以环糊精为基质的扩张床吸附剂的制备及银杏黄酮的分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩张床吸附(expanded bed adsorption,EBA)技术是一种集成化分离技术,它将固液分离、富集浓缩和初期纯化融合于一个新的单元操作中,能直接从含有固体颗粒的料液中捕获目标产物,缩短分离流程,提高分离效率。目前扩张床吸附技术主要应用于蛋白质的分离纯化。开发新型的吸附剂,并应用于其他生物活性物质的分离,是拓展扩张床吸附技术应用范围的有益尝试。本论文开发出一种新型的以环糊精为基质的扩张床吸附剂,围绕吸附剂的制备、性质和应用等内容展开,并对其在银杏黄酮分离纯化中的应用进行初探。
     首先以环氧氯丙烷交联的β-环糊精聚合物为骨架材料,以碳化钨粉为增重剂,通过β-环糊精预聚、反相悬浮成球及交联固化等步骤,制备出具有良好球形度的CroCD-TuC吸附剂,其粒径分布为80μm~320μm。考察了反相悬浮过程的工艺条件,对影响微球粒径分布和形貌的关键参数进行分析,提出了优化的工艺参数:油相为液体石蜡和真空泵油GS-1按质量比5:7混合;油水比4:1(w/w);分散剂吐温-80占油相质量的1.0%;搅拌转速350rpm~400rpm。通过5个批次重复实验所得微球的物性数据对比,发现工艺具有良好的重现性。
     对吸附剂的物性、孔结构、机械强度和化学稳定性等基本性质进行了表征,重点考察碳化钨的用量对吸附剂性质的影响。实验发现,所有吸附剂的粒径均呈对数正态分布,且受碳化钨用量的影响较小,其平均粒径一般在150μm至170μm之间。此外碳化钨粉的用量对吸附剂的孔度和平均孔径的影响亦较小,表明β-环糊精聚合物骨架的结构未发生明显的改变。然而,掺入了碳化钨粉的吸附剂的密度和机械强度有了明显的提高,因此通过控制原料的配比可以制得适应不同需要的吸附剂。
     测定了吸附剂在扩张床中的流体力学性质。采用Richardson-Zaki方程拟合实验结果,得到终端沉降速率和扩张指数,并结合Stokes方程和Martin方程的计算、比较对计算值进行了修正。采用停留时间分布法测定扩张床内的流体流动特性,引入Bodenstein准数、床层轴向扩散系数和理论等板高度等参数进行分析讨论。结果发现,流体的黏度和流速是影响吸附剂扩张特性和流体混合性质的主要因素,而吸附剂的密度通过流速一扩张率之间的关系,间接影响了其扩张特性和流体混合性质。论文还比较了几种吸附剂/基质的流体力学性质,发现CroCD-TuC 3的表现较出色,是用于扩张床操作的理想吸附剂。
     本文改变以往扩张床多用于蛋白质的做法,把目标物定为生物活性小分子物质,作一个新的尝试。以芦丁为模型化合物,考察CroCD-TuC 3吸附剂对芦丁的吸附性质。研究表明,CroCD-TuC 3对芦丁的吸附等温线遵循Langmuir吸附模型,且吸附量随温度和溶液pH值的升高而减小,随溶剂极性的增强而增大。以结构相近的SephadexTM G-15葡聚糖凝胶为参照物,比较了等量吸附焓和吸附剂表面不均匀度参数,体现出CroCD-TuC 3吸附剂骨架中β-环糊精/芦丁包结复合物的形成对吸附过程的重要贡献。采用孔扩散模型拟合吸附动力学实验数据,得到芦丁在吸附剂内的有效孔扩散系数约为3.8×10-11m2·s-1,远小于芦丁在稀溶液中的分子扩散系数,揭示了吸附质在内孔中的扩散是整个吸附过程的限速步骤。此外,分别在固定床和扩张床中测定了CroCD-TuC 3对芦丁的动态吸附情况,发现其动态吸附效率受流速和料液浓度的影响较大。
     在了解吸附剂性质的基础上,本文将CroCD-TuC 3吸附剂进行应用尝试,以扩张床吸附法分离银杏黄酮。采用水提液直接上柱的扩张床操作方式,通过水洗、50%(w/w)乙醇洗脱等一系列步骤,使得产物中黄酮的纯度达到36.5%,纯化倍数为20.8,回收率36.1%,实验证明采用扩张床吸附技术能够实现银杏黄酮的快速、高效纯化,也为扩张床用于活性小分子物质的分离纯化提供了一个有价值的实例。与文献报导的吸附剂相比较,CroCD-TuC 3吸附剂表现出色,具有较好的应用前景。
Expanded bed adsorption (EBA) is a promising technique for bioseparations. It integrates clarification, concentration, and primary purification into a single step, allowing the capture of bio-molecules from unclarified feedstock without prior removal of particulates. EBA simplifies the technical process and shows high efficiency for protein separation. In order to expand the applications of EBA, new adsorbents would be developed and applied to separate more bio-active molecules. The purpose of this work is to develop a novel cyclodextrin-based adsorbent aiming for separating Ginkgo flavonoids with expanded bed mode. This work will focus on the preparation, characterization and application of this novel adsorbent.
     Fine technical process is a warrant for the adsorbent with excellent performance. In this work, a series of adsorbents named CroCD-TuC have been prepared by the methods ofβ-cyclodextrin (β-CD) pre-polymerizing and reversed phase suspension crosslinking. Tungsten carbide (TuC) powder is selected as a densifier embedded inβ-cyclodextrin-epichlorohydrin polymer skeleton. The adsorbents obtained have regular spherical shape and a proper diameter of 80μm~320μm. The reversed phase suspension process is studied in detail and the optimal technical parameters are:the mixture of paraffin liquid and pump oil GS-1 with mass ratio of 5:7 as the oil phase; the mass ratio of oil to polymer solution at 4:1; the content of dispersant tween-80 at 1.0% by weight based on the oil phase; stirring speed of 350 rpm-400 rpm. The results of five batches demonstrate that the technology shows good reproducibility with comparable physical properties of adsorbents prepared.
     The basic properties of adsorbents including physical properties, pore properties, mechanical strength and chemical stability are characterized. It is found that the adsorbent beads follow the logarithmic normal size distribution, and the mean diameter slightly changes within the range of 150μm~170μm, regardless of the amount of tungsten carbide used. However, their wet density and mechanical strength significantly increase as the mass ratio TuC/CD increases, providing a potential of preparing adsorbents suitable for different use by controlling the amount of TuC added in the preparation process. The effect of TuC/CD mass ratio on the porosity and pore diameter is insignificant, indicating the structure ofβ-cyclodextrin polymer skeleton is hardly changed.
