高能量密度燃料分子设计及定向合成机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能量密度燃料具有非常广泛的用途,研究此类燃料不但具有重要学术理论意义,而且有深远的应用价值。但当前绝大多数研究仅局限于实验合成,燃料化学理论研究非常少。
     本文对高密度燃料设计与合成的基础理论进行了系统研究,包括燃料的分子设计及性能评估、燃料分子定向合成的反应历程模拟,为高密度燃料的合成提供理论指导和技术支持。选取高密度燃料的探针体系主要包括三类:多环烃类、金刚烷类和芳香烃类。研究内容提纲如下:
     为寻求新的潜在高能量密度燃料,理论设计出三类52种多环烃类:环丙烷化和甲基取代的多环烃、[n]棱烷和立方烷类衍生物。运用基团贡献法和量子化学方法,估算其物化性质和能量特性。通过分子设计及物性评估,建立多环烃类燃料的热力学物性基础理论,为燃料的合成历程设计和异构重排模拟提供依据。
     计算模拟以双环戊二烯(DCPD)为原料定向合成多环烃类燃料的微观反应机理:Diels-Alder?加氢和环丙烷化过程,并获悉模拟体系的构型筛选、电子结构、热力学性质、动力学性质、桥式规则、协同反应机理等多环烃类燃料反应合成的基础理论成果,为燃料异构重排研究奠定基础。
     以多环烃类为探针分子,研究多环烃类燃料的卤代异构Wagner-Meerwein重排反应理论,包括camphenyl、norbornyl和pinayl三类高密度燃料重排体系。用新型的非经典离子对理论,系统阐述崁烷离子对模型的构建、降冰片基离子对“leakage”路径、多通道蒎烷离子对重排过程、离子对效应、溶剂化效应以及整个体系反应势能面的特征化等多环烃类燃料异构的基础理论。
     以金刚烷烯为探针分子,研究金刚烷类燃料的卤代反应理论。提出金刚烷烯卤代反应的三种可能机理:自由基、离子对和自由基正离子。区别于经典的碳正离子假设,离子对机理合理阐述该特征反应的区域选择性和立体专一性的根源。
     以苯、萘、蒽和菲为探针分子,研究芳香烃类高密度燃料的卤代反应理论。探索苯及苯系芳烃与卤素的加成反应与取代反应的固有竞争性。采用离子对模型,给出了较经典Wheland正离子更完整的苯-溴分子反应势能面,提出苯的直接亲电取代的协同机理,发现芳烃加成反应比取代更具固有优势,获得取代产物的加成-消去路径、不包含任何Wheland中间体等重要计算发现,完善并丰富了芳烃卤代反应的经典理论。
High energy density fuel has a large variety of uses. The investigation of such fuel not only adds to the significant scientific treasure, but also possesses long-standing practical application prospect. However, the majority of the current studies merely focus on the experimental synthetic aspect. The theoretical field of fuel chemistry is very rare.
     In this paper, the systematical exploration is mainly carried on the high density fuel chemistry theory, including the molecular design of goal fuel, physicochemical properties and propulsion performances evaluation of polycyclic hydrocarbon, profound revelation of microscopic mechanistic course for oriented synthesis of high enrgy density fuel. Such key theoretical findings provide prominent technical support for the practical operation of synthesizing high energy density fuel. Three targeted high-density fuel systems are included: polycyclic hydrocarbons, adamantane-fused and arene-fused hydrocarbon. The outline of the whole paper is listed as follows:
     In pursuit of novel, potential high energy density fuel, fifty-two polycyclic hydrocarbons are theoretically designed, including: cyclopropane and methyl derivative polyclic alkenes, [n] prismane and cubane derivatives. Their physico-chemical properties and propulsion performances are evaluated, employing with group contribution method and quantum chemistry method. In view of molecular design and property estimation rational, the fundamental theory of thermodynamical properties for polycyclic hydrocarbon fuels provides a powerful guide for synthetic mechanism and isomerization simulation.
     The intrinsic reaction mechanisms of dicylopentadiene-based synthesis of polycyclic hydrocarbon fuels are computationally simulated, including two vital probe routes: Diels-Alder-hydrogenation and cyclopropanation. These configurations screening, electronic structures, thermodynamical properties, kinetic properties, high endo/exo selectivity and concerted mechanism are proposed. These fruitful outcomes of targeted system lay a theoretical foundation for subsequent isomerization and optimality of high-performance energy density fuel.
     The Wagner-Meerwein arrangement theory for isomerization and optimality of high density fuels are systematically elucidated with polycyclic hydrocarbons as the probe molecules. Three rearranged reaction systems of high density fuels are computationally explored: camphenyl, norbornyl and pinayl category. Introducing“nonclassical”ion pair concept in the isomerization process, the camphenyl ion-pair model construction, norbornyl ion-pair“leakage”pathways, multi-channel pinayl ion-pair rearranged process, ion-pairing effect, solvation effect and potential energy surface characterization of whole vital systems are emphatically elucidated in the range of essential isomerization theory of polycyclic hydrocarbon fuels.
     The adamantane-fused fuel chemistry theory is consecutively expanded with the adamantylideneadamantane as the probe molecule. Three probable mechanistic proposals for the halogenation of adamantylideneadamantane are computationally posed: free radical, ion pair and radical cation. The instinctive origin for its remarkable region-selectivity and stereospecificity is stressed in view of prevalence of ion pair mechanism, instead of“classical”carbocation mechansim.
