, Bahia H, Masad E. Distribution of strains within hot-mix asphalt binders. [J] Transport Res Board 2000; 1728:21-7.
    [23]Masad E, Somadevan N. Microstructural finite-element analysis of influence of localized strain distribution of asphalt mix properties. [J] Eng Mech 2002:1105-14.
    [24]Abbas A R, Ppagiannakis A T, Masad E A. Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes [J]. Journal of Materials in Civil Engineering,2004, 133-139.
    [25]Lee H J, Kim Y R. Viscoelastic constitutive model for asphalt concrete under cyclic loading [J]. Journal of Engineering Mechanics.1998, (1):32-40.
    [26]Tashman L, Masad E, et al,. A microstructure-based viscoplastic model for asphalt concrete [J]. International Journal of Plasticity.2005.21:1659-1685.
    [27]Lu Y, Wright P J. Numerical approach of visco-elastoplastic analysis for asphalt mixtures [J]. Comp Struct,1998,69:139-147.
    [28]Erkens S M J G, Liu X, Scarps A.3D finite model for asphalt concrete response simulation [J]. Int J Geomech,2002,2(3):305-330.
    [29]Blab R, Harvey J T. Modeling measured 3D tire contact stress in a viscoelastoc FE pavement model [J]. Int J Geomech,2002,2(3):271-290.
    [30]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究.长沙理工大学学报(自然科学版),2004,1(1):1-7.
    [31]延西利,封晨辉,梁春雨.沥青与沥青混合料的流变特性比较.长安大学学报,2002,22(5):5-8
    [32]徐世法,朱照宏.高等级道路沥青路面车辙的预测方法,土木工程学报,1993,26(6):28-36
    [33]Szydlo A, Mackiewicz P. Asphalt mixes deformation sensitivity to change in rheological parameters [J]. Journal of Materials in Civil Engineering,2005, (2):1-9.
    [34]Abbas A R, Ppagiannakis A T, Masad E A. Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes [J]. Journal of Materials in Civil Engineering,2004, 133-139.
    [35]Lockett F J. Nonlinear Viscoelastic Solids. London:Academic Press,1972
    [36]Findley J D W N, Lai J S, Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials. North-Holland Pub. Co.,1976
    [37]Christensen R M. On obtaining solutions in nonlinear viscoelasticity. [J] Appl Mech 1968;35:129-33.
    [38]Schapery R A. On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 1969;9:295-310.
    [39]Schapery R A. Nonlinear viscoelastic solids. [J] Int J Solids Struct 2000:359-66.
    [40]Lou YC, Schapery RA. Viscoelastic characterization of a nonlinear fiber-reinforced plastic. [J] Compos Mater 1971;5:208-34.
    [41]Shields DH, Zeng M, Kwok R. Nonlinear viscoelastic behavior of asphalt concrete in stress relaxation. [J] Assoc Asphalt Paving Technol 1998;67:358-400.
    [42]Touati D, Cederbaum G. On the prediction of stress relaxation from known creep of nonlinear materials. J Eng Mater Technol 1997; 119:121-4.
    [43]Touati D, Cederbaum G. Post buckling of nonlinear viscoelastic imperfect laminated plates part I:material considerations. Compos Struct 1998;42:33-41.
    [44]Haj-Ali RM, Muliana AH. Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int J Numer Methods Eng 2004;59:25-45.
    [45]彭妙娟,许志鸿.沥青路面永久变形的非线性本构模型研究[J].中国科学G辑:物理学力学天文学,2006,36(4):415-426.
    [46]封基良,黄晓明.沥青粘结料粘弹性参数确定方法的研究[J].2006,23(5):16-22.
    [47]钱国平,郭忠印,郑健龙,等.环境条件下沥青路面热粘弹性温度应力计算[J].同济大学学报,2003,31(2):150-155.
    [48]王随原,周进川.SBS改性氯气混合料蠕变性能试验研究[J].公路交通科技,2006.23(12):10-13.