     The hydrodynamic properties of CroCD-TuC adsorbents are determined in an expanded bed. It is found for all CroCD-TuC adsorbents tested, the expansion characteristics can be well correlated with the Richardson-Zaki equation. But the predictions of terminal settling velocity and expansion index with the Stokes' law or Martin model are somewhat deviated from that correlated, needing an improvement with empirical modification. The Bodenstein number (Bo), the axial dispersion coefficient (Dax) and the height equivalent of theoretical plate (HETP) are used to analyze and evaluate the liquid mixing in the expanded bed, based on residence time distribution (RTD) measurement. In summary, fluid velocity and viscosity are the crucial factors influencing the expansion and liquid mixing properties, while adsorbent density directly affects these properties in the form of the expansion factors. A further comparison of hydrodynamic properties of several adsorbents/matrices reveals that CroCD-TuC 3 can be selected as the most promising adsorbent for EBA use.
     As a new attempt, the bio-active molecule rutin is adsorbed by CroCD-TuC 3 in aqueous solutions. The isothermal adsorption equilibrium follows the Langmuir adsorption equation, and the adsorption capacity is gradually reduced as the temperature and pH of solution rises, but increases with the increase of solvent polarity. The comparisons of CroCD-TuC 3 with SephadexTM G-15 beads on isosteric enthalpy and adsorbent surface heterogeneity analysis indicate that the formation ofβ-cyclodextrin/rutin inclusion complex in CroCD-TuC 3 skeleton makes significant contribution to the adsorption. The adsorption kinetics data are fitted by pore diffusion model. The effective pore diffusivity of rutin calculated with this model (3.8×10-11 m2·s-1) is much lower than that in diluted solution, indicating the diffusion inside the pores is the rate-restricting step in the whole adsorption process. The dynamic adsorption capacities of rutin with CroCD-TuC 3 are also measured and evaluated with the breakthrough curves in packed and expanded bed. The results reveal that the dynamic adsorption capacity is notably influenced by fluid velocity and feed concentration.
     Finally, the practical application of CroCD-TuC 3 adsorbent is carried out in an expanded bed for separating the flavonoids from natural resources. The feedstock extracted from Ginkgo biloba L. leaves with water is directly loaded onto CroCD-TuC 3 in an expanded bed. After washed with water, the flavonoids are eluted with 50%(w/w) ethanol from the adsorbent. The recovery is 36.1% with the flavonoids purity of 36.5% and the purification factor of 20.8. The results demonstrate that CroCD-TuC 3 is suitable for flavonoids separation and purification. It is expected that the novel adsorbent CroCD-TuC 3 would be a promising candidate for flavonoids separation and purification.
引文
[1]Anspach F. B., Curbelo D., Hartmann R., Garke G., and Deckwer W.-D., Expanded-bed chromatography in primary protein purification, Journal of Chromatography A,1999,865: 129-144
    [2]Chase H. A., Purification of proteins by adsorption chromatography in expanded beds, Trends in Biotechnology,1994,12:296-303
    [3]Hjorth R., Expanded-bed adsorption in industrial bioprocessing:Recent developments, Trends in Biotechnology,1997,15:230-235
    [4]Thommes J., Fluidized bed adsorption as a primary recovery step in protein purification, Advances in Biochemical Engineering/Biotechnology,1997,58:185-230
    [5]Palsson E., Axelsson A., and Larsson P.-O., Theories of chromatographic efficiency applied to expanded beds, Journal of Chromatography A,2001,912:235-248
    [6]刘国诠,余兆楼编著,色谱柱技术(第二版),北京:化学工业出版社,2006:18-27
    [7]Al-Dibouni M. R., and Garside J., Particle mixing and classification in liquid fluidized beds, Transactions of the Institution of Chemical Engineers,1979,57:94-103
    [8]Hubbuch J., Thommes J., and Kula M.-R., Biochemical engineering aspects of expanded bed adsorption, Advances in Biochemical Engineering/Biotechnology,2005,92:101-123
    [9]Voute N., and Boschetti E., Highly dense beaded sorbents suitable for fluidized bed applications, Bioseparation,1999,8:115-120
    [10]Pai A., Gondkar S., and Lali A., Enhanced performance of expanded bed chromatography on rigid superporous adsorbent matrix, Journal of Chromatography A,2000,867:113-130
    [11]Palsson E., Gustavsson P.-E., and Larsson P.-O., Pellicular expanded bed matrix suitable for high flow rates, Journal of Chromatography A,2000,878:17-25
    [12]雷引林,姚善泾,刘坐镇,朱自强,扩张床吸附基质研究进展,功能高分子学报,2002,15:219-224
    [13]Xia H.-F., Lin D.-Q., and Yao S.-J., Evaluation of new high-density ion exchange adsorbents for expanded bed adsorption chromatography, Journal of Chromatography A, 2007,1145:58-66
    [14]Miao Z.-J., Lin D.-Q., and Yao S.-J., Preparation and characterization of cellulose-stainless steel powder composite particles customized for expanded bed application, Industrial and Engineering Chemistry Research,2005,44:8218-8224
    [15]Jahanshahia M., Partida-Martinezb L., and Hajizadeha S., Preparation and evaluation of polymer-coated adsorbents for the expanded bed recovery of protein products from particulate feedstocks, Journal of Chromatography A,2008,1203:13-20
    [16]McCreath G. E., Chase H. A., and Owen R. O., Expanded bed affinity chromatography of dehydrogenases from Baker's yeast using dye-ligand perfluoropolymer supports, Biotechnology and Bioengineering,1995,48:341-354
    [17]雷引林,球形纤维素/钛白粉复合扩张床吸附剂的制备及其在蛋白质纯化中的应用[博士学位论文],浙江大学,2003:27-38
    [18]Lei Y.-L., Lin D.-Q., Yao S.-J., and Zhu Z.-Q., Preparation and characterization of titanium oxide-densified cellulose beads for expanded bed adsorption, Journal of Applied Polymer Science,2003,90:2848-2854