     The arene-fused fuel further enriches fundamental halogenation theory of high density fuel. Four popular arenes are specifically probed in detail here, including benzene, naphthalene, anthracene and phenanthrene. The inherent competition between electrophilic substitution and addition for the reaction of arene-Br2 is systematically exploited. In contrast to the“classical”Wheland ion postulate, the potential energy surface of benzene-Br2 reaction is wholly enriched by incorporating the vital role of the counter-ion in the mechanistic course (i.e. ion-pairing effect). Several significant computational findings are greatly challenging with classical theory widely existed in textbook, including direct and concerted mechanism of electrophilic substitution, inherent preference of addition pathway over substitution pathways, involving no Wheland intermediate, acquired substituted products via the alternative stepwise addition-elimination route.
引文
[1]欧育湘,刘进全,高能量密度化合物[M],北京:国防工业出版社,2005. 5~16.
    [2]熊中强,米镇涛,张香文等,合成高密度烃类燃料研究进展[J],化学进展,2005, 17(2): 360~367.
    [3]杜宗罡,史雪梅,符全军,高能液体推进剂研究现状和应用前景[J],火箭推进,2005, 31(3):30~34.
    [4] Edwards, T., Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003 [J]. J. Propulsion Power, 2003, 19(6): 1089~1107.
    [5] Chung, H. S., Chen, C. S., Boulton, J. R., Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels [J]. Energy Fuels, 1999, 13(3):641~649.
    [6] Rapp, D. C., High Energy-Density Liquid Rocket Fuel Performance [R], AIAA-90-1968, 1990. 1~18.
    [7]邹吉军,张香文,王莅等,高密度液体碳氢燃料合成及应用进展[J],含能材料,2008, 15(4):411~415.
    [8] George, W., Burdette, R., Hall, L., Low Viscosity Air Breathing Missile Fuel [P], US: 4427467, 1984-01-24.
    [9] Schneider, A., Ware, R., Janoski, E. J., Isomerization of Endo-tetrahydro dicyclopentadiene to a Missile Fuel Diluent [P], US: 4086284, 1978-04-25.
    [10] Outcalt, S. L., Laesecke, A., Measurements of Density and Speed of Sound of JP-10 and a Comparison to Rocket Propellants and Jet Fuels [J], Energy Fuels, 2011, 25(3): 1132~1139.
    [11] Bruno, T. J., Huber, M. L., Laesecke, A., et al. Thermophysical Properties of JP-10 [R], NISTIR 6640, 2006.
    [12] Wu, Y., Xue, Y., Kim, C. K., Computational Studies on the Dimers and the Thermal Dimerization of Norbornadiene [J], J. Comput. Chem., 2008, 29(8): 1250~1258.
    [13] Myers, Jr., Harry, K., Schneider, A., et al. Isomerization of exo-endo Hexacyclic Olefinic Dimer of Norbornadiene [P], US: 4222800, 1980-09-16.
    [14] Gebhart, H. J., Ferguson, Jr., Makin, E. C., et al. Process for Preparation of Tricyclopentadiene [P], US: 3701812, 1972-10-31.
    [15] Burdette, G. W., Schneider, A., Exo-tetrahydrotricyclopentadiene, a High Density liquid fuel [P]. US: 4401837, 1983.
    [16]王磊,张香文,邹吉军等,密度大于1的高密度液体碳氢燃料合成及复配研究[J],含能材料,2009, 17(2): 157~160.
    [17] Schleyer, P. v. R., Olah, G. A., In Cage Hydrocarbons [M], Wiley: New York, 1990, 1~38.
    [18] Schleyer, P. v. R., A Simple Preparation of Adamantane [J], J. Am. Chem. Soc., 1957, 79(12): 3292~3292.
    [19] Gund, T. M., Osawa, E., Schleyer, P. v. R., Diamantane. I. Preparation of Diamantane. Physical and Spectral Properties [J], J. Org. Chem., 1974, 39(20): 2979~2987.
    [20] Schrauzer, G. N., Bastian, B. N., Fosselius, G. A.π-Complex Multicenter Reactions Promoted by Binuclear Catalyst Systems.“Binor-S”, a New Heptacyclotetradecane via Stereospecific Dimerization of Bicycloheptadiene [J], J. Am. Chem. Soc., 1966, 88(21): 4890~4894.
    [21] Williams, V. Z., Schleyer, P. v. R., Gleicher, G. J., et al. Triamantane [J], J. Am. Chem. Soc., 1966, 88(16): 3862~3863.
    [22] Petrov, A. A. Petroleum Hydrocarbons[M], Springer-Verlag: Berlin,1987.
    [23] Schwertfeger, H., Fokin, A. A., Schreiner, P. R. Diamonds are a Chemist’s Best Friend: Diamondoid Chemistry beyond Adamantane [J], Angew. Chem. Int. Ed., 2008, 47(6): 1022~1036.
    [24]张香文,米镇涛,李家玲,巡航导弹用高密度烃类燃料[J],火炸药学报,1999,22(4): 41~45.
    [25] Diels, O., Alder, K. Synthesen in Der Hydroaromatischen Reihe [J], Justus Liebig's Annalen der Chemie, 1928, 460(1): 98~122.
    [26]刑其毅,基础有机化学(下册)[M],北京:高等教育出版社,1983, 830.
    [27]李春迎,杜咏梅,何飞等,高密度烃化合物的合成[J],化学通报,2006, 69(2): 1~6.
    [28] Janoski, E. J., Mitchell, R. E., Schneider, A. Continuous Process for Conversion of Dimethyldicyclopentadiene to Endo-dimethyldicyclopentadiene, a Missile Fuel [P]. US: 4177217, 1979-12-4.
    [29] Burdette G W, Schneider A I. Exo-terahydrotricyclopentadiene, a High Density Liquid Fuel [P], US: 4401837, 1983-08-30.
    [30]杜咏梅,李春迎,杨建明等,高密度烃燃料[7.4.0.02,7.13,6]四环十四烷的合成及性能[J],含能材料,2009,17(4): 399~403.
