磁性纳米粒子高效纯化及双色荧光量子点探针筛查外周血肺癌微转移方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌现已成为全球范围内对人类健康威胁最大的恶性肿瘤之一,尽管手术能够完全切除局部病灶,但仍有患者在5年内复发和转移,因此科学家提出微转移的概念,认为如果能及时诊断出微转移,患者将有可能得到更及时、系统和有针对性的治疗。磁性纳米粒子以其优越的物理特性在生物分离领域显示出独特的优势,荧光量子点与有机荧光染料相比具有独特的光学特性,在荧光标记领域的应用也突显优势。本文通过将广谱角蛋白pan-ck抗体偶联到Fe3O4磁性纳米粒子表面,肺组织特异性Lunx抗体及SP-A抗体偶联到水溶性CdTe荧光量子点表面,然后利用已标识有pan-ck抗体的磁性纳米粒子进行外周血癌细胞的富集与分选,最后应用连接有Lunx和SP-A抗体的荧光量子点对富集到的细胞进行肺组织特异性鉴定,以实现对肺癌微转移的诊断。本研究成功地将pan-ck抗体偶联到磁性纳米粒子表面,Lunx和SP-A抗体偶联到荧光量子点表面,并且能够从外周血中富集与分选到癌细胞,通过双色荧光量子点探针成功地对细胞内两种蛋白的表达进行了同步鉴定,明显提高了鉴定的效率与准确性,为进一步建立外周血肺癌微转移方法奠定了较好的研究基础。
Pulmonary carcinoma has become one of the biggest malignant tumors threatening to human all over the world. Its incidence rate and death rate have a incremental tendency year by year. Pulmonary carcinoma is divided into small cell lung cancer and non small cell lung cancer(NSCLC) according international standard. NSCLC occupy 85 percent of pulmonary carcinoma. To the NSCLC patients, operation is the preferred treatment prescription. Although operation can completely resect local lesion,there still have patients occur recidivation and metabasis,and routine pathobiology and imageology method have difficultity to find the focus. So scientists propose the concept of occult micrometastasis. They consider that if we can diagnose occult micrometastasis in time,then the patients have the chance to obtain directed and systematical treatment promptly. Thus people put the expection to the new detect method that screening peripheral blood caner cells for the people that has lung carcinoma risk factor or the patient that final diagnosis is lung carcinoma,thereby achieve the aims of early diagnosis and preventing recurrence.
     At present, the main methods of screening cancer cells in peripheral blood are RT-PCR detection、flow cytometry and immunomagnetic beads technique et al. RT-PCR detection is that designing specific primer of tumor marked gene or target mRNA and useing RT-PCR method to detect peripheral blood sample whether contain tumor cells marked gene or mRNA.Because this method suffer from experiment contamination、illegitimate transcription et al.,so this method has high false positive rate.Thus it limit the usage for screening. Flow cytometry can carry out multiparameter and volant quantitate analysis and sorting to the cells of quick streamline flow state. Even though flow cytometry can gain precise cells quantitation,it cann’t provide cell morphology and the instrument price is so high that restrict its generalization. Immunomagnetic beads is synthetical ferruginated microparticles. Outer layer is coated by functional layer. Functional layer can bind biomolecule and be drawen by magnetic force.So under the magnetic force, compound particles happen mechanic movement and achieve be separated from other materials. In spite of immunomagnetic beads technique achieve determinate result, because of bigger diameter of magnetic beads, magnetic beads is easy to aggregate and sedimentate,so cause enriching efficiency to decrease, magnetic beads have difficulty to desorpt from cell surface.These defects confine the application of magnetic beads.
     Magnetic nanoparticles is a new type nanometer magnetic.Comparing with common magnetic particle, the diameter of magnetic nanoparticles is small,it has favourable surface effection, functional group density of nanoparticle is increased,the time of dsorption equilibrium is decurtated. Secondly, magnetic nanoparticles has fine magnetic response,it has superparamagnetism. Thirdly, physical and chemistry property of magnetic nanoparticles are stable.it has enough mechanical strength to tolerance acid and alkali fusion and degradation of microbe.Finally,magnetic nanoparticle surface has functional group,so it can connect biomolecule.under the magnetic force, compound happen mechanic movement and achieve be separated from other material.
     Quantum dots are new type of fluorophores with unique photophysical properties that make them attractive to biologists for use in fluorescence assays. Comparing with organic fluorescent dyes, quantum dots has broad absorption spectra coupled to narrow size-tunable photoluminescent emission spectra. Distinct populations of quantum dots can be simultaneously excited by a single excitation wavelength far removed from their respective emissions, the properties suggests they could be especially suited for multiplexing assays via simultaneous detection of multiple signals. Quantum dots have the ability to resist photobleaching.when using optical excitation, organic fluorescent dyes have faded,quantum still has strong fluorescence.
     In my experiments, We coupled pan-ck antibody to the surface of magnetic nanoparticles, Lunx and SP-A antibody to the surface of quantum dots, then we enriched tumor cells by magnetic nanoparticle probe, and identified lung tissue specificity by quantum dots labelled antibody. Thus we could realize diagnose of earlier period micrometastasis. Experiments were divided four parts: 1. Preparation and modification of Fe3O4 magnetic nanoparticles and aqueous soluble CdTe quantum dots. 2. Coupling antibody to the surface Fe3O4 magnetic nanoparticles and aqueous soluble CdTe quantum dots. 3. Constructing a method on enriching and separating cancer cells in peripheral blood by immunomagnetic nanoparticles. 4. Identifing pulmonary carcinoma by quantum dots labelled Lunx and SP-A antibody. The results are as follows.
     1. Preparation and modification of Fe3O4 magnetic nanoparticles
     Fe3O4/poly(St-co-MPS)/SiO2 composite particles were prepared by combinating miniemulsion polymerization and St?ber coating methods.(patent delegation NO. CN100425627C ).Carboxyl-functionalized Fe3O4/Polystyrene composite particles were also prepared by copolymerization of acrylic acid and styrene, where could also prepare magnetite composite particles with different functionalized groups which could couple biomolecules.the small diameter of magnetic nanoparticles had fine biocompatibility, magnetic nanoparticles couple to biomolecule,then be used in the field of biological tag and bioseparation.
     2. Preparation and modification of aqueous soluble CdTe quantum dots
     Aqueous soluble CdTe quantum dots were prepared in aqueous solution by using thioglycolic acid as the stabilizer and then characterized by fluorescence emission spectrum, absorption band, and TEM, respectively. The results show that these quantum dots had good optical properties, such as narrow spectral line widths and continuous absorption profiles, peak width at half is 50 nm, TEM picture show that quantum dots dispersibility was fine,the diameter is uniform, which provide a powerful foundation for further applications.
     3. Coupling pan-ck antibody to the surface Fe3O4 magnetic nanoparticles
     Carbodiimide-mediated condensation method was used to couple pan-ck antibody to the surface of magnetic nanoparticles. In order to obtain the best coupling buffer system,we changed PH value, antibody addition and cross linking agent addition of MES coupling buffer and bangslabs coupling buffer. The result show that when PH value was 5.5, pan-ck antibody addition was 50μg,EDC addition was 0.25mg,the bangslabs coupling buffer system achieve the biggest coupling rate.
     4. Coupling Lunx or SP-A antibody to the surface aqueous soluble CdTe quantum dots
     Carbodiimide-mediated condensation method was used to couple Lunx and SP-A antibody to the surface aqueous soluble CdTe quantum dots. In order to obtain the best coupling buffer system,we changed the concentration and PH value of borate buffer.The result show that when PH value was 7.5, concentration was 0.05M, emission spectrum of CdTe quantum dots was the highest. After coupling finished, using dislysis method to eliminate quantum dots that didn’t couple antibody. We detected fluorescence emission spectrum after dislysis.the result show that the biggest emission peak had slight red shift,and peak shape didn’t change.these results hinted us that quantum dots didn’t happen gather and its dispersibility is fine, which provide a powerful foundation for further applications.