    [19]Xia H.-F., Lin D.-Q., and Yao S.-J., Spherical cellulose-nickel powder composite matrix customized for expanded bed application, Journal of Applied Polymer Science,2007,104: 740-747
    [20]Rodrigues A. E., Lu Z.-P., and Loureiro J. M., Residence time distribution of inert and linearly adsorbed species in a fixed bed containing "large-pore" supports:applications in separation engineering, Chemical Engineering Science,1991,46:2765-2773
    [21]Pai A., Gondkar S., Sundaram S., and Lali A., Expanded bed adsorption on supermacroporous cross-linked cellulose matrix, Bioseparation,1999,8:131-138
    [22]Xia H.-F., Lin D.-Q., and Yao S.-J., Preparation and characterization of macroporous cellulose-tungsten carbide composite beads for expanded bed applications, Journal of Chromatography A,2007,1175:55-62
    [23]Xia H.-F., Lin D.-Q., and Yao S.-J., Chromatographic performance of macroporous cellulose-tungsten carbide composite beads as anion-exchanger for expanded bed adsorption at high fluid velocity, Journal of Chromatography A,2008,1195:60-66
    [24]Zhang M.-L., and Sun Y., Cooperation of solid granule and solvent as porogenic agents. Novel porogenic mode of biporous media for protein chromatography, Journal of Chromatography A,2001,922:77-86
    [25]Shi Q.-H., Zhou X., and Sun Y., A novel superporous agarose medium for high-speed protein chromatography, Biotechnology and Bioengineering,2005,92:643-651
    [26]Wang D.-M., Hao G., Shi Q.-H., and Sun Y., Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography, Journal of Chromatography A,2007,1146:32-40
    [27]Voute N., Bataille D., Girot P., and Boschetti E., Characterization of very dense mineral oxide-gel composites for fluidized-bed adsorption of biomolecules, Bioseparation,1999,8: 121-129
    [28]Griffith C. M., Morris J., Robichaud M., Annen M. J., McCormick A. V., and Flickinger M. C., Fluidization characteristics of and protein adsorption on fluoride-modified porous zirconium oxide particles, Journal of Chromatography A,1997,776:179-195
    [29]Mullick A., Griffith C. M., and Flickinger M. C., Expanded and packed bed albumin adsorption on fluoride modified zirconia, Biotechnology and Bioengineering,1998,60: 333-340
    [30]Lihme A., Zafirakos E., Hansen M., and Olander M., Simplified and more robust EBA processes by elution in expanded bed mode, Bioseparation,1999,8:93-97
    [31]Pall Corporation, DEAE & SP Spherodex(?) LS silica/dextran composite ion exchangers for liquid chromatography of biologicals, http://www.pall.com/pdf/35753.pdf
    [32]Tong X.-D., and Sun Y., Nd-Fe-B alloy-densified agarose gel for expanded bed adsorption of proteins, Journal of Chromatography A,2001,943:63-75
    [33]Jahanshahi M., Sun Y., Santos E., Pacek A., Franco T. T., Nienow A., and Lyddiatt A., Operational intensification by direct product sequestration from cell disruptates:application of a pellicular adsorbent in a mechanically integrated disruption-fluidised bed adsorption process, Biotechnology and Bioengineering,2002,80:201-212
    [34]Amersham Pharmacia Biotech., Expanded bed adsorption-principles and methods, Code No. 18-1124-26, Uppsala, Sweden,1998
    [35]Yun J.-X., Lin D.-Q., Lu M.-H., Zhong L.-N., and Yao S.-J., Measurement and modeling of axial distribution of adsorbent particles in expanded bed:taking into account the particle density difference, Chemical Engineering Science,2004,59:5873-5881
    [36]Thommes J., Halfar M., Lenz S., and Kula M.-R., Purification of monoclonal antibodies from whole hybridoma fermentation broth by fluidized bed adsorption, Biotechnology and Bioengineering,1995,45:205-211
    [37]Kumaran S., Chantaiah B., and Rao T. S., Effect of niobium and aluminium additions in TiAl prealloyed powders during high-energy ball milling, Materials Chemistry and Physics, 2008,108:97-101
    [38]张曙光,杨必成,杨博,徐骏,石力开,朱学新,新型超声雾化技术制备球形金属粉末,金属学报,2002,38:888-892
    [39]Bauckhage K., Andersen O., Hansmann S., Reich W., and Schreckenberg P., Production of fine powders by ultrasonic standing wave atomization, Powder Technology,1996,86: 77-86
    [40]Gulsoy H. O., and German R. M., Production of micro-porous austenitic stainless steel by powder injection molding, Scripta Materialia,2008,58:295-298
    [41]Ma T., Huang Y., Yang J.-L., He J.-T., and Zhao L., Preparation of spherical zirconia powder in microemulsion system and its densification behavior, Materials and Design, 2004,25:515-519
    [42]Lee M. H., Tai C. Y., and Lu C. H., Synthesis of spherical zirconia by precipitation between two water/oil emulsions, Journal of the European Ceramic Society,1999,19,2593-2603
    [43]Robichaud M. J., Sathyagal A. N., Carr P. W., McCormick A. V., and Flickinger M. C, An improved oil emulsion synthesis method for large, porous zirconia particles for packed-or fluidized-bed protein chromatography, Separation Science and Technology,1997,32: 2547-2559
    [44]Stamberg J., Bead cellulose, Separation and Purification Methods,1988,17:155-183
    [45]Kuga S., New cellulose gel for chromatography, Journal of Chromatography,1980,195: 221-230
    [46]Fink H.-P., Weigel P., Purz H. J., and Ganster J., Structure formation of regenerated cellulose materials from NMMO-solutions, Progress in Polymer Science,2001,26: 1473-1524
    [47]Dogan H., and Hilmioglu N. D., Dissolution of cellulose with NMMO by microware heating, Carbohydrate Polymers,2009,75:90-94
    [48]Swatloski R. P., Spear S. K., Holbrey J. D., and Rogers R. D., Dissolution of cellose with ionic liquids, Journal of the American Chemical Society,2002,124:4974-4975
    [49]Du K.-F., Yan M., Wang Q.-Y, and Song H., Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography, Journal of Chromatography A,2010,1217:1298-1304
    [50]Axen R., Drevin H., and Carlsson J., Preparation of modified agarose gels containing thiol groups, Acta Chemica Scandinaviea B,1975,29:471-474