    [31] Yuasa, H., Matsuno, M., High-Energy Liquid Fuel, Comprising tetracyclo- tetradecane [P], US: 4762092, 1988.
    [32]编委会,最新石油催化加氢与裂化重整技术创新与工艺设计使用手册[M],石油化工出版社,北京, 2009.
    [33] Chen, C., Liao, C., Lin, C., et al. A Method for Co-production of Petrochemicals and High-Energy Fuel [P], TW: 200829691, 2008-06-16.
    [34] Weitkamp, A.W., Stereochemistry and Mechanism of Hydrogenation of Naphthalene on Transition Metal Catalysts and Conformational Analysis of the Products [J], Adv. Catal., 1968, 18: 1~110.
    [35]张小菲,邵正峰,毛国强等,萘在贵金属Pd、Pt及Pd-Pt催化剂上的加氢活性及耐硫性能[J],物理化学学报,2010, 26(10): 2691~2698.
    [36] Berson, J. A. In“Molecular Rearrangements”[M], de Mayo, P., Ed., Wiley: New York, 1963, vol. 1, Chapter 3.
    [37]王爱霞,Wagner-Meerwein重排反应及Botryane-倍半萜的合成研究:[博士学位论文],兰州;兰州大学,2007.
    [38] Cheng, S. S., Liou, K. F., Yen, D. P., et al. Prepration Method of High Density Fuels by Addition-rearrangement of Compound Pentacyclo[7.5.1.02,8.03,7.012,14] pentadecane (C15H22) [P], US: 5220085, 1993-06-15.
    [39]杜咏梅,李春迎,吕剑,高密度烃燃料挂式四氢双环戊二烯的研究进展[J],火炸药学报,2005, 28(4): 58~60.
    [40] Bingham, R. C., Schleyer, P. v. R., Recent Development in the Chemistry of Adamantane and Related Polycyclic Hydrocarbons [J], Topics Current Chem., 1971, 18(1): 1~102.
    [41] Osawa, E., Tahara, Y., Schleyer, P. v. R., Fused and Bridged Tetracyclic C13 and C14 Adamantanes [J], J. Org. Chem., 1982, 47(10): 1923~1932.
    [42] Lerman, B. M. Skeletal Rearrangements of Cage Compounds with Medium Rings [J], Russ. Chem. Rev., 1991, 60(4): 358~372.
    [43] Mckervey, M. A., Adamantane Arrangement [J], Chem. Soc. Rev., 1974, 3: 479~512.
    [44] Simmons, H. E., Smith, R. D., A New Synthesis of Cyclopropane [J], J. Am. Chem. Soc., 1959, 81(16): 4156~4264.
    [45] Chang, H. O., Dai, I. P., Joong, H. R., et al. Synthesis and Characterization of Cyclopropane-fused Hydrocarbons as New High Energetic Materials [J], Bull. Korean Chem. Soc., 2007, 28(2): 322~324.
    [46] Hohenberg, P., Kohn, W., Inbomogenous Electron Gas [J], Phys. Rev., 1964, 136 (3): 864~871.
    [47] Becke,A. D., A New Mixing of Hartree-Fork and Local Density-functional Theories [J], J. Chem. Phys., 1993, 98(2): 1372~1377.
    [48] Lee,C., Yang,W.T., Parr, R. G. Development of the Colic-Salvetti Correlation- Energy Formula into a Functional of the Electron Density [J], Phys.Rev.B., 1988, 37(2): 785~789.
    [49] Eyring, H., The Activated Complex and the Absolute Rate of Chemical Reactions [J], Chem. Rev., 1935, 17(1): 65~77.
    [50] Truhlar, D. G., Gordon, M. S., From Force-Fields to Dynamics-Classical and Quantal Paths [J], Science, 1990, 249 (4968): 491~498.
    [51] Fukui, K. Formulation of the Reaction Coordinate [J], J. Phys. Chem., 1970, 74(23): 4161~4163.
    [52] Gonzalez, C., Schlegel, H. B., Reaction Path Following in Mass-weighted Interal Coordinates [J], J. Phys. Chem., 1990, 94(14): 5523~5527.
    [53] Fukui, K., The Path of Chemical Reactions-the IRC Approach [J], Acc. Chem. Res., 1981, 14(12): 363~368.
    [54] Cossi, M., Scalmani, G., Rega, N., et al., New Developments in the Polarizable Continuum Model for Quantum Mechanical and Classical Calculations on Molecules in Solution [J], J. Chem. Phys., 2002, 117(1): 43~54.
    [55] Tomasi, J., Mennucci, B., Cammi, R., Quantum Mechanical Continuum Solvation Models [J], Chem. Rev., 2005, 105(8): 2999~3093.
    [56]张秀莲,Winstein离子对理论与亲核取代反应机理的教学研究[J],广东教育学院学报,1999,19(3): 81~84.
    [57] Winstein, S., Trifan, D. S., The Structure of the Bicyclo[2.2.1]2-heptyl (Norbornyl) Carbonium Ion [J], J. Am. Chem. Soc., 1949, 71(8): 2953~2953.
    [58] Winstein, S., Trifan, D. S., Neighboring Carbon and Hydrogen. X. Solvolysis of endo-Norbornyl Arylsulfonates [J], J. Am. Chem. Soc., 1952, 74(5): 1147~1154.
    [59] Winstein, S., Trifan, D. S., Neighboring Carbon and Hydrogen. XI. Solvolysis of exo-Norbornyl p-Bromobenzenesulfonate [J], J. Am. Chem. Soc., 1952, 74(5): 1154~1160.
    [60]徐端详,亲核取代反应与离子对理论[J],大学化学,2001,16(5): 42~45.