    [49]Monismith C L, Secor K E. Viscoelastic behavior of asphalt concrete pavements [C]. Proceedings of International Conference on Structure Design of Asphalt Pavements,1962, (10):476.
    [50]Krishnan J. M, Rajagopal K. R. On the mechanic behavior of asphalt [J]. Mechanics of Materials.2005,37(11):1085-1100
    [51]Masad E, Huang C W, Airey G.Nonlinear viscoelastie analysis of unaged and aged asphalt binders. Construction and Building Materials,2007,1-10.
    [52]Masad E, Tashman L, Somadevan N. Micromechanies-Bassed analysis of stiffness anisotropy in asphalt mixtures. [J] the Journal of Engineering Mechanies,2002, 14(5):374-383.
    [53]Masad E, Tashman L, Viscoplastie modeling of asphalt tmixes with the effects of anisotropy, damage and aggregate ceharaeteristies, Mechanics of Materials,2005,37:1242-1256.
    [54]Masad E, Somadevan N, Bahia H. Modeling and experimental measurements of localized strain distribution in asphalt mixes.J Transp. Eng.,2001,127(6):477-485.
    [55]Masad E, Somadevan N, Microstructural finite-element analysis of influence of localized strain distribution on asphalt mix properties. Journal of Engineering Mechanies,2002, 128(10):1105-1114.
    [56]HuangYH.Deformation and volume change charaeteristics of a sand-asphalt mixture under constant direc ttriaxial compressive stresses. HWY. Res. Rec.,1967,178:60-74.
    [57]Pagen C A.Rheological response of bituminous concrete. HWY. Res. Rec.,1965,67:1-26.
    [58]庞凌,沥青紫外光老化特性研究,武汉理工大学博士论文,2008.
    [59]Vakili J.An experimental study of asphalt concrete based on a multiple-integral representation of constitutive equations of a nonlinear viscoelastic solid. J Rheology, 1983,27(3):200-211.
    [60]Kim Y R, Little D N. Linear viscoelastic analysis of asphalt masties. Journal of Materials in Civil Engineering,2002,16(2):122-132.
    [61]KavussiA, Hieks R G. Properties of bituminous mixtures containing different fillers. J Assn. Asphalt Paving Technol.,1997,66:153-186.
    [62]Park S W, Schapery R A. Methods of interconversion between linear viseoelastic material functions.Part-a numerical method based on Prony series.Int.J Solids Struct,1999,36:1653-1675
    [63]蔡宜洲,叶永.沥青砂粘弹特性实验研究,工程力学,2010,200-203
    [64]胡学斌,张肖宁,邹桂莲.西部环境下沥青胶浆的性能评价[J].石油沥青,2004,18(4):18-22
    [65]黄卫东,吕伟民.沥青及沥青混合料流变性质与动稳定度的关系.[J].同济大学学报.2000,28(4):501-504
    [66]李晓民,张肖宁,南雪丽.改性沥青老化后动态粘弹力学行为的研究.[J].中外公路.1671-2579(2006)03-0269-04
    [67]闵召辉,王晓,黄卫.环氧沥青混凝土的蠕变特性试验研究.[J].公路交通科技.1002-0268(2004)01-0001-0
    [68]F L Roberts. Hot mix asphalt materials, mixture design and construction. NAPA Research and Education. Lanham. Maryland.1991
    [69]中华人民共和国交通部.JTJ 052-2000.公路工程沥青及沥青混合料试验规程.北京:人民交通出版社,2000.
    [70]Lewis R.H.and Welborn J.Y. Report on the properties of the residues of 50-60 and 85-100 penetration asphalts from oven tests and exposure. Proc.Assn. Asphalt Paving Technol,1940,11:86-157.
    [71]Hveem F.N., Zube E.and Skog J. Proposed new tests and specifications for paving grade asphalts. Proc.Assn.Asphalt Paving Technol,1963,32:247-327.
