硅胶基超支化PAMAM的制备及吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚酰胺-胺(hb-PAMAM)分子构型为三维空间结构,高度支化,内层有空腔,分子中氨(胺)基官能团(伯胺、叔胺、酰胺等)的数目随着分子代数增加以几何级数增加,因此超支化聚酰胺-胺可作为金属离子的大容量络合剂和金属催化剂载体。
     本文采用ABX (x≥2, A, B为反应性基团)型单体缩聚法合成了超支化聚酰胺-胺(hb-PAMAM),并用分光光度法研究了hb-PAMAM与Cu2+、Co2+、Ni2+的配合过程,考察了各种条件对配位反应的影响。结果表明,随着金属离子盐与hb-PAMAM质量比的增加,配合物的最大吸收波长发生红移,对于Co2+/hb-PAMAM体系,出现了新的吸收峰;pH从9.02到3.00,配合物的最大吸收波长发生红移,吸收强度减弱,对于Co2+/hb-PAMAM,出现了新的吸收峰,该吸收峰向长波方向移动;温度升高使配合物的吸收光谱强度增强;配位过程速度快,室温下,在实验浓度范围内,hb-PAMAM与Cu2+、Co2+、Ni2+的配位反应1h内均达平衡。
     以硅烷偶联剂改性处理的氨化硅胶为核,加入ABx型单体,“一锅”合成以硅胶为基质的超支化聚酰胺-胺新型螯合树脂(SiO2-hb-PAMAM)。通过红外光谱(FT-IR)热重分析(TGA)、X-射线衍射仪(XRD)、比表面积分析仪进行了表征。研究了SiO2-hb-PAMAM对Cu2+、Ag+、Hg2+、Au3+等金属离子的静态饱和吸附容量、吸附动力学、吸附热力学和动态吸附性能,同时还研究了洗脱液对金属离子的洗脱效果及树脂的再生性能。静态实验结果表明,SiO2-hb-PAMAM对金属离子有强的螯合能力;吸附动力学符合G. E. Boyd方程,表明吸附过程属于液膜扩散控制机理;对Cu2+、Ag+、Hg2+、Au3+吸附过程的表观活化能分别为15.850 kJ.mol-1、0.269 kJ.mol-1、5.862 kJ.mol-1、5.641 kJ.mol-1,说明吸附容易进行。在实验浓度范围内,对Cu2+、Ag+、Hg2+、Au3+的吸附过程符合Langmuir模型,即单分子层吸附;热力学参数的计算显示吸附为吸热过程,升温有利于吸附;自由能的减小和熵值的增大是树脂吸附Cu2+、Ag+、Hg2+、Au3+的推动力。动态吸附实验结果表明,SiO2-hb-PAMAM对金属离子亦有强的螯合能力;动态吸附也属于液膜扩散控制机理。溶液的酸度对SiO2-hb-PAMAM的吸附性能有重要的影响。树脂经5%硫脲和一定浓度的HCl或HN03溶液洗脱即实现再生。
Hyperbranched Polyamidoamine (hb-PAMAM) is perfect dendrimer, which have attracted considerable attention due to their remarkable properties such as three-dimensional branched nature, spherical structure and cavernous interior. It possess amide, tertiary, and primary amine groups arranged in regular "branched upon branched" patterns, which are displayed in geometrically progressive numbers as a function of generation. Thus, PAMAM dendrimers can serve as high capacity nanoscale containers for toxic metal ions.
     In this thesis, hyperbranched polyamidoamine (hb-PAMAM) were synthesized by polycondensation of AB2 type monomers. The effects of various conditions on the coordination reaction between hb-PAMAM and Co2+, Cu2+, and Ni2+ was then investigated via spectrophotometric method. The results indicate that as the mass ratio of CoCl2, CuSO4 and NiSO4 to hb-PAMAM increase, a red-shift of the maximum absorption wavelength were observed, while a new absorption peak was observed for Co2+/hb-PAMAM. When the pH value decreased from 9.02 to 3.00, the maximum absorption wavelength occurred red-shift distinctly and the the intensity of the absorption spectrum of the complex also decreased, while a new absorption peak was observed for Co+/hb-PAMAM and it shifted to longer wavelength. The absorption intensity of the complex was enhanced with increase of the reaction temperature. The speed of coordination reaction is fast, which had completed in one hour at room temperature in the experimental concentration range.