    [61] Lyman, W. J., Reehl, W. F., Rosenblatt, D. H., Handbook of Chemical Property Estimation Methods, American Chemical Society, Washington, D. C., 1980.
    [62] Lehmann, A., Maranas, C. D., Molecular Design Using Quantum Chemical Calculations for Property Estimation [J], Ind. Eng. Chem. Res., 2004, 43(13): 3419~3432.
    [63] Marrero, J., Gani, R., Group-Contribution Based Estimation of Pure Component Properties [J], Fluid Phase Equilib., 2001, 183-184: 183~208.
    [64] Osmont, A., G(o|¨)kap, I., Evaluating Missile Fuels [J], Propellants, Explosives, Pyrotechnics, 2006, 31(5): 343~354.
    [65] Osmont, A., Catoire, L., G(o|¨)kalp, I., Physicochemical Properties and Thermochemistry of Propellanes [J], Energy Fuels, 2008, 22(4): 2241~2257.
    [66] Gaussian 03 (Revision C.02), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Hona, Y.; Kitao, K.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
    Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
    [67] Wheeler, S. E., Houk, K. N., Schleyer, P. v. R., et al. A Hierarchy of Homodesmotic Reactions for Thermochemistry [J], J. Am. Chem. Soc., 2009, 131(7): 2547~2560.
    [68] Savos’kin, M. V., Kapkan, L. M., Vaiman, G. E., et al. New Approaches to the Development of High-performance Hydrocarbon Propellants [J], Russ. J. Appl. Chem., 2007, 80(1): 31~37.
    [69] Chen, S. S., Li, S. F., Gan, D. P., et al. Synthesis of High Energy Fuel, Cyclopropane of endo-tricyclo[5.2.1.02,6]-3,8-decdiene-endo-tricyclo [5.2.1.02,6] -3-decene [P], Taiwan: 118607, 1983.
    [70] Disch, R. L., Schulman, J. M., Ab Initio Heats of Formation of Medium-sized Hydrocarbons, [n]prismanes [J], J. Am. Chem. Soc., 1988, 110(7): 2102~2105.
    [71] Novak, I., Ab Initio vs Molecular Mechanics Thermochemistry: Homocubanes [J], J. Chem. Inf. Comput. Sci., 2004, 44 (3): 903~906.
    [72] Schleyer, P. v. R., Torsional Effects in Polycyclic Systems. II. the Stereochemistry of Attack and Departure in Norbornane Derivatives [J], J. Am. Chem. Soc.. 1967, 89(3): 701~703.
    [73] Alder, K., Stein, G., Die Thermische Polymerisation Des Cyclo-pentadiens [J]. Angew. Chem., 1934, 47(52): 837~842.
    [74] Wakayama, H.; Sakai, S. Theoretical Analysis of Concerted and Stepwise Mechanisms of Diels?Alder Reactions of Butadiene with Silaethylene and Disilene [J], J. Phys. Chem. A, 2007, 111(51): 13575~13582.
    [75] Kong, S., Evanseck, J. D., Density Functional Theory Study of Aqueous-Phase Rate Acceleration and Endo/Exo Selectivity of the Butadiene and Acrolein Diels?Alder Reaction [J], J. Am. Chem. Soc. 2000, 122(42): 10418~10427.
    [76] Lendvay, G., Characterization of the Progress of Chemical Reactions by ab inito Bond Orders [J], J. Phys. Chem., 1994, 98(24): 6098~6104.
    [77] Brrski, S., Andrés, J., Silvi, B., et al. New Findings on the Diels-Alder Reactions. An Analysis Based on the Bonding Evolution Theory [J], J. Phys. Chem. A, 2006, 110(51): 13939~13947.
    [78]俞凌翀,基础理论有机化学(下册) [M],北京:高等教育出版社,1993, 389.
    [79] Diau, E. W.-G., Feyter, S. D., Zewail, A. H., Femtosecond Dynamics of Retro Diels–Alder Reactions: the Concept of Concertedness [J], Chem. Phys. Lett., 1999, 304(3-4): 134~144.
    [80] Jamróz, M. E., Ga?ka, S., Dobrowolski, J. C., On Dicyclopentadiene Isomers [J], J. Mol. Struct. (Theochem), 2003, 634(1-3): 225~233.
    [81] Suárez, D., Sordo, J. A. On the Origin of the endo/exo Selectivity in Diels-Alder Reactions [J], Chem. Commun., 1998, 385~386.
    [82] Blokzijl, W., Blandamer, M. J., Engberts, J., Diels-Alder Reactions in Aqueous Solutions. Enforced Hydrophobic Interactions Between Diene and Dienophile [J], J. Am. Chem. Soc., 1991, 113(11): 4241~4246.
    [83] Jones, G. O., Guner, V. A., Houk, K. N., Diels?Alder Reactions of Cyclopentadiene and 9,10-Dimethylanthracene with Cyanoalkenes: Performance of Density Functional Theory and Hartree?Fock Calculations for the Prediction of Substituent Effects [J], J. Phys. Chem. A, 2006, 110(4): 1216~1224.
    [84] Han, H., Zou J. J., Zhang, X. W., et al. Endo- to exo- Isomerization of Dicyclopentadiene over Zeolite [J], Appl. Cata. A: General, 2009, 367(1-2): 84~88.
    [85] Ramhold, K., Moll, K. K., Roschka, E., et al. Diels-Alder Reaktionen. IX [1]üBer Bildung und Thermolyse der isomeren Tricyclopentadiene [J], J. Prakt. Chem., 1984, 326(6): 924~934.
    [86] Coxon, J. M., Grice, S. T., Maclagan, R. G. A., et al. Ab initio Cs Transition State for the Diels-Alder Reaction of Acetylene and Butadiene [J], J. Org. Chem., 1990, 55(12): 3804~3807.