    [51]Scoble J. A., and Scopes R. K., Assay for determining the number of reactive groups on gels used in affinity chromatography and its application to the optimisation of the epichlorohydrin and divinylsulfone activation reactions, Journal of Chromatography A, 1996,752:67-76
    [52]Burton S. C., and Harding D. R. K., Bifunctional etherification of a bead cellulose for ligand attachment with allyl bromide and allyl glycidyl ether, Journal of Chromatography A, 1997,775:29-38
    [53]Burton S. C., and Harding D. R. K., High-density ligand attachment to brominated allyl matrices and application to mixed mode chromatography of chymosin, Journal of Chromatography A,1997,775:39-50
    [54]Burton S. C., and Harding D. R. K., Preparation of chromatographic matrices by free radical addition ligands attachment to allyl groups, Journal of Chromatography A,1998, 796:273-282
    [55]Noel R. J., O'Hare W. T., and Street G., Thiophilic nature of divinylsulphone cross-linked agarose, Journal of Chromatography A,1996,734:241-246
    [56]Scoble J. A., and Scopes R. K., Ligand structure of the divinylsulfone-based T-gel, Journal of Chromatography A,1997,787:47-54
    [57]Hansen M. B., Lihme A., Spitali M., and King D., Capture of human Fab fragments by expanded bed adsorption with a mixed mode adsorbent, Bioseparation,1999,8:189-193
    [58]Hamilton G. E., Luechau F., Burton S. C., and Lyddiatt A., Development of a mixed mode adsorption process for the direct product sequestration of an extracellular protease from microbial batch cultures, Journal of Biotechnology,2000,79:103-115
    [59]Burton S. C., and Harding D. R. K., Salt-independent adsorption chromatography:new broad-spectrum affinity methods for protein capture, Journal of Biochemical and Biophysical Methods,2001,49:275-287
    [60]Gao D., Lin D.-Q., and Yao S.-J., Mechanistic analysis on the effects of salt concentration and pH on protein adsorption onto a mixed-mode adsorbent with cation ligand, Journal of Chromatography B,2007,859:16-23
    [61]夏海锋,纤维素基复合层析基质的功能化与应用基础研究[博士学位论文],浙江大学,2008:30-34
    [62]Burton S. C., and Harding D. R. K., Hydrophobic charge induction chromatography:salt independent protein adsorption and facile elution with aqueous buffers, Journal of Chromatography A,1998,814:71-81
    [63]Boschetti E., Antibody separation by hydrophobic charge induction chromatography, Trends in Biotechnolog,2002,20:333-337
    [64]Ghose S., Hubbard B., and Cramer S. M., Protein interactions in hydrophobic charge induction chromatography (HCIC), Biotechnology Progress,2005,21:498-508
    [65]Xia H.-F., Lin D.-Q., Wang L.-P., Chen Z.-J., and Yao S.-J., Preparation and evaluation of cellulose adsorbents for hydrophobic charge induction chromatography, Industrial and Engineering Chemistry Research,2008,47:9566-9572
    [66]Szejtli J., Cyclodextrins, in:Atwood J. L., and Lehn J.-M., Comprehensive supramolecular chemistry, Vol.3, Oxford, U. K.:Pergamon,1996,6-36
    [67]Li S., and Purdy W. C., Cyclodextrins and their applications in analytical chemistry, Chemical Reviews,1992,92:1457-1470
    [68]Hedges A. R., Industrial applications of cyclodextrins, Chemical Reviews,1998,98: 2035-2044
    [69]Davis M. E., and Brewster M. E., Cyclodextrin-based pharmaceutics:past, present and future, Nature Reviews Drug Discovery,2004,3:1023-1035
    [70]Connors K. A., The stability of cyclodextrin complexes in solution, Chemical Reviews, 1997,97:1325-1357
    [71]Harada A., Cyclodextrin-based molecular machines, Accounts of Chemical Research,2001, 34:456-464
    [72]Harada K., Structural aspects of stereodifferentiation in the solid state, Chemical Reviews, 1998,98:1803-1827
    [73]Armstrong D. W., Ward T. J., Armstrong R. D., and Beesley T. E., Separation of drug stereoisomers by the formation of β-cyclodextrin inclusion complexes, Science,1986,232: 1132-1135
    [74]Chankvetadze B., Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins, Chemical Society Reviews,2004,33:337-347
    [75]Lammerhofer M., Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases, Journal of Chromatography A,2010, 1217:814-856
    [76]Armstrong D. W., Bonded phase material for chromatographic separations, US Patent Office, US 4 539 399,1985
    [77]Seeman J. I., Secor H. V., Armstrong D. W., Timmons K. D., and Ward T. J., Enantiomeric resolution and chiral recognition of racemic nicotine and nicotine analogues by β-cyclodextrin complexation. Structure-enantiomeric resolution relationships in host-guest interactions, Analytical Chemistry,1988,60:2120-2127
    [78]Armstrong D. W., Stalcup A. M., Hilton M. L., Duncan J. D., Jr. Faulkner J. R., and Chang S.-C., Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers, Analytical Chemistry,1990,62:1610-1615
    [79]He X.-L., Tan T.-W., Xu B.-Z., and Janson J.-C., Separation and purification of puerarin using β-cyclodextrin-coupled agarose gel media, Journal of Chromatography A,2004,1022: 77-82
    [80]Nussstein P., Staudinger G., and Kreuzer F.-H., Cyclodextrin polymers and process for their preparation, US Patent Office, US 5 360 899,1994
    [81]Smolkova-Keulemansova E., Cyclodextrins as stationary phases in chromatography, Journal of Chromatography,1982,251:17-34
    [82]Harada A., Furue M., and Nozakura S.-I., Optical resolution of mandelic acid derivatives by column chromatography on crosslinked cyclodextrin gels, Journal of Polymer Science: Polymer Chemistry Edition,1978,16:189-196
    [83]Mocanu G., Vizitiu D., and Carpov A., Cyclodextrin polymers, Journal of Bioactive and Compatible Polymers,2001,16:315-342
    [84]Solms J., and Egli R. H., Harze mit Einschlusshohlraumen von Cyclodextrin-Strucktur, Helvetica Chimica Acta,1965,48:1225-1228
    [85]Kobayashi N., Shirai H., and Hojo N., Virtues of a poly-cyclodextrin for the de-aggregation of organic molecules in water, Journal of Polymer Science, Part C:Polymer Letters,1989, 27:191-195