     A hyperbranched polyamidoamine resin grafted on silica(SiO2-hb-PAMAM) was prepared via a one-pot polycondensation of N,N-diaminoethyl-3-amino methyl propionate on the surface of silica-gel, which was modified with amino group containing silane coupling agent and hence could initiated the polycondensation. The resulting product was characterized by FT-IR, XRD, N2 sorption experiments and TG. Then, its adsorption properties, including static adsorption capacity, adsorption kinetics, adsorption thermodynamics and dynamic adsorption for Cu2+, Ag+, Hg2+ and Au3+ ions in water were investigated. The results show that this resin exhibited excellent chelating capacity for selected metal ions. The adsorption kinetics followed G. E. Boyd equation, that is, controlled by liquid film diffusion. In addition, the apparent activation energy of the adsorption process for Cu2+, Ag+, Hg2+ and Au3+ ions were 15.850 kJ.mol-1,0.269 kJ.mol-1,5.862 kJ.mol-1 and 5.641 kJ.mol-1, respectively, suggesting that the adsorption is very easy. While the adsorption thermodynamics corresponded with Langmuir model, namely, belonged to monolayer adsorption. The thermodynamic parameters were calculated and then revealed that the adsorption process was an endothermic process, indicating that increasing temperature was beneficial to the adsorption. The decrease of free energy and the increase of entropy is the impetus of adsorption.The dynamic adsorption experiments indicate that SiO2-hb-PAMAM also exhibited excellent chelating capacity for Cu2+, Ag+, Hg2+ and Au3+ ions, showing that the adsorption process was following liquid film diffusion mechanism. Acid concentrtation and pH value have an important effect on sorption properties. When the solution of 5% thiourea in HCl or HNO3 was employed as the desorption medium, the resin can be regenerated.
引文
[1]Liu C H, Gao C, Yan D Y. Aliphatic Hyperbranched Poly(amidoamine)s(PAMAMs): Preparation and Modification [J]. CHEM RES CHINESE U,2005,21(3):345-354.
    [2]Shen Z, Chen Y, Frey H, et al. Complex of Hyperbanched Polyethylenimine with Cuprous Halide as Recoverable Homogeneous Catalyst for the Atom Transfer Radical Polymerization of Methyl Methacrylate [J]. Macromolecules,2006,39(6):2092-2099.
    [3]徐厚才,罗运军,谭惠民,等.树形聚酰胺胺与Cu2+的络合作用[J].分析测试学报,2001,20(3):1-4.
    [4]Ottaviani M F, Montalti F, Turro N J, et al. Characterization of Starburst Dendrimers by the EPR Technique. Copper(II) Ions Binding Full-Generation Dendrimers [J]. Joural of Physical Chemistry B,1997,101(2):158-166.
    [5]Tran M L, Gahan L R, Gentle I R. Structural Studies of Copper(II)-Amine Terminated Dendrimer Complexes by EXAFS [J]. Joural of Physical Chemistry B,2004,108(52): 20130-20136.
    [6]Diallo M S, Balogh L, Shafagati A, et al. Poly(Amidoamine) Dendrimers:A New Class of High Capacity Chelating Agents for Cu(II) Ions [J]. Evironmental Science and Technology,1999,33(5):820-824.
    [7]Ghosh S. Studies on the complexation behaviour of copper (II) ions with polyamidoamine (PAMAM) Dendron [J]. Journal of the Indian Chemical Society,2007,84(1):93-95.