    [87] Kiri, S., Odo, Y., Izzat, H., et al. Origin of Regioselectivity in Photocycloaddition Reactions of 2-Cyclohexenone with Cycloalkenecarboxylates [J], Bull. Chem. Soc. Jpn., 2004, 77(6): 1209~1215.
    [88] Zou, J. J., Xiong, Z. Q., Zhang, X. W., et al. Kinetics of Tricyclopentadiene Hydrogenation over Pd-B/γ-Al2O3 Amorphous Catalyst [J], Ind. Eng. Chem. Res., 2007, 46 (13): 4415~4420.
    [89] Nakamura, M., Hirai, A., Nakamura, E., Reaction Pathways of the Simmons? Smith Reaction [J], J. Am. Chem. Soc., 2003, 125 (8): 2341~2350.
    [90] Bernardi, F., Bottoni, A., Miscione, G. P., A DFT Study of the Simmons?Smith Cyclopropanation Reaction[J], J. Am. Chem. Soc., 1997, 119 (50): 12300~12305.
    [91] Fang, W. H., Phillips. D. L., Wang., D. Q., et al. A Density Functional Theory Investigation of the Simmons?Smith Cyclopropanation Reaction: Examination of the Insertion Reaction of Zinc into the C?I Bond of CH2I2 and Subsequent Cyclopropanation Reactions [J], J. Org. Chem., 2002, 67(1): 154~160.
    [92]唐典勇,申伟,李明,不对称Simmons-Smith反应的密度泛函研究[J],西南师范大学学报,2003, 28(5): 766~770.
    [93] Dzhemilev, U. M., Dokichev, V. A., Maidanova, I. O., et al. Interaction of diazoalkanes with unsaturated compounds [J], Russ. Chem. Bull. 1983, 42(4): 697~700.
    [94] Blanchard, E. P., Simmons, H. E., Cyclopropane Synthesis from Methylene Iodide, Zinc-Copper Couple, and Olefins. II. Nature of the Intermediate [J], J. Am. Chem. Soc., 1964, 86(7): 1337~1347.
    [95] Simmons, H. E., Blanchard, E. P., Smith, R. D., Cyclopropane Synthesis from Methylene Iodide, Zinc-Copper Couple, and Olefins. III. The Methylene-Transfer Reaction [J], J. Am. Chem. Soc., 1964, 86(7): 1347~1356.
    [96] Meerwein, H., Emster, V. K.,über die Gleichgewichts-Isomerie zwischen Bornylchlorid, Isobornylchlorid und Camphen-chlorhydrat [J], Chem. Ber., 1922, 55(8): 2500~2528.
    [97] Meerinwein, H., Montfort, F., Racemisierungs-erscheinungen in Der Campherreihe [J], Justus Liebigs Annalen der Chemie, 1924, 435(1): 207~218.
    [98] Houben, J., Pfankuch, E.,über den Umbau des Camphers und Optisch Aktiver Systeme Der Campherreihe in Ihre R?umlichen Gegenformen [J], Justus Liebigs Annalen der Chemie, 1933, 501(1): 219~246.
    [99] Nametkin, S; Briissoff, L.über die Struktur des Methyl-isoborneols aus -Methyl-camphen, sowie desβ-Methyl-camphenilons und ihrer Derivate [J], Justus Liebigs Annalen der Chemie, 1927, 459(1): 144-171.
    [100] Roberts, J. D., Yancey, J. A. Mechanisms of Racemization of Camphene-8-C14 [J], J. Am. Chem. Soc., 1953, 75(13): 3165~3168.
    [101] Haseltine, R., Huang. E., Sorensen, T. S., et al. A Kinetic and Thermodynamic Behavioral Comparison of Observable Secondary and Tertiary 2-Norbornyl Cations [J], Can. J. Chem., 1975, 53, 1056~1066.
    [102] Rzepa, H. S., Allan, C. S. Racemization of Isobornyl Chloride via Carbocations: a Non-classical Look at a Classic Mechanism [J], J. Chem. Educ., 2010, 87(2): 221~228.
    [103] Ingold, C. K., The Mechanism of the Pinacol–pinacolin and Wagner– Meerwein Transformations [J], J. Chem. Soc. Trans., 1923, 123: 1706~1713.
    [104] Schleyer, P. v. R., The Relative Stability of Bridged Hydrocarbons. Norbornene and Nortricyclene [J], J. Am. Chem. Soc., 1958, 80(7): 1700~1704.
    [105] Haseltine, R., Wong, N., Sorensen, T. S., A Kinetic and Thermodynamic Behavioral Comparison of Observable Secondary and Tertiary 2-Norbornyl Cations [J], Can. J. Chem., 1975, 53(7): 1891~1900.
    [106] Joris, L., Schleyer, P. v. R., Gleiter, R., Cyclopropane Rings as Proton-acceptor Groups in Hydrogen Bonding[J], J. Am. Chem. Soc., 1968, 90(2): 327~336.
    [107] S(?)thre, L. J., Thomas, T. D., Svensson, S., Markovnikov Addition to Alkenes. A Different View from Core-electron Spectroscopy and Theory [J], J. Chem. Soc. Perkin Trans. 2, 1997, 4: 749~754.
    [108] Brown, J. M., McIvor, M. C., The Addition of Deuterium Chloride to Norbornene and Nortricyclene: a 220 MHz Nuclear Magnetic Resonance Study [J], J. Chem. Soc. Chem. Comm., 1969, 238~240.
    [109] Schreiner, P. R., Severance, D. L., Jorgensen, W. L., et al. The Energy Difference between the Classical and the Nonclassical 2-Norbornyl Cation in Solution. A Combined Ab Initio-Monte Carlo Study [J], J. Am. Chem. Soc., 1995, 117(9): 2663~2664.