    [86]Crini G., and Morcellet M., Synthesis and applications of adsorbents containing cyclodextrins, Journal of Separation Science,2002,25:789-813
    [87]Fenyvesi E., Szilasi M., Zsadon B., Szejtli J., and Tudos F., Water-soluble cyclodextrin polymers and their complexing properties, Proceedings of the 1st International Symposium on Cyclodextrins, Budapest, Hungary,1981:345-356
    [88]Wiedenhof N., Lammers J. N. J. J., and van Panthaleon van Eck C. L., Properties of cyclodextrins. Ⅲ. Cyclodextrin-epichlorohydrin resins. Preparation and analysis, Starke, 1969,21:119-123
    [89]Wiedenhof N., Properties of cyclodextrins. IV. Features and use of insoluble cyclodextrin-epichlorohydrin resins, Starke,1969,21:163-166
    [90]Wiedenhof N., and Trieling R. G, Properties of cyclodextrins. V. Inclusion isotherm and kinetics of inclusion of benzoic acid and m-chlorobenzoic acid on β-E25 cyclodextrin-epichlorohydrin resin, Starke,1971,23:129-132
    [91]Szejtli J., Fenyvesi E., Zoltan S., Zsadon B., and Tudos F., Cyclodextrin-poly(vinyl alcohol) polymeric compositions in film, fiber, bead, and block polymers, Germany Patent Office, DE 2 927 733,1980
    [92]Thuaud N., Sebille B., Deratani A., and Lelievre G, Retention behavior and chiral recognition of β-cyclodextrin-derivative polymer adsorbed on silica for warfarin, structurally related compounds and Dns-amino acids, Journal of Chromatography,1991, 555,53-64
    [93]Hoffman J. L., Chromatography of nucleic acids on cross-linked cyclodextrin gels having inclusion-forming capacity, Journal of Macromolecular Science (Chemistry),1973, A7: 1147-1157
    [94]Zsadon B., Szilasi M., Tudos F., Fenyvesi E., and Szejtli J., Inclusion chromatography of amino acids on beta-cyclodextrin-polymer gel beds, Starke,1979,31:11-12
    [95]Moon J.-Y., Jung H.-J., Moon M. H., Chung B. C., and Choi M. H., Inclusion complex-based solid-phase extraction of steroidal compounds with entrapped β-cyclodextrin polymer, steroids,2008,73:1090-1097
    [96]Zsadon B., Decsei L., Szilasi M., Tudos F., and Szejtli J., Inclusion chromatography of enantiomers of indole alkaloids on a cyclodextrin polymer stationary phase, Journal of Chromatography,1983,270:127-134
    [97]Zsadon B., Szilasi M., Decsei L., Ujhazy A., and Szejtli J., Variation of the selectivity in the resolution of alkaloid enantiomers on cross-linked cyclodextrin polymer stationary phases, Journal of Chromatography,1986,356:428-432
    [98]Liao Y.-C., and Syu M.-J., Novel immobilized metal ion affinity adsorbent based on cross-linked β-cyclodextrin matrix for repeated adsorption of a-amylase, Biochemical Engineering Journal,2005,23:17-24
    [99]Liao Y.-C., and Syu M.-J., Effects of poly(ethylene glycol) and salt on the binding of a-amylase from the fermentation broth of Bacillus amyloliquefaciens by Cu2+-β-CD affinity adsorbent, Carbohydrate Polymers,2009,77:344-350
    [100]Mizobuchi Y., Tanaka M., and Shono T., Separation of aromatic amino acids on β-cyclodextrin polyurethane resins, Journal of Chromatography,1981,208:35-40
    [101]Bhaskar M., Aruna P., Jeevan R. J. G., and Radhakrishnan G.,β-Cyclodextrin-polyurethane polymer as solid phase extraction material for the analysis of carcinogenic aromatic amines, Analytica Chimica Acta,2004,509:39-45
    [102]Carbonnier B., Janus L., Lekchiri Y., and Morcellet M., Coating of porous silica beads by in situ polymerization/crosslinking of 2-hydroxypropyl β-cyclodextrin for reversed-phase high performance liquid chromatography applications, Journal of Applied Polymer Science, 2004,91:1419-1426
    [103]Kim I. W., Choi H. M., Yoon H. J., and Park J. H.,β-Cyclodextrin-hexamethylene diisocyanate copolymer-coated zirconia for separation of racemic 2,4-dinitrophenyl amino acids in reversed-phase liquid chromatography, Analytica Chimica Acta,2006,569: 151-156
    [104]Yamasaki H., Makihata Y., and Fukunaga K., Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles, Journal of Chemical Technology and Biotechnology,2006,81:1271-1276
    [105]Yamasaki H., Makihata Y., and Fukunaga K., Preparation of crosslinked β-cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater, Journal of Chemical Technology and Biotechnology,2008,83:991-997
    [106]Mohamed M. H., Wilson L. D., and Headley J. V, Estimation of the surface accessible inclusion sites of β-cyclodextrin based copolymer materials, Carbohydrate Polymers,2010, 80:186-196
    [107]Narayanaswamy S. M. N. R., Molecularly imprinted β-cyclodextrin polymer as potential optical receptor for the detection of organic compound, Sensors and Actuators B:Chemical, 2009,139:156-165
    [108]Pariot N., Edwards-Levy F., Andry M.-C., and Levy M.-C., Cross-linked β-cyclodextrin microcapsules:preparation and properties, International Journal of Pharmaceutics,2000, 211:19-27
    [109]Constantin M., Fundueanu G., Bortolotti F., Cortesi R., Ascenzi P., and Menegatti E., Preparation and characterisation of poly(vinyl alcohol)/cyclodextrin microspheres as matrix for inclusion and separation of drugs, International Journal of Pharmaceutics,2004,285: 87-96
    [110]Girek T., Kozlowski C. A., Koziol J. J., Walkowiak W., and Korus I., Polymerisation of β-cyclodextrin with succinic anhydride. Synthesis, characterisation, and ion flotation of transition metals, Carbohydrate Polymers,2005,59:211-215
    [111]Zhao D., Zhao L., Zhu C.-S., Tian Z.-B., and Shen X.-Y., Synthesis and properties of water-insoluble β-cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier, Carbohydrate Polymers,2009,78:125-130
    [112]Nielsen A. L., Steffensen K., and Larsen K. L., Self-assembling microparticles with controllable disruption properties based on cyclodextrin interactions, Colloids and Surfaces B:Biointerfaces,2009,73:267-275