    [8]金磊,黄维维,孙景佳等.树枝状化合物聚酰胺-胺的合成及其与Cu2+的络合作用[J].上海师范大学学报,2007,36(6):73-77.
    [9]李国平,罗运军,徐厚才,等.银离子与聚酰胺-胺型树形高分子配位作用的研究[J].无机化学学报,2003,19(11):1212-1216.
    [10]Hoffman L W, Knott R, Clarke S R, et al.240th ACS National Meeting, Boston,2010 [C]. Washington:American Chemical Society,2010.
    [11]李金焕,艾仕云,曲祥金,等.聚酰胺-胺树状高分子与稀土离子络合的荧光光谱研究[J].分析测试学报,2008,27(7):701-704.
    [12]程义云,陈大柱,何平笙.PAMAM分子与Cr3+离子配位作用的研究[J].功能高分子学报,2005,18(2):265-267.
    [13]章昌华.聚酰胺胺树状大分子与Co2+的相互作用的研究[J].华南理工大学学报,2007,35(4):30-33.
    [14]丛日敏,罗运军,李国平等.PAMAM树形分子与Cd2+的配位作用研究及CdS/PAMAM纳米复合材料的制备与表征[J].2005,63(5):421-426.
    [15]Molander M D, Karukstis, K K.225th ACS National Meeting, New Orleans,2003 [C]. Washington:American Chemical Society,2003.
    [16]Francisco T V, Perla B B. Complexation of the Lowest Generation Poly (amidoamine)-NH2 Dendrimers with Metal Ions, Metal Atoms, and Cu(II) Hydrates:An ab Initio Study [J]. Journal of Physical Chemistry B,2004,108(41):15992-16001.
    [17]Kaczorowska M A, Cooper H J. Electron Capture Dissociation andCollision-Induced Dissociation of Metal Ion (Ag+, Cu2-, Zn2-, Fe2-, and Fe3+) Complexes of Polyamidoamine (PAMAM) Dendrimers [J]. Journal of the American Society of Mass Spectrom,2009,20(4): 674-681.
    [18]Torigoe K, Suzuki A, Esumi K. Au(III)-PAMAM Interaction and Formation of Au-PAMAM Nanocomposites in Ethyl Acetate. [J]. Journal of Colloid and Interface Science,2001, 241(2):346-356.
    [19]Krot K A, Danil de N A F, Adolfo A C, et al. Speciation, stability constants and structures of complexes of copper(Ⅱ), nickel(Ⅱ), silver(Ⅰ) and mercury(Ⅱ) with PAMAM dendrimer and related tetraamide ligands [J]. Inorganica Chimica Acta,2005, 358(12):3497-3505.
    [20]Arkas, M, Tsiourvas D. Organic/inorganic hybrid nanospheres based on hyperbranched poly(ethyleneimine) encapsulated into silica for the sorption of toxic metal ions and polycyclicaromatic hydrocarbons from wate r[J]. Journal of Hazardous Materials, 2009,170(1):35-42.
    [21]Touzani R, Alper H. PAMAM dendrimer-palladium complex catalyzed synthesis of five-six-or seven membered ring lactones and lactams bycyclocarbonylation methodology [J].Journal of Molecular Catalysis A:Chemical,2005,227(1-2):197-207.
    [22]顾成,申屠宝卿.金属离子-聚酰胺-胺络合物催化剂及用于水介质中制备聚苯醚:中国,10096197.2[P].2009,02,19.
    [23]靳丽强,李彦春.金属配位树枝状大分子铬鞣剂的合成及表征[J].中国皮革,2005,34(1):19-21.
    [24]范贵洋,靳丽强,李彦春,等.羧基封端的树枝状聚酰胺-胺的制备及其与铬盐的配位用[J].中国皮革,2008,37(3):16-20.
    [25]王学川,何林燕,强涛涛,等.整代树状聚酰胺-胺的制备及其在Cr(Ⅲ)处理中的应用[J].中国皮革,2009,38(23):31-32.