     5. Constructing a method on enriching and separating cancer cells in peripheral blood by immunomagnetic nanoparticles.
     We cultured A549 cells line,SPC-A-1 cell line,HepG2 cell line,HCT-8 cell line and identified expression of pan-ck protein in four epithelial cell lines. Four epithelial cell lines had high expression of pan-ck protein. This hint us that pan-ck can be served as capture antibody to screen epithelial cells. We investigated enriching efficiency by change the proportion of cancer epithelial line and PBMC,then enriching cancer cell by immunomagnetic nanoparticles.The result show that enriching efficiency is 5×106 ,comparing with the work of Zigeuner that use immunomagnetic beads to enrich,the enriching efficiency raised 5 times.along with proportion of cancer cells elevating,enriching cells means was increasing. After enriching,we used HE stain to initially identify cancer cells.HE stain show us that nucleus body of cells enriched by immunomagnetic nanoparticles was enlarged and nucleus dye deep,while main part of PBMC was lymph cells,comparing with cancer cells, lymph cells body was small. We collected 6 case peripheral blood of pulmonary carcinoma patients,then used immunomagnetic nanoparticles enriching epithelial cancer cells.5 cases peripheral blood could enrich cancer cells,while 1 case couldn’t enrich to obtain cancer cells. The cause was owe to that the extent of enriching efficiency was limited. So we should improve enriching efficiency.
     6. Identifing pulmonary carcinoma by quantum dots labelled Lunx and SP-A antibodies
     After enriching,we needed identify cells character using further detect method. Firstly, detecting expression of Lunx and SP-A in four epithelial cancer cells by immunocytochemical method. Then we investigated accuracy of quantum dots labeling by QDs-Lunx and QDs-SP-A to label four epithelial cancer cells. The result show that positive cell rate of the two methods of Immunocytochemical stain and quantum dots single labeling method was coincident.Quantum dots double labeling method can elevate positive cell rate. After ascertaining accuracy and superiority,we identified 5 case cells sample of enriching from peripheral blood by QDs-Lunx and QDs-SP-A probe. The result show that 2 cases expressed Lunx and SP-A at the same time.1 case only expressed SP-A. 2 cases only express Lunx. These results suggest us that using Lunx and SP-A antibody can effectively identify lung tissue specificity and quantum dots double labeling method can detect multiprotein expression at one sample simultaneously and effectively.
引文
[1]叶任高,陆再英,于维汉,等.内科学(第五版)[M].北京:人民卫生出版社,2000.
    [2] Hai Y,Pai V,Chen CJ . Development of magnetic device for cell separation [J]. Journal of Magnetism and Magnetic Materials, 1999,194 (1-3): 254- 261.
    [3] Ashworth TR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death[J]. Aust Med J,1869, 14: 146 -147.
    [4] Leong AS. The prognostic dilemma of nodal micrometastases in breast carcinoma[J].Gan To Kagaku Ryoho, 2000, 27 (2): 315-320.
    [5] Xie XD,Qu SX,Liu ZZ,et al. Study on relationship between angiogenesis and micrometastases of peripheral blood in breast cancer[J]. J Cancer Res Clin Oncol, 2009, 135(3): 413-419.
    [6] Burchill SA. Micrometastases in neuroblastoma: are they clinically important? [J].J. Clin. Pathol., 2004,57: 14-20.
    [7] Müller V, Stahmann N, S Riethdorf,et al. Circulating Tumor Cells in Breast Cancer: Correlation to Bone Marrow Micrometastases, Heterogeneous Response to Systemic Therapy and Low Proliferative Activity[J].Clin. Cancer Res., 2005,11: 3678 - 3685.
    [8] Wang S, Fan P, Liu X. Study on micrometastases in sentinel lymph node, peripheral blood and bone marrow from breast cancer patients[J].ASCO Meeting Abstracts,2004,22: 690.
    [9] Schulz S, Hyslop T, Haaf J,et al. A Validated Quantitative Assay to Detect Occult Micrometastases by Reverse Transcriptase-Polymerase Chain Reaction of Guanylyl Cyclase C in Patients with Colorectal Cancer[J].Clin. Cancer Res., 2006,12: 4545 - 4552.
    [10] Gobardhan PD, Elias SG, Madsen EVE,et al. Prognostic value of micrometastases in sentinel lymph nodes of patients with breast carcinoma: a cohort study[J].Ann. Onc., 2009,20: 41-48.
    [11] Rena O, Carsana L, Cristina S,et al. Lymph node isolated tumor cells and micrometastases in pathological stage I non-small cell lung cancer: prognostic significance[J].Eur. J. Cardiothorac. Surg.,2007,32: 863–867.
    [12] Wu ZY, Li JH, Zhan WH,et al. Effect of lymph node micrometastases on prognosis of gastric carcinoma[J].World J Gastroenterol, 2007,13(30): 4122-4125.
    [13] Ishii K, Kinami S, Funaki K,et al. Detection of sentinel and non-sentinel lymph nodemicrometastases by complete serial sectioning and immunohistochemical analysis for gastric cancer[J].J Exp Clin Cancer Res, 2008,27: 7.
    [14] Gipponi M, Canavese G, Lionetto R,et al. The role of axillary lymph node dissection in breast cancer patients with sentinel lymph node micrometastases[J].Eur J Surg Oncol, 2006,32(2): 143-147.
    [15] Spence GM, Graham ANJ, Mulholland K,et al. Bone Marrow Micrometastases and Markers of Angiogenesis in Esophageal Cancer[J].Ann. Thorac. Surg., 2004,78: 1944 - 1949.
    [16] Sheehan KM, Cahill RA. Cyclooxygenase-2 expression in primary human colorectal cancers and bone marrow micrometastases[J].Dig Liver Dis, 2004,36(6): 392-397.
    [17] Sutcliffe R, Maguire D, Murphy P,et al. Detection and clinical significance of bone marrow micrometastases in patients undergoing liver transplantation for hepatocellular carcinoma[J].Transplantation,2005,80(1): 88-94.
    [18] Skinner LJ, Conlon BJ, Russell JD,et al. Detection of bone marrow micrometastases in the rib marrow of head and neck cancer patients: a prospective pilot study[J].Eur Arch Otorhinolaryngol, 2005,262(2): 103-106.
    [19] Brunsvig PF, Flatmark K, Aamdal S,et al. Bone marrow micrometastases in advanced stage non-small cell lung carcinoma patients[J].Lung Cancer, 2008,61(2): 170-176.
    [20] Hayes DC, Bangur CS, Wang T,et al. Detection of circulating tumor cells in peripheral blood of lung cancer patients using a multiplex real-time RT-PCR assay for L762P, L550S, L587S, and L984P[J]. AACR Meeting Abstracts, 2004, 2004: 94 - 95.
    [21] Wang JY, Wu CH, Lu CY,et al.Molecular detection of circulating tumor cells in the peripheral blood of patients with colorectal cancer using RT-PCR: significance of the prediction of postoperative metastasis[J]. World J Surg, 2006,30(6): 1007-1013.
    [22] Koga T, Tokunaga E, Sumiyoshi Y,et al.Detection of circulating gastric cancer cells in peripheral blood using real time quantitative RT-PCR[J]. Hepatogastroenterology, 2008,55(84): 1131-1135.