    [113]Prabaharan M., and Mano J. F., Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices, Carbohydrate Polymers,2006,63:153-166
    [114]顾学裘,吕永俊,李好枝编,银杏药学研究与临床开发,北京:中国医药科技出版社,2004:1-95&185-271
    [115]国家药典委员会编,中华人民共和国药典(2005年版),第一部,北京:化学工业出版社,2005:71,220-221,281-282&597-598
    [116]van Beek T. A., and Montoro P., Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals, Journal of Chromatography A,2009,1216: 2002-2032
    [117]Yan C.-L., Li X.-H., Xiu Z.-L., and Hao C, A quantum-mechanical study on the complexation of β-cyclodextrin with quercetin, Journal of Molecular Structure:Theochem, 2006,764:95-100
    [118]Yan C.-L., Xiu Z.-L., Li X.-H., Teng H., and Hao C., Theoretical study for quercetin/β-cyclodextrin complexes:quantum chemical calculations based on the PM3 and ONIOM2 method, Journal of Inclusion Phenomena and Macrocyclic Chemistry,2007,58: 337-344
    [119]Ding H.-Y., Chao J.-B., Zhang G.-M., Shuang S.-M., and Pan J.-H., Preparation and spectral investigation on inclusion complex of β-cyclodextrin with rutin, Spectrochimica Acta Part A,2003,59:3421-3429
    [120]Pietta P.-G., Flavonoids as antioxidants, Journal of Natural Products,2000,63:1035-1042
    [121]Cook N. C., and Samman S., Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources, The Journal of Nutritional Biochemistry,1996,7:66-76
    [122]Fotsis T., Pepper M. S., Aktas E., Breit S., Rasku S., Adlercreutz H., Wahala K., Montesano R., and Schweigerer L., Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis, Cancer Research,1997,57:2916-2921
    [123]De Stefani E., Boffetta P., Deneo-Pellegrini H., Mendilaharsu M., Carzoglio J. C, Ronco A., and Olivera L., Dietary antioxidants and lung cancer risk:a case-control study in Uruguay, Nutrition and Cancer,1999,34:100-110
    [124]Ono K., Nakane H., Fukushima M., Cherman J. C., and Barre-Sinoussi F., Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases, European Journal of Biochemistry,1990,190:469-476
    [125]Formica J. V., and Regelson W., Review of the biology of quercetin and related bioflavonoids, Food and Chemical Toxicology,1995,33:1061-1080
    [126]Yanez J. A., Andrews P. K., and Davies N. M., Methods of analysis and separation of chiral flavonoids, Journal of Chromatography B,2007,848:159-181
    [127]唐浩国等著,黄酮类化合物研究,北京:科学出版社,2009:389-444
    [128]李国丽,李春霞,王威强,银杏叶黄酮类化合物提取分离研究现状和展望,山东轻工业学院学报,2005,19:18-23
    [129]胡敏,张艳红,胡艳,张声华,银杏黄酮苷的水浸提方法研究,食品与发酵工业,1998,24:31-34
    [130]崔旭海,银杏叶黄酮类化合物提取分离技术的研究进展,食品工程,2008:7-11
    [131]Xu M.-C., Shi Z.-Q., Feng L.-L., Liu J.-X., Shi R.-F., Xu M.-C., Lu Y.-L., and He B.-L. Synthesis of gelatin-PVA adsorbent and its application in the separation of ginkgo flavonol glycosides and terpene lactones, Reactive and Functional Polymers,2001,46:273-282
    [132]Yu F.-C., Lai S.-M., and Suen S.-Y., Extraction of flavonoid glycosides from Ginkgo biloba leaves and their adsorption separations using hydrophobic and anion-exchange membranes, Separation Science and Technology,2003,38:1033-1050
    [133]范莹莹,黄小凤,乙醇-水体系中黄酮类化合物的浸取工艺研究,昆明理工大学学报(理工版),2006,31:104-106
    [134]李艳丽,黄强,班春兰,蒋元力,从银杏叶中提取银杏黄酮的研究,精细与专用化学品,2006,14:20-22
    [135]刘斌,倪健主编,中药有效部位及成分提取工艺和检测方法,北京:中国中医药出版社,2007:459-468
    [136]庞素秋,王国权,乔传卓,张汉明,4种工艺提取银杏叶中黄酮的实验比较,海峡药 学,1997,9:2-3
    [137]张春秀,胡小玲,岳红,吕玲,卢锦花,银杏黄酮类化合物的提取分离,应用化学,2001,18:338-339
    [138]卢艳花,魏东芝,蒋晓萌编,中药有效成分提取分离技术(第二版),北京:化学工业出版社,2008:51-126
    [139]Chen J.-X.-P., Zhang Y.-D., Rapid microwave-assisted hydrolysis for determination of ginkgo flavonol glycosides in extracts of Ginkgo biloba leaves, Journal of Chromatographic Science,2008,46:117-121
    [140]李莹,周剑忠,王功,黄自苏,王英,单成俊,超声波和微波联合提取银杏叶黄酮的研究,食品科技,2008,33:153-155
    [141]徐怀德主编,天然产物提取工艺学,北京:中国轻工业出版社,2006:75-215
    [142]Chiu K.-L., Cheng Y.-C., Chen J.-H., Chang C. J., and Yang P.-W., Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids, Journal of Supercritical Fluids,2002,24: 77-87
    [143]姚渭溪,银杏叶中活性成分的提取工艺、测定及其进展,中草药,1995,26:157-159
    [144]Yang C., Xu Y.-R., and Yao W.-X., Extraction of pharmaceutical components from Ginkgo biloba leaves using supercritical carbon dioxide, Journal of Agricultural and Food Chemistry,2002,50:846-849
    [145]孙婷,超临界CO2法萃取银杏叶黄酮及其含量测定的研究,中国食品学报,2005,5:126-129
    [146]张志炳,徐志红,李磊,彭璟,武法文,谭淑娟,环糊精在银杏黄酮提取中的应用,中国专利,中华人民共和国知识产权局,CN 1680354-A,2005
    [147]徐志红,李磊,武法文,谭淑娟,彭璟,张志炳,环糊精对黄酮的包合作用及其在银杏黄酮提取中的应用,精细化工,2005,22:762-765
    [148]杨青林,李雷光,李志良,银杏叶黄酮类化合物提取方法的研究,化学工业与工程技术,2009,30:10-13
    [149]Xu M.-C., Shi Z.-Q., Shi R.-F., Liu J.-X., Lu Y.-L., and He B.-L., Synthesis of the adsorbent based on macroporous copolymer MA-DVB beads and its application in purification for the extracts from Ginkgo biloba leaves, Reactive and Functional Polymers,2000,43: 297-304
    [150]Ren P., Zhao X.-L., Zhang J., Shi R.-F., Yuan Z., and Wang C.-H., Synthesis of high selectivity polymeric adsorbent and its application on the separation of ginkgo flavonol glycosides and terpene lactones, Reactive and Functional Polymers,2008,68:899-909
    [151]张静泽,曹波,白淑芳,陈虹,银杏黄酮纯化工艺研究,天津药学,2008,20:3-6
    [152]Li J., and Chase H. A., Use of expanded bed adsorption to purify flavonoids from Ginkgo biloba L., Journal of Chromatography A,2009,1216:8759-8770
    [153]张培成主编,黄酮化学,北京:化学工业出版社,2009:239-243
    [154]巫军,李松林,紫外分光光度法测定银杏叶胶囊总黄酮含量,解放军药学学报,2002,18:109-110
    [155]王严国,许勇,凌娟,紫外分光光度法测定复方银杏叶胶囊总黄酮含量,东南国防医药,2005.7:206-207
    [156]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会发布,GB/T20574-2006,蜂胶中总黄酮含量的测定方法——分光光度比色法,北京:中国标准出版社,2007
    [157]邓桂春,王鑫,赵丽艳,高虹,张娜,马进,臧树良,分光光度法测定银杏叶中黄酮的含量,辽宁大学学报(自然科学版),2005,32:101-104
    [158]Rimmer C. A., Howerton S. B., Sharpless K. E., Sander L. C., Long S. E., Murphy K. E., Porter B. J., Putzbach K., Rearick M. S., Wise S. A., Wood L. J., Zeisler R., Hancock D. K., Yen J. H., Betz J. M., NguyenPho A., Yang L., Scriver C., Willie S., Sturgeon R., Schaneberg B., Nelson C., Skamarack J., Pan M., Levanseler K., Gray D., Waysek E. H., Blatter A., and Reich E., Characterization of a suite of ginkgo-containing standard reference materials, Analytical and Bioanalytical Chemistry,2007,389:179-196