    [26]张传杰,王柳,朱平.棉织物的PAMAM/Ag抗菌整理[J].印染,2010,36(9):5-7.
    [27]Xu Y H, Zhang D Y. Removal of Copper from contaminated soil by use of Poly(amidoamine)Dendrimer[J]. Evironmental Science and Technology,2005, 39(7):2369-2375.
    [28]Diallo M S, Balogh L, Shafagati A, et al. Poly(amidoamine) Dendrimers:A New Class of High Capacity Chelating Agents for Cu(II) Ions [J]. Environmental Science and Technology, (1999),33(5),820-824.
    [29]Diallo M S, Christie S, Swaminathan P, et al. Dendrimer enhanced ultrafiltration.1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups [J]. Environmental science and technology, 2005,39(5):1366-77.
    [30]Diallo M S, Arasho W, Johnson J H, et al. Dendritic Chelating Agents.2. U(VI) Binding to Poly(amidoamine) and Poly(propyleneimine) Dendrimers in Aqueous Solutions [J]. Environmental Science & Technology,2008,42(5):1572-1579.
    [31]Rether A, Schuster M. Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers [J]. Reactive and Functional Polymers,2003,57(1):13-21.
    [32]Sekowski S, Kazmierczakb A, Mazurc A, et al. The interaction between PAMAM G3.5 dendrimer, Cd2+,dendrimer-Cd2+ complexes and human serum albumin [J]. Colloids and Surfaces B:Biointerfaces,2009,69:95-98.
    [33]Knecht M R, Crooks R M. Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atoms [J].New Journal of Chemistry,2007,31(7):1349-1353.
    [34]Balogh L, Tomalia D A. Poly (Amidoamine) Dendrimer-Templated Nanocomposites.1. Synthesis of Zerovalent Copper Nanocluster [J]. Journal of the American Chemical Society,1998,120(29):7355-7356.
    [35]Wei X Z, Zhu B K, Xu Y Y. Preparation and stability of copper particles formed using amino-terminated dendrimer as template [J]. Polymers & Polymer Composites,2007, 15(8):611-617.
    [36]Niu Y H, Crooks R M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis [J]. Comptes Rendus Chimie,2003,6(8-10):1049-1059.
    [37]Esumi K, Isono R, Yoshimura T. Preparation of PAMAM-and PPI-Metal (Silver, Platinum, and Palladium) Nanocomposites and Their CatalyticActivities for Reduction of 4-Nitrophenol [J]. Langmuir 2004,20(1),237-243.
    [38]Knecht M R, Weir M G, Frenkel A I, et al. Structural Rearrangement of Bimetallic Alloy PdAu Nanoparticles within Dendrimer Templates to Yield Core/Shell Configurations[J].Chemistry of Materials,2008,20(3),1019-1028.
    [39]Sekowski S, Gabryelak T. Interactions of polyamidoamine (PAMAM) dendrimers with metal ions. Practical application [J]. Kosmos (Krakow, Poland),2007,56(1-2): 99-106.
    [40]Wan H Y, Li S G, Konovalova T A, et al. Experimental and Theoretical Studies of the Photoreduction of Copper(II)-Dendrimer Complexes [J]. Joural of Physical Chemistry C,2008,112(5):1335-1344.
    [41]Zhang Y W, Peng H S, Huang W, et al. Hyperbranched Poly(amidoamine) as the Stabilizer and Reductant To Prepare Colloid Silver Nanoparticles in Situ and Their Antibacterial Activity [J]. Joural of Physical Chemistry C,2008,112(7):2330-2336.
    [42]Kazantsev E A, Remez V P. Sorption materials in water and wastewater treatment [J]. Khimiyai Tekhnologiya Vody,1995,17(1):50-56.
    [43]Zaporozhets 0 A, Gaver 0 M, Sukhan V V. Immobilisation of analytical reagents on support surfaces [J]. Uspekhi Khimii,1997,66(7):637-646.