    [23] Schuster R, Max N, Mann B,et al.Quantitative real-time RT-PCR for detection of disseminated tumor cells in peripheral blood of patients with colorectal cancer using different mRNA markers[J].Int J Cancer, 2004, 108(2): 219-227.
    [24] Iinuma H, Okinaga K, Egami H,et al.Usefulness and clinical significance of quantitativereal-time RT-PCR to detect isolated tumor cells in the peripheral blood and tumor drainage blood of patients with colorectal cancer[J].Int J Oncol, 2006, 28(2): 297-306.
    [25] Masuda TA, Kataoka A, Ohno S,et al. Detection of occult cancer cells in peripheral blood and bone marrow by quantitative RT-PCR assay for cytokeratin-7 in breast cancer patients[J].Int J Oncol, 2005,26(3): 721-730.
    [26] Chen TF, Jiang GL, Fu XL,et al. CK19 mRNA expression measured by reverse- transcription polymerase chain reaction (RT-PCR) in the peripheral blood of patients with non-small cell lung cancer treated by chemo-radiation: an independent prognostic factor[J]. Lung Cancer, 2007,56(1): 105-114.
    [27] Machado MT, Fonseca F, Fantinato AP,et al.CK-19 expression by RT-PCR in the peripheral blood of prostate cancer patients[J].ASCO Meeting Abstracts,2005, 23: 4636.
    [28] Sergeant G, Penninckx F, Topal B,et al.Quantitative RT-PCR detection of colorectal tumor cells in peripheral blood--a systematic review[J].J Surg Res, 2008, 150(1): 144-152.
    [29] Watson M A, Ylagan LR, Trinkaus KM,et al.Isolation and Molecular Profiling of Bone Marrow Micrometastases Identifies TWIST1 as a Marker of Early Tumor Relapse in Breast Cancer Patients[J].Clin. Cancer Res.,2007,13: 5001 - 5009.
    [30] Langer I, Guller U, Koechli OR,et al.Association of the Presence of Bone Marrow Micrometastases with the Sentinel Lymph Node Status in 410 Early Stage Breast Cancer Patients: Results of the Swiss Multicenter Study[J].Ann. Surg. Oncol.,2007,14: 1896 - 1903.
    [31] Samouelian V, Revillion F, Alloy N,et al.Measurement of mRNA of 11 biomarkers by RT-PCR to detect lymph node involvement in cervical cancer[J].Int J Biol Markers,2008,23(2): 74-82.
    [32] Garrel R, Dromard M, Costes V,et al.The Diagnostic Accuracy of Reverse Transcription-PCR Quantification of Cytokeratin mRNA in the Detection of Sentinel Lymph Node Invasion in Oral and Oropharyngeal Squamous Cell Carcinoma: A Comparison with Immunohistochemistry. Clin[J].Cancer Res., 2006, 12: 2498 - 2505.
    [33] Xi L, Coello MC, Litle VR,et al.A Combination of Molecular Markers Accurately Detects Lymph Node Metastasis in Non–Small Cell Lung Cancer Patients. [J].Clin. Cancer Res., 2006, 12: 2484 - 2491.
    [34] Nosotti M, Falleni M, Palleschi A,et al.Quantitative Real-time Polymerase Chain ReactionDetection of Lymph Node Lung Cancer Micrometastasis Using Carcinoembryonic Antigen Marker[J].Chest, 2005, 128: 1539 - 1544.
    [35] Melfi FMA, Lucchi M, Davini F,et al.Intraoperative sentinel lymph node mapping in stage I non-small cell lung cancer: detection of micrometastases by polymerase chain reaction[J].Eur. J. Cardiothorac. Surg., 2008, 34: 181-186.
    [36] Li J, Li BL, Zhang HQ,et al.Relationship between vascular endothelial growth factor C expression level and lymph node metastasis in non small cell lung cancer[J].Zhonghua Yi Xue Za Zhi, 2008, 88(42): 2982-2985.
    [37] Dorudi S,Kinrade E,Marshall NC,et al. Genetic detection of Lymph node micrometasteses in patients with colorectal cancer[J].Br J Surg, 1998,85(1): 98.
    [38] Park JW,Kwon TK,Kim IH,et al.A new strategy f or the diagnosis of MAGE-expressing cancers[J].Immunol Methods,2002,266(1-2):79-86.
    [39] Peck K,Sher YP,Shih JY,et al.Detection and quantitation of circulating cancer cells in the peripheral blood of lung cancer patients[J].Cancer Res.1998,58(13): 2761-2765.
    [40] D’Cunha J,Corfits BA,Herndon JE,etal.Molecular staging of polymerase chain reaction estimation of lymph node micrometastatic tumorcell burden in stage I non-small cell lung cancer:preliminary results of Cancer and Leukemia Group B Trial 9761 [J]. Thorac Cardiovasc Surg,2002,12 (3): 484- 491.
    [41] Sher YP,Shih JY,Yang PC,et al. Prognosis of Non–Small Cell Lung Cancer Patients by Detecting Circulating Cancer Cells in the Peripheral Blood with Multiple Marker Genes[J].2005,11:173-179.
    [42] Cruz I, Ciudad J, Cruz JJ,et al.Evaluation of Multiparameter Flow Cytometry for the Detection of Breast Cancer Tumor Cells in Blood Samples[J].Am J Clin Pathol, 2005, 123: 66-74.
    [43] Zurita A, Wu HK, Kulke M,et al.Sunitinib affects specific subpopulations of peripheral blood monocytic cells in patients with unresectable neuroendocrine tumor (NET): an 8-color flow cytometry analysis[J].AACR Meeting Abstracts,2007, 2007: C162.
    [44] Karlsson M, Nilsson O, Thorn M,et al.Detection of metastatic colon cancer cells in sentinel nodes by flow cytometry[J].J Immunol Methods, 2008,334(1-2): 122-33.
    [45] He W, Wang H, Hartmann LC,et al.In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry[J].PNAS, 2007, 104: 11760 - 11765.
    [46] Leers MPG, Schoffelen RHMG, Hoop JGM, et al. Multiparameter flow cytometry as a tool for the detection of micrometastatic tumour cells in the sentinel lymph node procedure of patients with breast cancer[J].J. Clin. Pathol,2002,55(5): 359 - 366.
    [47] Zoli W, Barzanti F, Dal Susino M, et al. Flow-cytometric determination of tumor cells in lymph nodes[J]. Oncology, 2002,62(2): 128-135.
    [48] Ito M,Minamiya Y,Kawai H,et al.Intraoperative detection of lymph node micrometastasis with flow cytometry in non-small cell lung cancer [J].Thorac Cardiovasc Surg,2005, 130(3):753-758.
    [49] Rubbi CP,Rickwood D. A simple immunomagnetic bead-based technique for the detection of surface milecules capable of inducing T cell functional polarization[J].J Immunol Methods,1996,192(1-2):157-164.
    [50] Gauthier LR, Granotier C, Soria JC,etal. Detection of circulating carcinoma cells by telomerase activity[J].British Journal of Cancer,2001,84(5):631-635.
    [51]范蓉,钱和年,冯捷,等.免疫磁珠技术在卵巢癌研究中的应用[J].北京医科大学学报,1998,30(4):367-368.
    [52]王文秀,路丹,赫文,等.利用免疫磁珠技术检测大肠癌细胞[J].中国肿瘤临床.2004,31(19):1131-1133.
    [53] Park S, Lee B, Kim I,et al. Immunobead RT-PCR versus regular RT-PCR amplification of CEA mRNA in peripheral blood [ J]. J Cancer Res Clin Onco,l 2001, 127(8): 489-494.
    [54] Park SY,Kim HS,Hong EK,et al. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary[J].Hum Patho, 2002, 33(11): 1078-1085.