    [159]Sloley B. D., Tawfik S. R., Scherban K. A., and Tam Y. K., Quality control analyses for ginkgo extracts require analysis of intact flavonol glycosides, Journal of Food and Drug Analysis,2003,11:102-107
    [160]Hasler A., Sticher O., and Meier B., Identification and determination of flavonoids from Ginkgo biloba by high-performance liquid chromatography, Journal of Chromatography, 1992,605:41-48
    [161]杜安全,王先荣,周正华,许凤鸣,夏重道,银杏叶总黄酮苷的HPLC法分析水解条件,安徽医药,2001,5:164-165
    [162]Wang H.-X., Yi W., and Ping Q.-N., Response surface methodology for the optimization of hydrolysis condition of flavonoids in GBE, Chinese Journal of Natural Medicines,2004,2: 28-32
    [163]邓丹丹,赵浩如,黄罗生,水解时间对银杏黄酮含量的影响,中成药,2004,26:662-664
    [164]赖宇红,童惠贞,冼彦芳,朱焕容,余瑜,银杏黄酮测定时水解条件的研究,中国药科大学学报,2007,38:569-571
    [165]van Beek T.A., Chemical analysis of Ginkgo biloba leaves and extracts, Journal of Chromatography A,2002,967:21-55
    [166]Dubber M.-J., and Kanfer I., High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms, Journal of Pharmacy and Pharmaceutical Sciences,2004,7:303-309
    [167]谢大年,郭兆贵,银杏叶提取物中黄酮类成分的高效液相色谱分析,色谱,1994,12:384-385
    [168]王俊德,熊博晖,丛润滋,沈丽,用高效液相色谱法分析银杏黄酮时几个问题的探讨,分析化学,1999,27:1076-1079
    [169]鞠兴荣,汪海峰,银杏叶提取物中黄酮类化合物的高效液相色谱测定,食品科学,2001,22:66-68
    [170]王靖,邹雨佳,唐华澄,李东,高效液相色谱法(HPLC)测定银杏黄酮含量,食品工业科技,2006:184-185,191
    [171]祝连彩,王伯初,刘火安,谭君,高效液相色谱法测定银杏叶提取物中黄酮含量,重庆大学学报(自然科学版),2006,29:117-119
    [172]余启荣,晏利芝,谭湘湘,HPLC法测定银杏叶提取物中总黄酮醇苷的含量,首都师范大学学报(自然科学版),2009,30:32_34
    [173]Jiang L.-Q., Fang G.-Z., Zhang Y., Cao G.-J., and Wang S., Analysis of flavonoids in propolis and Ginkgo biloba by micellar electrokinetic capillary chromatography, Journal of Agricultural and Food Chemistry,2008,56:11571-11577
    [174]Cao Y.-H., Chu Q.-C., Fang Y.-Z., Ye J.-N., Analysis of flavonoids in Ginkgo biloba L. and its phytopharmaceuticals by capillary electrophoresis with electrochemical detection, Analytical and Bioanalytical Chemistry,2002,374:294-299
    [175]童林荟著,环糊精化学——基础与应用,北京:科学出版社,2001:10-91&191_229
    [176]Dowding P. J., and Vincent B., Suspension polymerisation to form polymer beads, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,161:259-269
    [177]Dawkins J. V., Aqueous suspension polymerizations, in:Allen G., and Bevington J. C. (Eds.), Comprehensive Polymer Science. The Synthesis, Characterization and Applications of Polymers, Vol.4, Oxford:Pergamon,1989:231-241
    [178]潘祖仁,翁志学,黄志明著,悬浮聚合,北京:化学工业出版社,1997:152-192
    [179]王佳兴,苏志国,马光辉主编,生化分离介质的制备与应用,北京:化学工业出版社,2008:11-43
    [180]Kipling J. J., and Wilson R. B., Adsorption of methylene blue in the determination of surface areas, Journal of Applied Chemistry,1960,10:109-113
    [181]Kaewprasit C., Hequet E., Abidi N., and Gourlot J. P., Application of methylene blue adsorption to cotton fiber specific surface area measurement:Part Ⅰ. Methodology, Journal of Cotton Science,1998,2:164-173
    [182]蒋维钧,戴猷元,顾惠君编著,化工原理(第三版上册),北京:清华大学出版社,2009:184-227
    [183]时钧,汪家鼎,余国琮,陈敏恒主编,化学工程手册(第二版下卷),北京:化学工业出版社,1996,No.20
    [184]中华人民共和国化学工业部发布,GB 8330-87,离子交换树脂湿真密度测定方法,北京:中国标准出版社,1992
    [185]国家标准局发布,GB 5757-86,离子交换树脂含水量测定方法,北京:中国标准出版社,1991
    [186]Zhang L.-N., Zhou J.-P., Yang G., and Chen J.-H., Preparative fractionation of polysaccharides by columns packed with regenerated cellulose gels, Journal of Chromatography A,1998,816:131-136
    [187]李欣,李朝兴,何炳林,磁性珠状纤维素的性能表征,离子交换与吸附,1997,13:496-502
    [188]Institute for Fermentation Research, Japan, Polycyclodextrin beads, Japanese Patent Office, JP 58 171 404,1983
    [189]Fenyvesi E., Szejtli J., Zsadon B., Antal B., and Wagner P. Mrs, Water-swellable cyclodextrin polymers, Hungarian Patent Office, HU 34 226,1985
    [190]Friedman R. B., and West I. R., Removal of polychlorinated biphenyl compounds from water using water-insoluble cyclodextrin polymers, German Patent Office, DE 3 714 081, 1987
    [191]Khan A. R., Forgo P., Stine K. J., and D'Souza V. T., Methods for selective modifications of cyclodextrins, Chemical Reviews,1998,98:1977-1996
    [192]Rong D., and D'Souza V. T., A convenient method for functionalization of the 2-position of cyclodextrins, Tetrahedron Letters,1990,31:4275-4278
    [193]Thommes J., Weiher M., Karau A., and Kula M.-R., Hydrodynamics and performance in fluidized bed adsorption, Biotechnology and Bioengineering,1995,48:367-374
    [194]Chase H. A., and Chang Y. K., Development of operating conditions for protein purification using expanded bed techniques:The effect of the degree of bed expansion on adsorption performance, Biotechnology and Bioengineering,1996,49:512-526
    [195]Karau A., Benken C., Thommes J., and Kula M.-R., The influence of particle size distribution and operating conditions on the adsorption performance in fluidized beds, Biotechnology and Bioengineering,1997,55:54-64
    [196]Finette G. M. S., Baharin B., Mao Q. M., and Hearn M. T. W., Optimization considerations for the purification of α1-antitrypsin using silica-based ion-exchange adsorbents in packed and expanded beds, Biotechnology Progress,1998,14:286-293
    [197]Lin D.-Q., Miao Z.-J., and Yao S.-J., Expansion and hydrodynamic properties of cellulose-stainless steel powder composite matrix for expanded bed adsorption, Journal of Chromatography A,2006,1107:265-272
    [198]Richardson J. F., and Zaki W. N., Sedimentation and fluidization:part Ⅰ, Transactions of the Institution of Chemical Engineers,1954,32:35-53
    [199]Thommes J., Bader A., Halfar M., Karau A., and Kula M.-R., Isolation of monoclonal antibodies from cell containing hybridoma broth using a protein A coated adsorbent in expanded beds, Journal of Chromatography A,1996,752:111-122