    [44]Turker A R. New sorbents for solid-phase extraction for metal enrichment [J]. Clean, 2007,35(6):548-557.
    [45]Price E M, Clark J H, Macquarrie D J. Modified silicas for clean technology [J]. Dalton,2000, (2):101-110.
    [46]Sarkar A R, Datta P K, Sarkar M. Sorption recovery of metal ions using silica gel Modified with salicylaldoxime [J]. Talanta,1996,43(11):1857-1862.
    [47]Liu P, Pu QS, Su Z X. Synthesis of silica gel immobilized thiourea and its application to the on-line preconcentration and separation of silver, gold and palladium [J]. Analyst,2000,125(1:147-150.
    [48]张青梅,郑寿荣,王家宏,等.胺基树脂的合成及对水中重金属离子的[J].环境工程学报,2010,4(12):2658-2661.
    [49]王燕芹,魏荣卿,刘晓宁,刘迎.一种新型的聚苯乙烯二乙醇胺树脂对铜离子的吸附性能[J].过程工程学报,2007,7(1):51-52.
    [50]Wang J Q, Wang R R, Zhang Z, etal. The Influence of Pore Structures and Degree of Crosslinking on Catalytic Properties of Aminomethyl Polystyrene Resins Supported Dendritic Sn Complexes [J]. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry,2008,45(8):672-679.
    [51]Wang Y J, Liu J F, Duo J, et al. New method for the preparation of adsorbent with high adsorption capacity [J]. Chinese Science Bulletin,2005,50(21):2432-2435.
    [52]曲荣君,王春华,阮文举,等.多胺交联纤维素树脂的合成及吸附性能(Ⅺ)-天然高分子吸附剂研究[J].林产化学与工业,1997,17(3):19-24.
    [53]Qu R J, Sun C M, Ji C N, et al. Preparation and metal-binding behaviour of chitosan functionalized by ester-and amino-terminated hyperbranched polyamidoamine polymers [J]. Carbohydrate Research,2008,343(2):267-273.
    [54]Tsubokawaa N, Takayama T. surface modification of chitosan powder by grafting of 'dendrimer-like'hyperbranched polymer onto the surface [J]. Reactive & Functional Polymers,2000,43(3):341-350.
    [55]Pan B F, Gao F, Gu H C. Dendrimer modified magnetite nanoparticles for protein immobilization [J]. Journal of Colloid and Interface Science,2005,284(1):1-6.
    [56]Reynhardt J P K, Alper H. Hydroesterification Reactions with Palladium-Complexed PAMAM Dendrimers Immobilized on Silica [J]. Joural of Organic Chemistry,2003,68: 8353-8360.
    [57]周志明.纳米树状高分子复合磁性金属吸附重金属之研究[D].台湾:国立高雄大学土木与环境工程学系,2009.
    [58]Tsubokawa N, Satoh Toshiya, M M, Sato S, et al. Grafting of hyperbranched poly(amidoamine) onto carbon black surfaces using dendrimer synthesis methodology. Polymers for Advanced Technologies,2001,12(10):596-602.
    [59]余驰超,张玲霞,等.介孔-枝化化合物复合体系对重金属的吸附研究[J].无机材料学报,2008,23(6):1232-1235.
    [60]Kocjan R. Retention of some metal ions and their separation on silica gel modified with acid red 88 [J]. Microchimica Acta,1999,131(3-4):153-158.
    [61]Kim J S, Y J. The removal of copper ions from aqueous solutions using silica supports immobilized with 2-hydroxy-5-nonylacetophenoneoxime[J]. Separation Science and Technology,1999,34(15):2957-2971.
    [62]Zaporozhets 0, Petruniock N, Bessarabova 0, et al. Determination of Cu(II) and Zn(II)using silica gel loaded with 1-(2-thiasolylazo)-2-naphtho [J]. Talanta,1999, 49(4):899-906.