    [110] Brown, H. C., with comments by Schleyer, P. v. R., The Nonclassical Ion Problem [M], Plenum, New York, 1977.
    [111] Olah, G. A., Prakash, G. K. S., Saunders, M., Conclusion of the Classical- nonclassical Ion Controversy Based on the Structural Study of the 2-norbornyl Cation [J], Acc. Chem. Res., 1983, 16(12): 440~448.
    [112] Szabó, K. J., Cremer, D., Route to a Kinetically Stabilized Protonated Spirocyclopentane with a Pentacoordinated Carbon Atom. Missing Link between Bicyclo[3.2.0]hept-3-yl and 7-Norbornyl Cation [J], J. Org. Chem., 1995, 60(7): 2257~2259.
    [113] Brown, H. C., Liu, K. T., Deuterochlorination of Norbornene and Apobornylene. Evidence for the Trapping of the Norbornyl Cation in an Unsymmetrical state [J], J. Am. Chem. Soc., 1967, 89(15): 3900~3901.
    [114] Holmes, J. L., McGillivray, D., Isaacs, N. S., The Mass Spectrum of exo-2-norbornyl chloride; the Elucidation of the Fragmentation Mechanism and Ion Structures by Metastable Ion Analysis [J], Can. J. Chem., 1970, 48(18): 2791~2797.
    [115] Ess, D. H., Wheeler, S. E., Iafe, R. G., et al. Bifurcations on Potential Energy Surfaces of Organic Reactions [J], Angew. Chem. Int. Ed., 2008, 47(40): 7592~7601.
    [116] Thomas, J. B., Waas, J. R., Harmata, M., et al. Control Elements in Dynamically Determined Selectivity on a Bifurcating Surface [J], J. Am. Chem. Soc. 2008, 130(44): 14544~14555.
    [117] Roberts, J. D., Lee, C. C., Saunders, W. H., Rearrangements in Carbonium Ion-Type Reactions of C14-Labeled Norbornyl Derivatives [J], J. Am. Chem. Soc., 1954, 76(18): 4501~4510.
    [118] Nickon, A., Hammons, J. H., The Synthesis of Three Monodeuterio- norbornanes and the Stereochemistry of Acid-Catalyzed Cleavage of Nortricyclene [J], J. Am. Chem. Soc., 1964, 86(16): 3322~3328.
    [119] Brunelle, P., Sorensen, T. S., Taeschler, C., The Historic Camphenyl Cation: a Detailed Structure Evaluation Including Solvation Energy Calculations [J], J. Org. Chem., 2001, 66(22): 7294~7302.
    [120] Wiberg, K. B., Rablen, P. R., Rush, D. J., et al. Amides. 3. Experimental and Theoretical Studies of the Effect of the Medium on the Rotational Barriers for N, N-Dimethylformamide and N,N-Dimethylacetamide [J], J. Am. Chem. Soc. 1995, 117(15): 4261~4270.
    [121] Rocha, W. R., Milagre, H. M. S., Almeida, W. B. D., On the Isomerization ofβ–pinene: a Theoretical Study [J], J. Mol. Struc. (Theochem), 2001, 544(1-3): 213~220.
    [122] Weitman, M., Major, D. T., Challenges Posed to Bornyl Diphosphate Synthase: Diverging Reaction Mechanisms in Monoterpenes [J], J. Am. Chem. Soc., 2010, 132(18): 6349~6360.
    [123] Muneyuki, R., Yoshimura, Y., Tori, K., et al. Acid-Catalyzed Rearrangements of the Pinyl System [J], J. Org. Chem., 1988, 53(2): 358~366.
    [124] Schreiner, P. R., Schleyer, P. v. R., Schaefer, H. F. Why the Classical and Nonclassical Norbornyl Cations Do Not Resemble the 2-endo- and 2-exo-Norbornyl Solvolysis Transition States [J]? J. Org. Chem., 1997, 62(13): 4216~4228.
    [125] Flores-Holguín, N., Aguilar-Elguézabal, A., Rodríguez-Valdez, L. M., et al. Theoretical Study of Chemical Reactivity of the Main Species in theα-pinene Isomerization Reaction [J], J. Mol. Struct. (Theochem), 2008, 854(1-3): 81~88.
    [126] Williams, C., Whittaker, D. Rearrangements of Pinane Derivatives. Part II. Products of Acid-catalysed Rearrangement ofα-pinene andβ-pinene in Acetic acid [J], J. Chem. Soc. B., 1971, 672~677.
    [127] Dewar, J. S., Fahey, R. C., Polar Addition of Hydrogen Chlorides onto Olefins [J], Angew. Chem. Int. Ed., 1964, 3(4): 245~324.
    [128] Yang, Z. Z., Ding, Y. L., Zhao, D. X., Insight into Markovnikov Reactions of Alkenes in Terms of ab initio and Molecular Face Theory [J], ChemPhysChem., 2008, 9(16): 2379~2389.
    [129] Brown, H. C., Kawakami, J. H., Additions to Bicyclic Olefins. IX. Electrophilic Addition of Acetic Acid and Perdeuterioacetic Acid to Norbornene and 7, 7-dimethylnorbornene [J], J. Am. Chem. Soc., 1975, 97(19): 5521~5526.
    [130] Williams, C., Whittaker, D., Evidence for Intimate Ion-pair Formation in the Addition of Acids to Olefins [J], J. Chem. Soc. Chem. Commun., 1970, 960~961.
    [131] Smith, W. B. A DFT Study of the Camphene Hydrochloride Rearrangement [J], J. Org. Chem., 1999, 64(1): 60~64.
    [132] Hennion, G. F., Irwin, C. F., Solvent Effects in Addition Reactions. II. Addition of Hydrogen Bromide and Chloride toα-Pinene [J], J. Am. Chem. Soc., 1941, 63 (3): 860~862.