    [72]中华人民共和国交通部.JTJ F40-2004.公路沥青路面施工技术规范.北京:人民交通出版社,2004.
    [73]中华人民共和国交通部.JTJ 036-1998.公路改性沥青路面施工技术规范.北京:人民交通出版社,1998.
    [74]Annual book of ASTM standards D 6373. Standard specification for performance graded asphalt binder,1999.
    [75]SHRP superior performing asphalt pavements (superpave):the product of SHRP asphalt research program. Strategic Highway Research Program A-410, National Research Council, Washington, DC,1994.
    [76]黄晓明,吴少鹏,赵永利.沥青与沥青混合料.南京:东南大学出版社,2002.
    [77]Laboratory Aging of Asphalt-Aggregate Mixture:Field Validation. SHRP-A-390.1994..
    [78]Von Quintas H., Scherocman J., Kennedy T.W. and Hughes C.S. (1988). Asphalt aggregate mixture analysis system. Final Report to NCHRP.
    [79]Harrigan E.T., Leahy R.B.and Youtcheff J.S. (1994) The Superpave mix design system:manual of specifications, test methods and practices, SHRP-A-379, Strategic Highway Research Program (National Research Council, Washington, D.C.).
    [80]Xiaohu Lu and Ulf Isacsson. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel,1998,77(9-10):961-972.
    [81]叶群山,纤维改性沥青胶浆与混合料流变特性研究,武汉理工大学博士论文,2007.
    [82]Gordon D.Airey. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel,2003,82:1709-1719.
    [83]Yonghong Ruan, Richard R. Davison,Charles J. Glover. The effect of long-term oxidation on the rheological properties of polymer modified asphalts. Fuel,2003,82:1763-1773.
    [84]Ruan Y.H., Davison R.R., Glover C.J.Oxidation and viscosity hardening of polymer-modified asphalts. Energy & Fuels,2003,17 (4):991-998.
    [85]B Elbirli, M. T. Shaw. Time Constants from Shear Viscosity Data. Journal of Rheology. John Wiley and Sons Inc.,1978, Vol.22, No.5:561-570
    [86]Anderson D. A., Le Hir Y. M., Planche J., Martin D.. Zero Shear Viscosity of Asphalt Binders. Presented at the 81st Annual Transportation Research Board Meeting, TRB, National Research Council, Washington D. C.,2001:2-19
    [87]曾贇,郭淑华.零剪切粘度与沥青高温性能的关系.石油沥青.2003,17:21-25
    [88]Sybilski. Zero-Shear Viscosity of Bituminous Binder and its Relation to Bituminous Mixtures Rutting Resistance. Transportation Research Record 1535, TRB,1996:15-21
    [89]Desmazes C., Lecomte M., Phillips M.. A Protocol for Reliable Measurement of Zero-Shear-Viscosity in order to Evaluate the Anti-Rutting Performance of Binders. Proceedings,2nd Eurasphalt & Eurobitume Congress, Barcelona, Spain.2000:200-203
    [90]Chantal de La Roche. Study of asphalt thin films fracture and healing under repeated tension. Chantal Western Research Institute Fatigue Symposium. Laramie, Wyoming, July 19,2001.
    [91]Bor-Wen Tsai. High temperature fatigue and fatigue damage process of aggregate-asphalt mixes. Ph.D. Dissertation, University of California, Berkeley.
    [92]David A., Anderson, etc. Prediction of fatigue damage in binders. Western Research Institute Fatigue Symposium. Laramie, Wyoming,July 19,2001.
    [93]Bahia H. Design and specifications based on damage characteristics. Western Research Institute Fatigue Symposium. Laramie, Wyoming,July 19,2001.
    [94]Jean-Pascal Planche, Gilles Gauthier, Yann Le Hir, et al. A contribution to the prediction of fatigue damage in binders. Western Research Institute Fatigue Symposium. Laramie, Wyoming,July 19,2001.