    [63]王明华,曲君荣,纪春暖,等.含酰胺结构的硅胶键载二乙烯三胺螯合微粒的合成及其吸附性能[J].离子交换与吸附,2008,24(5):408-417.
    [64]Yutaka K, Imai Y, Kumi S, et al. Preparation and properties of hyperbranched poly(amidoamine) grafted onto a colloidal silica surface [J]. Colloids and Surfaces A,2006,289(1-3):212-218.
    [65]Bu J, Li R J, Quah C W, et al. Propagation of PAMAM Dendrons on Silica Gel:A Study on the Reaction Kinetics [J]. Macromolecules,2004,37(18):6687-6694.
    [66]Tsubokawa N, Ichioka H, Satoh T, et al. Grafting of'dendrimer-like'highly branched polymer onto ultrafine silica surface [J]. Reactive & Functional Polymers,1998, 37(1-3):75-82.
    [67]牛余忠.硅胶锚合PAMAM型树形大分子的合成及吸附性能研究[D].山东:鲁东大学化学与材料科学学院,2007.
    [68]Gong A J, Chen Y M, Zhang X, et al. Synthesis and Characterization of Dendritic Poly(amidoamine)-Silica Gel Hybrids [J]. Journal of Applied Polymer Science,2000, 78(12):2186-2190.
    [69]Arkas M, Tsiourvas D. Organic/inorganic hybrid nanospheres based on hyperbranched poly(ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water [J]. Journal of Hazardous Materials, 2009,170(1):35-42.
    [70]宋金生.含PAMAM改性硅胶的分子印迹聚合物微球的合成与表征[D].湖南:湖南大学化学化工学院,2007.
    [71]孙昌梅.含亲水性链结构的聚苯乙烯基螯合吸附剂[D].天津:天津大学材料科学与工程学院,2006,91-99.
    [72]纪春暖,曲荣君,王春华,等.聚苯乙烯负载聚酰胺-胺型螯合树脂对Hg2+的吸附分离性能[J].离子交换与吸附,2008,24(2):183-187.
    [73]Kim Y K. Silicone Derivatized Macromolecules such dendrimer and hyperbranched polymer:W0,2002010260 [P].2002,02,07.
    [74]Wu X Z, LiuP, Pu Q S, et al. Preparation of dendrimer-like polyamidoamine immobilized silica-gel and its application to online preconcentration and separation palladium prior to FAAS determination, Talanta,2004,62(5):918-923.
    [75]Mazer L E. Supported dendrimer catalyst:US,9900625 [P].1999,09,07.
    [76]Krishnan G R, Sreekumar K. Polystyrene-supported poly(amidoamine) dendrimer-manganese complex:Synthesis, characterization and catalysis [J]. Applied Catalysis A:General,2009,353(1):80-86.
    [77]Krishnan G R, Sreekumar K. First Example of Organocatalysis by Polystyrene-Supported PAMAM Dendrimers:Highly Efficient and Reusable Catalyst for KnoevenagelCondensations [J]. Eur. J. Org. Chem,2008,28:4763-4768.
    [78]Li C L, Yang Z W, Wu S, et al. Chloromethyl polystyrene supported dendritic Sn complexes, reparation and catalytic Baeyer-Villiger oxidation [J]. Reactive & Functional Polymers,2007,67(1):53-59.
    [79]李翠林,马恒昌,雷子强.担载树状高分子Co配合物的合成及其对异丙苯的催化氧化性能研究[J].甘肃教育学院学报(自然科学版),2004,18(2):58-59.
    [80]Bu J, Judeh Z M A, Ching C B, et al. Epoxidation of olefins catalyzed by Mn(II) salen complex anchored on PAMAM-SiO2 dendrimer [J]. Catalysis Letters,2003, 85(3-4):183-187.
    [81]Ukaji M, Takamura M, Shirai K, et al. Curing of epoxy resin by hyperbranched poly (amidoamine)-grafted silica nanoparticles and their properties [J]. Polymer Journal (Tokyo, Japan),2008,40(7):607-613.