    [55] Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media.[J].IEEE Trans. Magn,1981,17:1247–1248.
    [56] Kang YS, Risbud S, Rabolt JF,et al. Synthesis and Characterization of Nanometer-Size Fe3O4 andγ-Fe2O3 Particles [J].Chem Mater, 1996,8:2209-2211.
    [57] Zeng H, Li J, Liu JP,et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly[J].Nature, 2002, 420(6914): 395-398.
    [58] Sun S, Zeng H, Robinson DB,et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J]. J Am Chem Soc, 2004, 126(1): 273-279.
    [59] Kim D, Park J, An K,et al. Synthesis of hollow iron nanoframes. [J]. J Am Chem Soc,2007, 129(18): 5812-5813.
    [60] Puntes VF, Krishnan KM,et al. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt [J].Science,2001, 291: 2115.
    [61] Pileni MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals [J].Nat Mater, 2003, 2(3): 145-150.
    [62] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. [J]. Nature,2005, 437(7055): 121-124.
    [63] Lu AH,Salabas EL,Schuth F.Magnetic nanoparticles: synthesis, protection, functionalization and application.[J].Angew Chem Int Ed Engl, Jan 2007; 46(8): 1222-1244.
    [64]严希康,朱留沙.聚合物粒子在生物化学与生物医学中的应用[J].功能高分子学报,1997,10(1):128-129.
    [65] Kell AJ, Simard B. Vancomycin architecture dependence on the capture efficiency of antibody-modified microbeads by magnetic nanoparticles[J].Chem Commun (Camb), 2007,(12): 1227-1229.
    [66] Tsai HY, Hsu CF, Chiu IW,et al.Detection of C-reactive protein based on immunoassay using antibody-conjugated magnetic nanoparticles[J].Anal Chem,2007,79(21): 8416-8419.
    [67] Fornara A, Johansson P, Petersson K,et al. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples[J].Nano Lett, 2008, 8(10): 3423-3428.
    [68] Zhao LN, Shen HB, Chen W,et al.A new method for isolating CD34(+) cells based on complex of magnetic nanoparticles and antibody[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2007,15(3): 537-541.
    [69] Pan J, Yang Q.Antibody-functionalized magnetic nanoparticles for the detection of carcinoembryonic antigen using a flow-injection electrochemical device[J].Anal Bioanal Chem, 2007,388(1): 279-286.
    [70] Clement JH, Schwalbe M, Buske N,et al.Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells[J].J Cancer Res Clin Oncol, 2006, 132(5): 287-292.
    [71] Duguet E, Vasseur S, Mornet S,et al.Devoisselle. Magnetic nanoparticles and their applications in medicine. [J].Nanomed,2006, 1(2): 157-168.
    [72] Osaka T, Matsunaga T, Nakanishi T,et al.Synthesis of magnetic nanoparticles and their application to bioassays. [J]. Anal Bioanal Chem, 2006, 384(3): 593-600.
    [73] Yu C, Zhao J, Guo Y, et al.A novel method to prepare water-dispersible magnetic nanoparticles and their biomedical applications: magnetic capture probe and specific cellular uptake[J].J Biomed Mater Res A, 2008, 87(2): 364-372.
    [74] Schwalbe M, J?rke C, Hoeffken K,et al.Separation of tumor cells from peripheral blood leukocytes with carboxymethyl dextrane coated magnetic nanoparticles[J].AACR Meeting Abstracts, 2005, 2005: 96.
    [75] Hoshino A, Ohnishi N, Yasuhara M,et al.Separation of murine neutrophils and macrophages by thermoresponsive magnetic nanoparticles[J].Biotechnol Prog, 2007,23(6): 1513-1516.
    [76] Alexiou C, Jurgons R, Seliger C,et al. Medical applications of magnetic nanoparticles[J].J Nanosci Nanotechnol, 2006,6(9-10): 2762-2768.
    [77]赵丽娜,沈鹤柏,陈伟,等.基于磁性纳米粒子-抗体复合物分离CD34+细胞的新技术[J].中华血液学杂志,2007,15(3): 537-541.
    [78]张春明,赵梗明,斯庆苏都,等.磁性纳米粒子的制备及其在细胞分离方面的应用[J].上海师范大学学报(自然科学版)2008,37(3):291-295.
    [79]王晓光,胡红,刘又宁,等.应用纳米免疫磁珠检测早期肺癌循环血中肿瘤细胞[J].中华医学杂志,2004,84(16):1393-1395.
    [80] Miltenyi S,Müller W,Weichel W,et al.High Gradient Magnetic Cell Separation With MACS[J].Cytometry,1990, 11:231 -238.
    [81] Gu H, Xu K, Xu C,et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. [J].Chem Commun (Camb), 2006, (9): 941-949.
    [82] Jun YW, Seo JW, Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. [J].Acc Chem Res, 2008, 41(2):179-189.
    [83] Xu C, Xu K, Gu H,et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins[J].J Am Chem Soc,2004, 126(11): 3392-3393.
    [84] Nustad K.Magnetic Separation Technique Applied to cellular and Molecular Biology,Bristol [M] UK:Wordsmiths’Conference Publications,1991,39.
    [85]陈良冬,李雁,袁宏银,等.量子点在肿瘤研究中的应用[J].癌症,2006,25(5): 651-656.
    [86] Smith AM,Nie SM.Chemical analysis and cellular imaging with quantum dots[J]. Analyst,2004,129:672-677.
    [87] Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots [J]. Science,1996,271 (5251) : 933-937.
    [88] Michalet X,Pinaud FF,Bentolila LA,et al.Quantum dots for live cells,in vivo imaging and diagnostics[J].Science, 2005,307(5709): 538-544.
    [89] Smith AM,Nie S.Chemical analysis and cellular imaging with quantum dots[J].Analyst, 2004,129:672-677.
    [90] Miyawaki A.Visualization of the spatial and temporal dynamics of intracellular signaling[J].Dev. cell,2003,4:295-305.
    [91] Smith A,Ruan G,Rhyner MN,et al.Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging[J].Annals of Biomedical Engineering,2006,34(1):3-14.
    [92] Chan WCW, Maxwell DJ, Gao XH,et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Analytical Biotechnology, 2002, 13:40-46.
    [93] Marcel BJ,Mario M, Peter G,et al. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science,1998,281:2013-2016.
    [94] Medintz I, Uyeda HT, Goldman ER,et al. Quantum dot bioconjugates for imaging,labelling and sensing[J]. Nature Materials, 2005,4:435-436.
    [95] Wu XY, Liu HJ, Liu JQ,et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology,2003,21:41-46.
    [96] True LD,Gao XH.Quantum Dots for Molecular Patology:Their Time Has Arrived. [J]. J Mol Diagn, 2007,9(1):7-11.
    [97] Chan WCW, Nie SM. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science,1998,281:2016-2018.
    [98] Smith AM, Ruan G, Rhyner MN,et al. Engineering Luminescent Quantum Dots for In vivo molecular and Cellular Imaging[J]. Annals of Biomedical Engineering, 2006,34(1):3-14.
    [99] Goldman ER, Medintz IL, Mattoussi H. Luminescent quantum dots in immunoassays[J]. Anal Bioanal Chem.,2006,384:560-563.
    [100] Lin ZB, Su XG, Mu Y,et al. Methods for Labeling Quantum Dots to Biomolecules[J]. J.Nanosci.Nanotech, 2003,4(2):1-5.
    [101] Goldman ER, Balighian ED, Mattoussi H,et al.Avidin: A Natural Bridge for Quantum Dot-Antibody Conjugates[J]. J. AM. CHEM. SOC., 2002,124:6378-6382.