    [200]Martin B. L. A., Kolar Z., and Wesselingh J. A., The falling velocity of a sphere in a swarm of different spheres, Transactions of the Institution of Chemical Engineers,1981,59: 100-104
    [201]Krishnaswamy P. R., and Shemilt L. W., Correlations for axial mixing in liquid-fluidized beds, The Canadian Journal of Chemical Engineering,1972,50:419-420
    [202]van Deemter J. J., Zuiderweg F. J., and Klinkenberg A., Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chemical Engineering Science,1956,5:271-289
    [203]Gondkar S., Manudhane K., Amritkar N., Pai A., and Lali A., Effect of adsorbent porosity on performance of expanded bed chromatography of proteins, Biotechnology Progress, 2001,17:522-529
    [204]Cussler E. L., Diffusion. Mass transfer in fluid systems (2nd Ed.),王宇新,姜忠义译,扩散——流体系统中的传质(第二版),北京:化学工业出版社,2002:69
    [205]Li J., and Chase H. A., Characterization and evaluation of a macroporous adsorbent for possible use in the expanded bed adsorption of flavonoids from Ginkgo biloba L., Journal of Chromatography A,2009,1216:8730-8740
    [206]Yang L., Tan T.-W., Zhang L.-Q., Process utilized oligo-β-cyclodextrin substituted agarose gel medium for efficient purification of paclitaxel from Taxus cuspidata, Separation and Purification Technology,2009,68:119-124
    [207]Yang L., Zhang H.-Y, Tan T.-W., and Rahman A. U., Thermodynamic and NMR investigations on the adsorption mechanism of puerarin with oligo-β-cyclodextrin-coupled polystyrene-based matrix, Journal of Chemical Technology and Biotechnology,2009,84: 611-617
    [208]Garcia-Zubiri I. X., Gonzalez-Gaitano G., and Isasi J. R., Sorption models in cyclodextrin polymers:Langmuir, Freundlich, and a dual-mode approach, Journal of Colloid and Interface Science,2009,337:11-18
    [209]Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society,1918,40:1361-1368
    [210]Chase H. A., Prediction of the performance of preparative affinity chromatography, Journal of Chromatography,1984,297:179-202
    [211]滕新荣主编,表面物理化学,北京:化学工业出版社,2009:96-101
    [212]Li H.-T., Jiao Y.-C., Xu M.-C., Shi Z.-Q., and He B.-L., Thermodynamics aspect of tannin sorption on polymeric adsorbents, Polymer,2004,45:181-188
    [213]Do D. D., and Do H. D., A new adsorption isotherm for heterogeneous adsorbent based on the isosteric heat as a function of loading, Chemical Engineering Science,1997,52: 297-310
    [214]Geankopolis C. J., Transport processes and unit operations (2nd Ed.), New York:Allyn & Bacon,1983:439-440
    [215]Jr. Weaver L. E., and Carta G., Protein adsorption on cation exchangers:comparison of macroporous and gel-composite media, Biotechnology Progress,1996,12:342-355
    [216]Zhang S.-P., and Sun Y., Ionic strength dependence of protein adsorption to dye-ligand adsorbents, AIChE Journal,2002,48:178-186
    [217]Villadsen J. V., and Stewart W. E., Solution of boundary-value problems by orthogonal collocation, Chemical Engineering Science,1967,22:1483-1501
    [218]中华人民共和国农业部发布,NY/T1295-2007,荞麦及其制品中总黄酮含量的测定,北京:中国农业出版社,2007
    [219]Hayduk W., and Laudie H., Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solution, AIChE Journal,1974,20:611-615
    [220]刘光启,马连湘,刘杰主编,化学化工物性数据手册(无机卷),北京:化学工业出版社,2002:12
    [221]Reid R. C., Prausnitz J. M., and Poling B. E., The properties of gases and liquids (4th Ed.), New York:McGraw-Hill,1987:52-55
    [222]Singh S. V., Gupta A. K., and Jain R. K., Adsorption of naringin on nonionic (neutral) macroporus adsorbent resin from its aqueous solutions, Journal of Food Engineering,2008, 86:259-271
    [223]Shuang S.-M., Pan J.-H., Guo S.-Y., Cai M.-Y., and Liu C.-S., Fluorescence study on the inclusion complexes of rutin with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and γ-cyclodextrin, Analytical Letters,1997,30:2261-2270
    [224]Rohrschneider L., Solvent characterization by gas-liquid partition coefficients of selected solutes, Analytical Chemistry,1973,45:1241-1247
    [225]Reichardt C., Solvents and solvent effects in organic chemistry (2nd Ed.), Weinheim, Germany:VCH,1988:365-371
    [226]Chen W.-D., Wang Y.-D., Zha L.-H., Ma G.-H., and Su Z.-G., Single-step recovery of ephedrine hydrochloride from raw materials using expanded bed adsorption, Biotechnology Letters,2004,26:1233-1236
    [227]Chen W.-D., Wang Y.-D., Hu H.-H., and Su Z.-G., Hydrodynamics in an expanded bed of large size ion-exchange resin, and natural product adsorption, Journal of Chemical Technology and Biotechnology,2007,82:135-142
    [228]Zhang M., Hu P., Liang Q.-L., Yang H.-H., Liu Q.-F., Wang Y.-M, and Luo G.-A., Direct process integration of extraction and expanded bed adsorption in the recovery of crocetin derivatives from Fructus Gardenia, Journal of Chromatography B,2007,858:220-226
    [229]Song H.-B., Xiao Z.-F., and Yuan Q.-P., Preparation and characterization of poly glycidyl methacrylete-zirconium dioxide-β-cyclodextrin composite matrix for separation of isoflavones through expanded bed adsorption, Journal of Chromatography A,2009,1216: 5001-5010
    [230]姜忠义,吴洪编著,分子印迹技术,北京:化学工业出版社,2003:1-50
    [231]Asanuma H., Kakazu M., Shibata M., Hishiya T., and Komiyama M, Synthesis of molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol, Supramolecular Science,1998,5:417-421
    [232]Egawa Y, Shimura Y, Nowatari Y, Aiba D., and Juni K., Preparation of molecularly imprinted cyclodextrin microspheres, International Journal of Pharmaceutics,2005,293: 165-170
    [233]Qin L., He X.-W., Li W.-Y., and Zhang Y.-K., Molecularly imprinted polymer prepared with bonded β-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media, Journal of Chromatography A,2008,1187:94-102
    [234]Yang Y, Long Y.Y., Cao Q., Li K.-A., and Liu F., Molecularly imprinted polymer using β-cyclodextrin as functional monomer for the efficient recognition of bilirubin, Analytica Chimica Acta,2008,606:92-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700