    [82]Masaki 0, Masamichi M, Yuri K, et al. Grafting of Hyperbranched Polyamidoamine Using Dendrimer Synthesis Methodology [J]. Journal of Applied Polymer Science,2001,80: 573-579.
    [83]Klaykruayat B, Siralertmukul K, Srikulkit K. Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric [J]. Carbohydrate Polymers,2010,80(1):197-207.
    [84]Lungu A, Stancu I C, Rusen E, et al. Studies concerning the chemical immobilization of dendrimers on macroporous polymer matrix [J]. Journal of Optoelectronics and Advanced Materials,2007,9(11):3454-3458.
    [85]Perignon N, Mingotaud A F, Marty J D, et al. Formation and Stabilization in Water of Metal Nanoparticles by a Hyperbranched Polymer Chemically Analogous to PAMAM Dendrimers [J]. Chemistry of Material,2004,16(24):4856-4858.
    [86]Marty J D, Martinez A E, Mingotaud A F, et al. Hyperbranched polyamidoamine as stabilizer for catalytically active nanoparticles in water [J]. Journal of Colloid and Interface Science,2008,326(1):51-54.
    [87]Sun Y Y, Liu Y Q, Zhao G Z, et al. Effects of Hyperbranched Poly(amido-amine)s Structures on Synthesis of Ag Particles [J]. Journal of Applied Polymer Science,2008, 107(1):9-13.
    [88]Zhang F, Wu X L, et al. Application of Silver Nanoparticles to Cotton Fabric as an Antibacterial Textile Finish [J]. Fibers and Polymers,2009,10(4):496-501.
    [89]张峰,陈宇岳,张德锁.铜离子络合法测定HBP-NH2溶液含量及其应用[J].印染,2008,34(10):33-35.
    [90]王奂,申屠宝卿,翁志学,熊珂.金属离子-超支化聚酰胺胺络合物催化剂及用于水介质中制备聚苯醚:中国,201010225242.2[P].2010,07,12.
    [91]Yu Y, Rong Z M, Zhang Q M. Grafting of hyperbranched aromatic polyamide onto silica nanoparticles [J].Polymer,2010,51(2):492-499.
    [92]赵辉,罗运军,李杰.纳米Si02表面超支化聚合物接枝改性的新方法[J].高分子材料科学程,2005,21(3):188-191.
    [93]熊磊,王汝敏,梁红波,等.超支化聚合物接枝纳米Ti02/环氧树脂复合材料的制备与表征[J].中国胶粘剂,2009,18(4):26-29.
    [94]Joseph J P, Maria T M, Eric J W, et al, Synthesis and characterization of alkyl bonded phases from a silica hydride via hydrosilation with free radical initiation [J]. Journal of Chromatography A,1997,786(2):219-228.
    [95]Tsubokawa N, Ichioka H, Satoh T, et al. Grafting of'Dendrimer-like'Highly Branched Polymer onto Ultrafine Silica Surface [J].React. Funct. Polym,1998,37(1-3):75.
    [96]Chung Y M, Rhee H K. Design of Silica-supported Dendritic Chiral Catalysts for the Improvement of Enantioselective Addition of Diethylzinc to Benzaldehyde [J].Catal. Lett,2002,82(3-4):249.
    [97]Zhang F, Chen Y, Lin H, et al. Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dyeing auxiliary [J]. Coloration Technology,2007,123:351-357.
    [98]曹亮.超支化聚酰胺胺聚合物的合成及功能性研究[D].上海:复旦大学高分子科学系,2005.
    [99]Uhrich K E, Hawker C J, Frechet J M J. one-pot synthesis of hyperbranched polyethers [J]. Mcromolecules,1992,25:4583.
    [100]黄坚,陈胜福,曾涛,等.酸碱滴定分析在聚酰胺-胺表征中的应用[J].高分子材料科学与工程,2007,23(4):185-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700