    [102] Li ZH, Wang KM, Tan WH,et al. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution[J]. Analytical Biochemistry. 2006,354:169-174.
    [103] Sukhanova A, Devy J, Venteo L,et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells[J]. Analytical Biochemistry. 2004,324:60-67.
    [104] Stsiapura V,Sukhanova A,Artemyev M,et al.Functionalized nanocrystal tagged fluorescent polymer beads:synthesis,physicochemical characterization, and immunolabeling application[J].Anal Biochem,2004,334(2):257-265.
    [105]李步洪,张镇西,谢树森.量子点在生物学中的研究进展[J].激光生物学报, 2006,15(2):214-220.
    [106] Bruchezm P. Turning all the Lights on: Quantum Dots in CellularAssays[J]. Curr Opin Chem Biol, 2005,9 ( 5 ) : 533-537.
    [107] Hanaki K. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker[J].Biochem. Biophys. Res. Comm. 2003,302: 496–501 .
    [108] Sukhanova A. Biocompatible fl uorescent nanocrystals for immunolabeling of membrane proteins and cells[J].Anal. Biochem.2004, 324: 60–67 .
    [109] Kaul Z. Mortalin imaging in normal and cancer cells with quantum dot immunoconjugates[J].Cell Res. 2003,13: 503–507 .
    [110] Hoshino A, Hanaki KI, Suzuki K,et al. Applications of Tlymphoma labeled with fl uorescent quantum dots to cell tracing markers in mouse body[J]. Biochem. Biophys. Res. Comm.2004, 314: 46–53 .
    [111] Chen F,Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells[J].Nano Lett.2004, 4:1827–1832 .
    [112] Derfus A M, Chan WCW,Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking[J].Adv. Mater.2004, 16: 961–966 .
    [113] Voura EB, Jaiswal JK, Mattoussi H,et al. Tracking early metastatic progression with quantum dots and emission scanning microscopy[J].Nature Med.,2004, 10: 993–998 .
    [114] Pellegrino T. Quantum dot-based cell motility assay[J].Differentiation, 2003,71:542–548 .
    [115] Dahan M. Diffusion dynamics of glycine receptors revealed by singlequantum dottracking[J].Science,2003, 302:442–445.
    [116] Liu W, Howarth M, Greytak AB,et al.Compact biocompatible quantum dots functionalized for cellular imaging[J].J Am Chem Soc, 2008,130(4): 1274-1284.
    [117] Gao X , Dave SR. Quantum dots for cancer molecular imaging[J].Adv Exp Med Biol, 2007, 620: 57-73.
    [118] Wang HZ, Wang HY, Liang RQ,et al.Detection of Tumor Marker CA125 in Ovarian Carcinoma Using Quantum Dots[J]. Acta Biochim Biophys Sin, 2004, 36: 681 - 686.
    [119] Ruan G, Agrawal A, Marcus AI,et al.Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding[J].J Am Chem Soc, 2007, 129(47): 14759-14766.
    [120] Goldman ER, Uyeda HT, Hayhurst A,et al.Luminescent biocompatible quantum dots: a tool for immunosorbent assay design[J].Methods Mol Biol, 2007, 374: 207-227.
    [121] Weng J, Song X, Li L,et al.Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging[J]. Talanta, 2006, 70(2): 397-402.
    [122] Zheng J, Ghazani AA, Song Q,et al.Cellular imaging and surface marker labeling of hematopoietic cells using quantum dot bioconjugates[J].Lab Hematol, 2006, 12(2): 94-98.
    [123] Hoshino A, Manabe N, Fujioka K,et al.Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity[J]. J Artif Organs,2007, 10(3): 149-157.
    [124] Wu C, Bull B, Szymanski C,et al.Multicolor conjugated polymer dots for biological fluorescence imaging[J].ACS Nano, 2008, 2(11): 2415-2423.
    [125] Hayden O, Payne CK. Nanophotonic light sources for fluorescence spectroscopy and cellular imaging[J]. Angew Chem Int Ed Engl, 2005, 44(9): 1395-1398.
    [126] Fu A, Gu W, Larabell C, et al. Semiconductor nanocrystals for biological imaging[J].Curr Opin Neurobiol, 2005,15(5): 568-575.
    [127] Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space[J]. PNAS,2006,103: 5567 - 5572.
    [128] Li ZB, Cai W, Chen X. Semiconductor quantum dots for in vivo imaging[J]. J Nanosci Nanotechnol, 2007, 7(8): 2567-2581.
    [129] Gao X, Yang L, Petros JA,et al. In vivo molecular and cellular imaging with quantum dots[J].Curr Opin Biotechnol, 2005,16(1): 63-72.
    [130] Jin T, Fujii F, Komai Y,et al.Preparation and Characterization of Highly Fluorescent,Glutathione-coated Near Infrared Quantum Dots for in Vivo Fluorescence Imaging[J].Int J Mol Sci, 2008, 9(10): 2044-2061.
    [131] Smith AM, Duan H, Mohs AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging[J].Adv Drug Deliv Rev, 2008, 60(11): 1226-1240.
    [132] Larson DR, Zipfel WR, Williams RM,et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo[J].Science, 2003,300: 1434.
    [133] Inoue Y, Izawa K, Yoshikawa K,et al.In vivo fluorescence imaging of the reticuloendothelial system using quantum dots in combination with bioluminescent tumour monitoring[J].Eur J Nucl Med Mol Imaging, 2007, 34(12): 2048-2056.
    [134] Gao X, Cui Y, Levenson RM,et al.In vivo cancer targeting and imaging with semiconductor quantum dots[J].Nat Biotechnol, 2004, 22(8): 969-976.
    [135] Su J, Zhang J, Liu L,et al.Exploring feasibility of multicolored CdTe quantum dots for in vitro and in vivo fluorescent imaging[J].J Nanosci Nanotechnol, 2008, 8(3): 1174-1177.
    [136] Popescu MA, Toms SA. In vivo optical imaging using quantum dots for the management of brain tumors[J].Expert Rev Mol Diagn,2006; 6(6): 879-890.
    [137] Diagaradjane P, Orenstein-Cardona JM, Colón-Casasnovas NE,et al.Imaging Epidermal Growth Factor Receptor Expression In vivo: Pharmacokinetic and Biodistribution Characterization of a Bioconjugated Quantum Dot Nanoprobe. Clin. Cancer Res., [J].2008,14: 731 - 741.
    [138] Ca i W, Shin DW, Chen K,et al.Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett, [J].2006, 6(4): 669-676.
    [139] Gao XH, Cui YY, Levenson RM,et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology,2004,22:969-976.
    [140] Kim S,Lim YT, Soltesz EG. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J]. Nature Biotechnology. 2004,22:93-97.
    [141] Jaiswal JK, Mattoussi H, Mauro JM,et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nature Biotechnology, 2003, 21:47-51.
    [142] Lidke DS, Nagy P, Heintzmann R,et al. Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction[J]. Nature Biotechnology, 2004,22: 198-203.
    [143] Han MY, Gao XH, Su JZ,et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature Biotechnology, 2001,19:631-635.
    [144] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J].Biomaterials, 2005, 26(18): 3995- 4021.
    [145] Doyle PS, Bibette J, Bancaud A,et al. Self-Assembled Magnetic Matrices for DNA Separation Chips[J].Science, 2002, 295: 2237.
    [146] Landfester K, Ramirez LP, Encapsulated magnetite particles for biomedical application[J].J. Phys. Condens. Matter ,2003, 15: S1345–S1361.
    [147] Xu XL,Friedman G,Humfeld KD, et al.Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals[J].Chem. Mater. 2002, 14 (3), 1249?1256.