    [133] Roy, D., Najafian, K., Schleyer P. v. R., Chemical Evolution: The Mechanism of the Formation of Adenine under Prebiotic Conditions [J], Proc. Natl. Acad. Sci. U.S.A., 2007, 104(14): 17272~17277.
    [134] Wieringa, J. H.; Strating, J.; Wynberg, H. The Reaction of Chlorine with Adamantylideneadamantane [J], Tetrahedron Lett. 1970, 11(52): 4579~4582.
    [135] Buchanan, G. L., Bredt's rule [J], Chem. Soc. Rev., 1974, 3: 41~63.
    [136] Huang, X., Batchelor, R. J., Einstein, F. W. B., et al. Stereochemistry of the Electrophilic Homoallylic Chlorination Reaction of Sterically Congested Alkenes with Benzenesulfenyl Chloride: The Structure of the Phenylthiiranium Ion Intermediate [J], J. Org. Chem., 1994, 59(23): 7108~7116.
    [137] Walling, C., Free Radicals in Solution [M], Wiley: New York, 1957, 347~396.
    [138] McMillen, D. F.; Golden, D. M. Hydrocarbon Bond Dissociation Energy [R], Ann. Rev. Phys. Chem., 1982, 33: 493~532.
    [139] Meijer, E. W., Kellogg, R. M., Wynberg, H., Rearrangements in the Halogenation of Tetraalkylethylenes with N-Halosuccinimides and tert -Butyl Hypochlorite [J], J. Org. Chem., 1982, 47(11): 2005~2009.
    [140] Lerman, B. M. Skeletal and Polycyclic Sterically Hindered Alkenes [J], Russ. Chem. Rev., 1995, 64(1): 1~24.
    [141] Chiappe, C., Rubertis, D. A., Lenoir, D., et al. Reactivity of Homoallylic Substituted Adamantylideneadamantanes with Bromine. Substituent Effects on the Stability of the Ionic and Nonionic Intermediates [J], J. Org. Chem., 2002, 67(20): 7066~7074.
    [142] Raber, D. J., Harris, J. M., Schleyer, P. v. R., Ions and Ion Pairs in Organic Chemistry [M], Szwarc, M., Ed., John Wiley: New York, 1974, Chapter 3.
    [143] Brown, R. S. Investigation of the Early Steps in Electrophilic Bromination Through the Study of the Reaction with Sterically Encumbered Olefins [J], Acc. Chem. Res., 1997, 30(3): 131~137.
    [144] Brown, R. S., Nagorski, R. W., Bennet, A. J., et al. Stable Bromonium and Iodonium Ions of the Hindered Olefins Adamantylideneadamantane and Bicyclo[3.3.1]nonyli-denebicyclo[3.3.1]nonane. X-Ray Structure, Transfer of Positive Halogens to Acceptor Olefins, and ab Initio Studies [J], J. Am. Chem. Soc., 1994, 116(6): 2448~2456.
    [145] Mori, T., Rathore, R., Lindeman, S. V., et al. X-Ray Structure of Bridged 2,2′-bi (adamant-2-ylidene) Chloronium Cation and Comparison of its Reactivity with a Singly-bonded Chloroarenium Cation [J], Chem. Comm., 1998, 927~928.
    [146] Dalton, D. R., Rodebaugh, R. K., Jefford, C. W. Bromohydrin Formation in Dimethyl Sulfoxide. V. Reaction of Norbornene [J], J. Org. Chem., 1972, 37(3): 362~367.
    [147] Huang, X. C., Bennet, A. J., Kinetic Evidence for the Importance of Solvent-Separated Ion Pairs During the Solvolyses of Adamantylideneadamantyl Derivatives [J], Can. J. Chem., 2004, 82(9):1336~1340.
    [148] Olah, G. A., Reddy, V. P., Prakash, G. K. S. Long-lived Cyclopropylcarbinyl Cations [J], Chem. Rev., 1992, 92(1): 69~95.
    [149] Fokin, A. A., Schreiner, P. R., Selective Alkane Transformations via Radicals and Radical Cations: Insights into the Activation Step from Experiment and Theory [J], Chem. Rev., 2002, 102(5): 1551~1593.
    [150] Fokin, A. A., Schreiner, P. R., Gunchenko, P. A., et al. Oxidative Single-Electron Transfer Activation ofσ-Bonds in Aliphatic Halogenation Reactions [J], J. Am. Chem. Soc., 2000, 122(30): 7317~7326.
    [151] Nelsen, S. F., Kessel, C. R., Adamantylideneadamantane Radical Cation, a Long-lived One-electron, Two-centerπ-bonded Species [J], J. Am. Chem. Soc., 1979, 101(9): 2503~2504.
    [152] Guerrero, A., Herrero, R., Quintanilla, E., et al. Single-Electron Self-Exchange between Cage Hydrocarbons and Their Radical Cations in the Gas Phase [J], ChemPhysChem, 2010. 11(3): 713~721.
    [153] Rathore, R., Schleyer, P. v. R., Kochi, J. K., et al. Steric Hindrance as a Mechanistic Probe for Olefin Reactivity: Variability of the Hydrogenic Canopy over the Isomeric Adamantylideneadamantane/Sesquihomoadamantene Pair (A Combined Experimental and Theoretical Study) [J], J. Org. Chem., 2002, 67(15): 5106~5116.
    [154] Nelsen, S. F., Klein, S. J., Trieber, D. A., et al.σ,πInteraction in Halogen-Substituted Biadamantylidene Radical Cations [J], J. Org. Chem., 1997, 62(19): 6539~6546.