    [95]Per Redelius, Hilde Soenen. Binder fatigue prediction. Western Research Institute Fatigue Symposium. Laramie, Wyoming, July 19,2001.
    [96]Mike Zupanick. Binder fatigueldeas and issues. Western Research Institute Fatigue Symposium. Laramie, Wyoming,July 19,2001.
    [97]成志辉.老化对沥青路面的影响.湖南交通科技,2005,31(3):44-46.
    [98]田小革,莫一魁,郑健龙.抽提回收过程对沥青老化程度评价的影响.交通运输工程学报,2005,5(2):23-26.
    [99]Hveem, F.N. (1955), "Pavement Deflections and Fatigue Failures," Bulletin 114HRB, National Research Council, Washington, D.C., pp.43-87.
    [100]Heukelom.W.Observations on the Rheology and Fracture of Bitumens and Asphalt Mixes. Proceedings, Asphalt Paving Technology, Vol 35,1966.
    [101]Monismith, C.L., J.A. Epps, D.A. Kasianchuk, and D.B. McLean (1971), Asphalt Mixture Behavior in Repeated Flexure, Report TE 70-5, University of California,Berkeley, p.303.
    [102]Van Dijk W and Visser W. (1977). "The Energy Approach to Fatigue for Pavement Design," Proceedings of Association of Asphalt Paving Technologists, Vol.46.
    [103]Pronk,A.C., and P.C. Hopman (1990), "Energy Dissipation:the leading factor of fatigue," Proceedings, United States Strategic Highway Research Program-Sharing the Benefits, October 29-31, London.
    [104]陈惠敏.国外聚合物改性道路沥青技术和应用动向.石油沥青,1992, (4):59-64.
    [105]Gordon D, Airey. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel,2003,82(14):1709-1719.
    [106]Blanco R., Rodriguez R., Garcia-Garduno M., et al. Rheological properties of styrene-butadiene copolymer reinforced asphalt. J. Appl. Polym. Sci,1996,61:1493-1501.
    [107]Yu Jian-ying, Wang Xi-lin, Duan Zhong-xia, Wang Lin. Effect of reactive assistant on rheological properties of SBS modified bitumens. Journal of Wuhan University of Technology,2006,28:8-10.
    [108]重庆交通研究设计院.西部公路建设科技项目《改性沥青应用技术研究》总报告.2005.9.
    [109]Gordon D. Airey and Stephen F. Brown. Rheological performance of aged polymer modified bitumens, AAPT,1998.
    [110]Gordon D.Airey. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel,2003,82:1709-1719.
    [111]Yonghong Ruan, Richard R. Davison,Charles J. Glover. The effect of long-term oxidation on the rheological properties of polymer modified asphalts. Fuel,2003,82:1763-1773.
    [112]Ruan Y.H., Davison R.R., Glover C.J. Oxidation and viscosity hardening of polymer-modified asphalts. Energy & Fuels,2003,17 (4):991-998.
    [113]Whiteoak D壳牌沥青手册[M].北京:英国壳牌石油公司沥青部,1995:1-45.
    [114]中华人民共和国交通部JTG E42-2005公路工程集料试验规程[S].北京:人民交通出版社,2004-11.
    [115]王旭东.沥青路面材料动力特性与动态参数[M].北京:人民交通出版社,2002.
    [116]Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J Appl. Phys.,1954,25(11):1385-1391
    [117]邓伟,杨挺青.基于内变量理论的一种广义粘弹性本构方程.固体力学学报,1997,18(1):11-16
    [118]徐世法.表征沥青及沥青混合料高低温蠕变性能的流变学模型[J].力学与实践,1992,14(1):37-40.
    [119]Bahia H. U., Anderson D. A. The SHRP binder rheological parameters:Why are they required and how do they compare to conventional properties? Transportation Research Record,1995,1488:32-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700