    [148] Yanase N, Noguchi H, Asakura H,et al. Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid[J].Journal of Applied Polymer Science,1993,50(5):765-776.
    [149] Ramirez LP, Landfester K. Magnetic polystyrene nanoparticles with high magnetic content obtained by miniemulsion process[J].Macromol Chem Phys, 2003,204:22–31.
    [150] Zheng W, Gao F, Gu H, Magnetic polymers Nanospheres with high and uniform magnetite content[J].Journal of Magnetism and Magnetic Materials, 2005,288, 403-410.
    [151] Liu X, Guan Y, Ma Z, et al. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization[J]. Langmuir, 2004, 20: 10278-10282.
    [152] Lu S, Forcada J. Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization[J].J Polym Sci Part: A Polym Chem., 2006 ,44(13):4187–4203.
    [153] Wang PC, Chiu WY, Lee CF, et al. Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: nucleation mechanism and morphology[J].J Polym Sci Part A: Polym Chem, 2004,42(22):5695–5705.
    [154] Sacanna S, Philipse AP. Preparation and Properties of Monodisperse Latex Spheres with Controlled Magnetic Moment for Field-Induced Colloidal Crystallization and (Dipolar) Chain Formation[J].Langmuir,2006,22 (24), 10209-10216.
    [155] Liu S, Ramos J, Forcada J, Self-Stabilized Magnetic Polymeric Composite Nanoparticles by Emulsifier-Free Miniemulsion Polymerization[J].Langmuir,2007, 23, 12893-12900.
    [156] Wang Y, Teng XW, Wang JS,et al.Solvent-free atom transfer radical poly- merization in the synthesis of Fe2O3 at polystyrene core-shell nanoparticles [J].Nano Lett, 2003,3:789-793.
    [157] Shang H, Chang WS, Kan S,et al.Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization[J].Langmuir,2006,22(6), 2516-2522.
    [158] Horák D,Benedyk N.Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids[J].J. Polym. Sci., Polym. Chem. Ed.,2004, 42:5827-5837.
    [159] Ulman A.Formation and structure of self-assembled monolayers[J].Chem. Rev., 1996, 96: 1533-1554.
    [160] Tartaj P, Serna CJ. Synthesis of Monodisperse Superparamagnetic Fe/Silica Nanospherical Composites[J].J. Am. Chem. Soc., 2003,125:15754-15755.
    [161] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J].Biomaterials, 2005, 26(18): 3995- 4021.
    [162] Philipse AP,Bruggen M P B. Magnetic Silica Dispersions: Preparation and Stability of Surface- modified Silica Particles with a Magnetic Core [J]. Langmuir, 1994, 10(1): 92–99.
    [163] Kobayashi Y, Horie M, Konno M,et al.Preparation and Properties of Silica-Coated Cobalt Nanoparticles[J]. J. Phys. Chem. B,2003, 107 (30): 7420–7425.
    [164] Graf C, Dembski S, Hofmann A, et al. A general method for the controlled embedding of nanoparticles in silica colloids[J].Langmuir,2006,22:5604–5610.
    [165] Yang C, Wang G, Lu Z, et al. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles[J].J Mater Chem,2005,15(39):4252–4257.
    [166] Lu Z, Wang G, Zhuang J,et al. Effects of the concentration of tetramethylammonium hydroxide peptizer on the synthesis of Fe3O4/SiO2 core/shell nanoparticles. Colloids Surf A Physicochem Eng,2006, 278(1–3):140–143.
    [167] Deng YH,Wang CC, Hu JH,et al. Investigation of Formation of Silica-Coated Magnetite Nanoparticles via Sol-Gel Approach[J].Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 262: 87-93.
    [168] Salgueirino MV,Spasova M, Farle M. Water-stable, magnetic silica-cobalt/ cobalt oxide-silica multishell submicrometer spheres[J].Advanced Functional Materials,2005, 15(6):1036-1040.
    [169] Caruso F.Nanoengineering of particle surfaces[J].Adv Mater,2001, 13(1): 11-22.
    [170] Graf C, Vossen DLJ, Imhof A, et al.A general method to coat colloidal particles with silica[J].Langmuir, 2003,19:6693–6700.
    [171] Kim K, Webster S, Levi N, et al.Luminescent Core-Shell Photonic Crystals from Poly(phenylene ethynylene) Coated Silica Spheres[J].Langmuir: the ACS journal ofsurfaces and colloids :5207-5211.
    [172] Xu H, Cui L, Tong N,et al.Development of high magnetization Fe3O4/polystyrene/ silica nanospheres via combined miniemulsion/emulsion polymerization [J].J. Am. Chem. Soc., 2006, 128: 15582–15583.
    [173] Stuczynski SM, Brennan JG,Steigerwald ML. Formation of Metal-chalcogen Bonds by the Reaction of Metal-alkyls with Silyl Chalcogenides. [J]. Inorganic Chemistry, 1989, 28(25):4431-4432.
    [174] Murray CB, Norris DJ, Bawendi MG. Synthesis and Characterization of Nearly Monodisperse CdE (E=sulfur, selenium, tellurium) Semiconductor Nanocrystallites. [J].Journal of the American Chemistry Society, 1993,115(19):8706-8715.
    [175] Becerra LR, Murray CB, Griffin RG, et al. Investigation of the Surface Morphology of Capped CdSe Nanocrystallites by 31P Nuclear Magnetic Resonance. [J].The Journal of Chemical Physics, 1994,100(4):3297-3300.
    [176] Bowen KJE, Colvin VL ,Alivisatos AP. X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface. [J]. Journal of Physical Chemistry, 1994, 98(15):4109-4117.
    [177] Hines M A and Guyot SP. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. [J].Journal of Physical Chemistry,1996, 100(2):468-471
    [178] Hines MA and Guyot SP. Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals. [J].Journal of Physical Chemistry B, 1998, 102(19):3655-3657.
    [179] Peng XG, Wickham J,Alivisatos A P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions. [J]. Journal of the American Chemistry Society, 1998, 120(21):5343-5344.
    [180] Peng XG, Manna L, Yang WD, et al. Shape Control of CdSe Nanocrystals. [J].Nature, 2000, 404(6773):59-61
    [181] Peng ZA, Peng X G. Mechanisms of the Shape Evolution of CdSe Nanocrystals. [J].Journal of the American Chemistry Society, 2001,123(7):1389-1395
    [182] Peng ZA and Peng XG. Formation of High Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. [J]. Journal of the American Chemistry Society, 2001, 123(1):183-184.
    [183] Aldana J, Wang YA, Peng X G. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. [J]. Journal of the American Chemistry Society, 2001, 123(36):8844-8850.
    [184] Qu L, Peng ZA and Peng XG. Alternative Routes toward High Quality CdSeNanocrystals. [J]. Nano Letters, 2001, 1(6):333-337.
    [185] Yu WW and Peng X. Formation of High-quality CdS and other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. [J]. Angewandte Chemie-Internattonal Edittion, 2002,41(13):2368-2371.
    [186] Rogach AL, Katsikas L, Kornowski A, et al. Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals. [J]. Berichte der Bunsen-Gesellschaft Physical Chemistry, 1996, 100(11):1772-1778.
    [187] Spanhel L, Haase M, Weller H, et al. Photochemistry of Colloidal Semiconductors Surface Modification and Stability of Strong Luminescing CdS Particles. [J].Journal of the American Chemistry Society, 1987,109(19):5649-5655.
    [188] Vossmeyer T, Katsikas L and Weller H. CdS Nanoclusters: Synthesis Characterization Size Dependent Oscillator Strength Temperature Shift of the Excitonic Transition Energy and Reversible Absorbance Shift. [J]. Journal of Physical Chemistry, 1994,98(31): 7665-7673.