    [155] Huang, X. C., Bennet, A. J., Observation of an Unusually Large Rate Acceleration Caused by a Homoallylic Double Bond in the Solvolyses of an Unstrained Secondary Adamantyl Tosylate [J], J. Chem. Soc. Perkin Trans. 2, 1994, 1279~1284.
    [156] Nelsen, S. F., Kapp, D. L., Akaba, R., et al. Cyclic Voltammetry Study of the Cation-Radical-Catalyzed Oxygenation of Tetraalkyl Olefins to Dioxetanes [J], J. Am. Chem. Soc., 1986, 108(22): 6863~6871.
    [157] Grimme, S., Semiempirical Hybrid Density Functional with Perturbative Second-order Correction [J], J. Chem. Phys., 2006, 124(3): 034108~034116.
    [158] Grimme, S., Mück-Lichtenfeld, C., Würthwein, E. U., et al. Consistent Theoretical Description of 1, 3-dipolar Cycloaddition Reactions [J], J. Phys. Chem. A, 2006, 110(8): 2583~2586.
    [159] Taylor, R., Electrophilic Aromatic Substitution [M], John Wiley, New York, 1990.
    [160] Olah, G. A., Aromatic Substitution. XXVIII. Mechanism of Electrophilic Aromatic Substitutions [J], Acc. Chem. Res., 1971, 4(7): 240~248.
    [161]张存华,范鲜红,王志刚等,苯分子的溴代反应研究[J],吉林大学学报,2005, 43(2): 222~224.
    [162] Fukuzumi, S., Kochi, J. K., Electrophilic Aromatic Substitution. Charge-Transfer Excited States and the Nature of the Activated Complex [J], J. Am. Chem. Soc., 1981, 103(24): 7240~7252.
    [163] Zou, J. W., Yu, C. H., Dyotropic Rearrangements of Dihalogenated Hydrocarbons: A Density Functional Theory Study [J], J. Phys. Chem. A, 2004, 108 (26): 5649–5654.
    [164] Smith, W. B., Ab initio Studies of the Bromination of Benzene[J], J. Phys. Org. Chem., 2003, 16(1): 34~39.
    [165] Burton, G. W., De la Mare, P. B. D, Main, L., et al. The Kinetics and Mechanisms of Aromatic Halogen Substitution. Part XXX. Chlorination of Triphenylene: Linear Free-energy Relationships in Chlorination of Some Aromatic Hydrocarbons [J], J. Chem. Soc. Perkin, 2, 1972, 265~271.
    [166] Brown, H. C., Stock, L. M., Relative Rates of Bromination of Benzene and the Methylbenzenes. Partial Rate Factors for the Bromination Reaction [J], J. Am. Chem. Soc., 1957, 79(6): 1421~1425.
    [167] Altschuler, L., Berliner, E., Rates of Bromination of Polynuclear Aromatic Hydrocarbons [J], J. Am. Chem. Soc., 1966, 88(24): 5837~5845.
    [168] Osamuraa, Y., Terada, K., Kobayashia, Y., et al. A Molecular Orbital Study of the Mechanism of Chlorination Reaction of Benzene Catalyzed by Lewis Acid [J], J. Mol. Struct. (THEOCHEM), 1999, 461-462: 399~416.
    [169] Heidrich, D. The Transition State of Electrophilic Aromatic Substitution in the Gas Phase [J], Phys. Chem. Chem. Phys., 1999, 1: 2209~2211.
    [170] De la Mare, P. B. D., Bolton, R., Electrophilic Additions to Unsaturated Systems [M], Elsevier, New York, 1966, 241~251.
    [171] Hayden, A. E., Houk, K. N., Transition State Distortion Energies Correlate with Activation Energies of 1,4-dihydrogenations and Diels-Alder Cycloadditions of Aromatic Molecules [J], J. Am. Chem. Soc., 2009, 131(11): 4084~4089.
    [172] Schleyer, P. v. R., Manoharan, M., Jiao, H., et al. The Acenes: Is there a Relationship between Aromatic Stabilization and Reactivity [J]? Org. Lett., 2001, 3(23): 3643~3646.
    [173] V'yunov, K. A., Ginak, A. I., The Mechanism of the Electrophilic Addition of Halogens to a Multiple bond [J], Russ. Chem. Rev., 1981, 50(2): 151~163.
    [174] Mayo, F. R., Hardy, W. B., The Bromination of Naphthalene [J], J. Am. Chem. Soc., 1952, 74(4): 911~917.
    [175] De la Mare, P. B. D., Johnson, M. D., Lomas, J. S., et al. The Kinetics and Mechanisms of Aromatic Halogen Substitution. Part XXIV. The Stereochemistry of Addition of Chlorine to Naphthalene [J], J. Chem. Soc. B, 1966, 827~833.
    [176] De la Mare, P. B. D., Pathways in Electrophilic Aromatic Substitutions. Cyclohexadienes and Related Compounds as Intermediates in Halogenation [J], Acc. Chem. Res., 1974, 7(11): 361~368.
    [177] Wright, O. L., Mura, L. E., The Bromination of Anthracene [J], J. Chem. Educ., 1966, 43(3): 150~150.
    [178] Price, C. C., Substitution and Orientation in the Benzene Ring [J], Chem. Rev., 1941, 29(1): 37~67.
    [179] De la Mare, P. B. D., Singh, A., Johnson, E. A., et al. Kinetics and Mechanisms of Aromatic Halogen Substitution. Part XXVIII. Environmental Effects on Rates and Products of Chlorination of Some Aromatic Hydrocarbons [J], J. Chem. Soc. B, 1969, 717~724.
    [180] Vijayalakshmi, K. P., Suresh, C. H., Pictorial Pepresentation and Validation of Clar's Aromatic Sextet Theory Using Molecular Electrostatic Potentials [J], New J. Chem., 2010, 34, 2132~2138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700