    [189] Rogach AL, Gao MY, Weller H, et al. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals. [J]. Journal of Physical Chemistry B, 1999, 103(16): 3065-3069.
    [190] Gaponik NL, Talapin DV, Weller H, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. [J].Journal of Physical Chemistry B, 2002, 106(29):7177-7185.
    [191] Mahtab R, Rogers JP,Murphy CJ. Protein-Sized Quantum Dot Luminescence Can Distinguish between "Straight", "Bent", and "Kinked" Oligonucleotides. [J].Journal of the American Chemistry Society, 1995, 117(35):9099-9100.
    [192] Nataliya NM, Nicholas AK, Rogach A L, et al. Albumin-CdTe Nanoparticle Bioconjugates Preparation Structure and Interunit Energy Transfer with Antenna Effect[J].Nano Letters, 2001, 1(6):281-285.
    [193] Wang SP, Mamedova NL, Chen W, et al. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates[J].Nano Letters, 2002, 2(8):817-822.
    [194]李鸿梅,刘含智,张皓等.量子点荧光标记在重组噬菌体表面展示肽与胰岛素受体相互作用中的应用[J].高等学校化学学报, 2004, 25(5):982-984.
    [195] Kricka LJ. Miniaturization of Analytical Systems[J].Clinical Chemistry, 1998,44(9):2008-2014.
    [196] Pouyani T,Kuo JW,Harbison GS,et al.Solid state NMR of N-acylureas derived fromthe reaction of hyaluronic acid with isotopiclly labeled carbodiimides[J].Journals of American chemistry society,1992, 114: 5972- 5976.
    [197] Tara Pouyani,Gerard S,Harbison,et al.Prestwich,Novel Hydrogels of hyaluronic acid: Synthesis,Surface Morphology,and Solid state NMR[J]. Journals of American chemistry society,1994,116:7515.
    [198] Jing WK,David AS,Gleenn D.Prestwich.Chemical Modification of Hyaluronic Acid by carbodiimides[J].Bioconjugate Chemistry,1991,2:232.
    [199] Prioult G,Turcotte C,Labarre L,et al.Rapid purification of nisin Z using specific monoclonal antibody-coated magnetic beads[J].Inter Dairy J,2000,10(9):627-633.
    [200] Biomag Carboxyl. Http://www. bangslabs.com/files/ bangs/ docs/pdf/ PDS%20570
    [201] Okuyama K, Fukushima Y, Miura Y,et al. Improvement in anti-hemophilic preparations and its problems. 6. Function analysis of human plasma proteins passed through the microporous regenerated cellulose membrane (BMM) hollow fiber[J].Rinsho Ketsueki,1988, 29(5): 662-665.
    [202] Manabe S. Determination of pore radius distribution of porous polymeric membranes by electron microscopic method[J].Polymer J,1985,17(6):775.
    [203] Manabe S, Iijima H, Kamide K, et al.Probabilities of finding isolated, semi-open, and through pores porous polymeric membrane prepared by micro-phase separation method[J]. Polymer J,1988,20(4):307.
    [204]王文秀,黄旭,赫文,等.免疫磁珠技术检测大肠癌患者外周血微转移的临床应用研究[J].哈尔滨医科大学学报,2005,39(3):272-274.
    [205] Abbadi MA, Almasri NM, Quran S,et al. Cytokeratin and epithelial membrane antigen expression in angiosarcomas: an immunohistochemical study of 33 cases[J].Arch Pathol Lab Med, 2007,131(2): 288-292.
    [206] Saad RS, Cho P, Liu YL,et al. The value of epithelial membrane antigen expression in separating benign mesothelial proliferation from malignant mesothelioma: a comparative study[J].Diagn Cytopathol,2005,32(3): 156-159.
    [207] Bamias A, Chorti M, Deliveliotis C,et al. Prognostic significance of CA 125, CD44, and epithelial membrane antigen in renal cell carcinoma[J]. Urology, 2003,62(2): 368-373.
    [208] Castaldo G, Tomaiuolo R, Sanduzzi A,et al. Carcinoembryonic antigen mRNA analysis detects micrometastatic cells in blood from lung cancer patients[J].Eur. Respir. J., 2003, 22: 418 - 421.
    [209] A Machens, J Ukkat, S Hauptmann,et al. Abnormal Carcinoembryonic Antigen Levelsand Medullary Thyroid Cancer Progression: A Multivariate Analysis[J].Arch Surg, 2007,142: 289-293.
    [210] Hombach A, Schlimper C, Sievers E,et al. A recombinant anti-carcinoembryonic antigen immunoreceptor with combined CD3-CD28 signalling targets T cells from colorectal cancer patients against their tumour cells[J].Gut, 2006,55: 1156-1164.
    [211] Lin WC, Tseng YT, Chang YL,et al. Pulmonary tumour with high carcinoembryonic antigen titre caused by chronic propolis aspiration[J].Eur. Respir. J., 2007,30: 1227 - 1230.
    [212] Balzar M,Winter MJ,De BCJ,et al.The biology of the 17-IA antigen(Ep-cam) [J].Mol Med,1999,77(10):699-712.
    [213] Kielhorn E, Schofield K,.Rimm DL.Use of Magnetic Enrichment for Detection of Carcinoma Cells in Fluid Specimens[J].Cancer, 2002,94:205-211.
    [214] Okada K, Hasegawa T, Yokoyama R,et al. Osteosarcoma with cytokeratin expression: a clinicopathological study of six cases with an emphasis on differential diagnosis from metastatic cancer[J].J. Clin. Pathol., 2003,56: 742- 746.
    [215] Nakayama M, Satoh H, Ishikawa H,et al. Cytokeratin 19 Fragment in Patients With Nonmalignant Respiratory Diseases[J].Chest, 2003,123: 2001- 2006.
    [216] Cserni G, Bianchi S, Vezzosi V,et al. The value of cytokeratin immunohistochemistry in the evaluation of axillary sentinel lymph nodes in patients with lobular breast carcinoma[J].J. Clin. Pathol.,2006,59: 518 - 522.
    [217] Buccheri G, Torchio P, Ferrigno D. Clinical Equivalence of Two Cytokeratin Markers in Non-small Cell Lung Cancer: A Study of Tissue Polypeptide Antigen and Cytokeratin 19 Fragments[J].Chest, 2003,124: 622- 632.
    [218] Tamer ME, Chun J, Gill M,et al. Incidence and Clinical Significance of Lymph Node Metastasis Detected by Cytokeratin Immunohistochemical Staining in Ductal Carcinoma In Situ[J].Ann. Surg. Oncol.,2005,12: 254-259.
    [219] Lee JH, Chang JH. Diagnostic Utility of Serum and Pleural Fluid Carcinoembryonic Antigen, Neuron-Specific Enolase, and Cytokeratin 19 Fragments in Patients With Effusions From Primary Lung Cancer[J].Chest, 2005, 128: 2298-2303.
    [220] Nonomuia A.Immunohistochemical study of hepatic angiolipoma[J]. Pathol Int,1996,46:24-32.
    [221] Saintigny P, Coulon S, et al. Real-time RT-PCR detection of CK19, CK7, and MUC1 mRNA for diagnosis of lymph node micrometastases in non small cell lung carcinoma[J].Int J. Cancer,2005,115:777-782.
    [222] Zigeuner RE,Riesenberg R,Pohla H.Immunomagnetic cell enrichment detects moredisseminated cancer cells than immunocytochemisty in vitro[J].J Urol,2000,164(5): 1834-1837.
    [223]穆新林,李龙芸.肺癌患者循环癌细胞的检测及临床应用[J].中国医学科学院学报,2004,26(3):313-318.
    [224] Safarik I,Safarikova M.Use of magnetic techniques for the isolation of cells[J].J Chromatogr B Biomed Sci Appl,1999, 722(1-2):33-53.
    [225] Iwao K, Watanabe T, Fujiwara Y,et al. Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small-cell lung cancer[J].Int J Cancer, 2001, 91(4): 433-437.
    [226] Mitas M, Hoover L, Silvestri G,et al. Lunx Is a Superior Molecular Marker for Detection of Non-Small Lung Cell Cancer in Peripheral Blood[J].J. Mol. Diagn., 2003,5: 237.
    [227] Wang WB, Cui YG, Yao SY. Message RNA expression of LUNX, CK19 and CEA genes in NSCLC with micrometastasis in lymph nodes[J].Zhonghua Zhong Liu Za Zhi, 2008,30(2): 121-124.
    [228] Cheng M, Chen Y, Yu X,et al. Diagnostic utility of LunX mRNA in peripheral blood and pleural fluid in patients with primary non-small cell lung cancer[J].BMC Cancer, 2008, 8: 156.
    [229] Wheeler TT, Haigh BJ, McCracken JY,et al. The BSP30 salivary proteins from cattle, LUNX/PLUNC and von Ebner's minor salivary gland protein are members of the PSP/LBP superfamily of proteins[J].Biochim Biophys Acta, 2002, 1579(2-3): 92-100.
    [230] Yang HX, Wu YL, Ding JA,et al. Detection of micrometastasis in mediastinal lymph nodes in operable non-small cell lung cancers[J].Zhonghua Zhong Liu Za Zhi, 2006,28(5): 368-370.
    [231] Wallace MB, Block MI, Gillanders W,et al. Accurate Molecular Detection of Non-small Cell Lung Cancer Metastases in Mediastinal Lymph Nodes Sampled by Endoscopic Ultrasound-Guided Needle Aspiration[J].Chest, 2005,127: 430-437.
    [232] Huang TH, Wang Z, Li Q,et al. Clinical significance of enrichment and detection of circulating tumor cells in NSCLC patients with immunomagnetic beads[J].Zhonghua Zhong Liu Za Zhi, 2007,29(9): 676-680.
    [233] Campos MA, Abreu AR, Nlend MC,et al. Purification and Characterization of PLUNC from Human Tracheobronchial Secretions[J].Am. J. Respir. Cell Mol. Biol., 2004,30: 184.
    [234] Xi LQ, Coello MC, Litle VR,et al. A Combination of Molecular Markers AccuratelyDetects Lymph Node Metastasis in Non–Small Cell Lung Cancer Patients. Clin[J].Cancer Res., 2006, 12: 2484-2491.
    [235] Kishore U, Greenhough TJ, Waters P,et al.Surfactant proteins SP-A and SP-D:Structrue,function and receptors[J].Molecular Immunology,2006, 43(9): 1293-1315.
    [236] Mason RJ, Greene K, Voelker DR.Surfactant protein A and surfactant protin D in health and disease[J].Am. J. Physiol.1998,275(19):L1-L13.
    [237] Rubio F, Cooley J, Accurso FJ,et al. Linkage of neutrophil serine proteases and decreased surfactant protein-A (SP-A) levels in inflammatory lung disease. [J]. Thorax, 2004,59: 318 - 323.
    [238] Alcorn JL, Islam KN, Young PP,et al. Glucocorticoid inhibition of SP-A gene expression in lung type II cells is mediated via the TTF-1-binding element[J].Am J Physiol Lung Cell Mol Physiol, 2004,286: 767.
    [239] Haque R, Umstead TM, Ponnuru P,et al. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice[J].Toxicol Appl Pharmacol, 2007, 220(1): 72-82.
    [240] Islam KN, Mendelson CR. Glucocorticoid/ Glucocorticoid Receptor Inhibition of Surfactant Protein-A (SP-A) Gene Expression in Lung Type II Cells Is Mediated by Repressive Changes in Histone Modification at the SP-A Promoter[J].Mol. Endocrinol., 2008,22: 585-596.
    [241] Madan T. Potential of lung surfactant proteins, SP-A and SP-D, and mannan binding lectin for therapy and genetic predisposition to allergic and invasive aspergillosis[J].Recent Pat Inflamm Allergy Drug Discov, 2007,1(3): 183-187.
    [242] Sano H, Kuroki Y. The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity[J].Mol Immunol, 2005, 42(3): 279-287.
    [243] Schlosser A, Thomsen T, Shipley JM,et al. Microfibril associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in the extracellular matrix of the lung[J].Scand J Immunol, 2006, 64(2): 104-116.
    [244] Wang JY and Reid KB. The immunoregulatory roles of lung surfactant collectins SP-A, and SP-D, in allergen-induced airway inflammation[J]. Immunobiology, 2007,212(4-5): 417-425.
    [245] Julian J, Enders AC, Fazleabas AT,et al. Compartmental distinctions in uterine Muc-1 expression during early pregnancy in cynomolgous macaque (Macaca fascicularis) and baboon (Papio anubis) [J].Hum. Reprod., 2005, 20: 1493 - 1503.
    [246] Liu XQ, Ren HX, and Wu ZP. Detecting MUC-1 mRNA for diagnosing peripheralblood micro-metastasis in non-small cell lung cancer patients[J].Ai Zheng, 2008,27(12): 1267-1270.
    [247] Huang HQ, Pan ZH, Lin XB,et al. Expression and clinical significance of nm23-H1 and MUC-1 in peripheral T-cell lymphoma[J].Ai Zheng, 2006,25(12): 1517-1523.
    [248] Li XH, Zheng HC, Wang ZG,et al. The clinicopathological and prognostic significance of MUC-1 expression in Japanese gastric carcinomas: an immunohistochemical study of tissue microarrays[J].Anticancer Res,2008, 28(2A): 1061-1067.
    [249] Resetkova E, Angulo AMG, Sneige N,et al. Prognostic value of P53, MDM-2, and MUC-1 for patients with inflammatory breast carcinoma[J]. Cancer, 2004,101(5): 913-917.
    [250] Bombardien E,Seregni E,Lombardo C,et al.Muein gene expression in Lung cancer tissues[J].Int J Biol Markers,1994,9(5):262-263.
    [251] Chambers JA,Hollingoworth MA,Trezise AEO,et al.Developmental expression of muein gene MUCI and MIJC2[J].J Cell Sci,1994,107 (11): 413-424.
    [252] Salerno CT,Frezella S,Niehans GA,et al.Detection of occult micrometastases in non-small cell lung carcinoma by reverse transcriptase polymerase chain reaction[J].Chest, 1998, 113 (6):1526-1532.
    [253] Gazdar AF,Linnoila RI,Kurita Y,et al. Peripheral airway cell differentiation in human lung cancer cell lines[J]. Cancer Res ,1999,50(17):5481-5487.
    [254] Pilling AM,Mifsud NA,Jones SA,et al.Expression of surfactant protein mRNA in normal and neoplastic lung of B6C3F1 mice as demonstrated by in situ hybridization[J].Vet Pathol, 1999, 36: 57-63.
    [255] Betz C,Papadopoulos T,Buchwald J,et al.Surfactant protein gene expression in metastatic and micrometastatic pulmonary adenocarcinomas and other non-small cell lung carcinomas: detection by reverse transcriptase polymerase chain reaction[J].Cancer Res, 1995,55(19): 4283-4286.
    [256] Sheu CC, Chang MY, Chang HC,et al. Combined detection of CEA, CK-19 and c-met mRNAs in peripheral blood: a highly sensitive panel for potential molecular diagnosis of non-small cell lung cancer[J].Oncology, 2006,70(3): 203-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700