贯通式潜孔锤反循环取心关键技术与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的不断进步发展,特别是进入21世纪以来,世界各国特别是中国对各种矿产资源尤其是油气资源、铁矿石、煤炭等基础资源的需求量越来越大,与而同时我国的开发难度低的浅表层矿山资源的勘探开发已接近了尾声,而中西部边远地区因为复杂的地质与恶劣的自然环境条件一直没有得到充分的勘查。世界范围内资源的供应与价格问题对中国经济发展的影响逐渐的浮出水面,所以为了中国经济的稳定增长,应该立足于国内的资源自给,开发研究先进设备与钻探工艺技术以保障各种资源的供应显得尤为重要。
     我国自主研发的贯通式潜孔锤反循环连续取心钻探技术是集潜孔锤高效碎岩、流体介质全孔反循环、不停钻连续获取岩矿心三种先进钻探工艺于一体,效率可达常规钻探方法的6~10倍,全孔反循环对孔壁无冲刷,不停钻连续地排出岩(矿)心,不用水,不受季节寒冷、地层破碎或冻结、缺水等因素的影响,可以用于西部边远地区的矿产勘查工作。吉林大学现在该技术研究中处于国际领先地位,利用该技术解决了一大批钻探难题。但在推广该项技术过程中也发现一些问题:随着钻探设备尤其是空压机性能参数的大幅度提高,大风量高风压空压机应用一方面是加快了潜孔锤的钻进效率,但在地层条件特别复杂的情况(破碎、漏失)出现孔口返风、岩心采取率不够的情况。反循环潜孔锤钻头作为贯通式反循环连续取心钻进的关键技术,它的性能如何直接制约着这项技术的推广应用,因此需要对反循环钻进技术开展深入详细的理论与试验研究。
     在20多年的研究过程中,吉林大学设计了大批不同结构参数的反循环钻头,但是却没有一个定量的分析,说明这些钻头结构参数对反循环钻头性能的影响。如果反循环形成不畅、一般是在生产试验现场进行钻头结构参数的调整,这些都不能定量的分析反循环性能的好坏。所以本文对已设计应用过的反循环钻头结构进行分析,找出哪些局部结构参数改变是好的改进方向,哪些结构参数的改变是应该避免的,然后对反循环钻头局部结构进行试验设计优化,为高性能反循环钻头的设计提供理论与试验支撑。
     本文具体的研究内容与结论如下:
     1、本文总结了冲击回转课题组在过去20多年间设计的4个反循环钻头试验器的用途与设计特点。针对他们的不足(仅仅是用于特定的钻头规格尺寸,不能用来检验钻头实体的反循环效果),结合反循环钻头在生产试验使用过程中出现的新问题,创新地设计了多功能FZS-89-00反循环钻头模拟试验器。
     论文详细阐述了FZS-89-00反循环钻头模拟试验器的设计目的、原则以及它的各部分结构的详细组成与各自的功能作用。最后介绍了反循环钻头试验所用的各种设备、测试测量仪器、室内试验所用的管汇连接(更接近施工现场的管汇连接)等。
     2、总结了多引射器式贯通式反循环潜孔锤钻头的发展历史、结构原理、各次优化改进之处及它们各自的野外试验应用情况。根据各次野外试验应用过程中统计的反循环钻头使用效果特别是反循环效果不佳的花键内喷孔钻头,针对这个问题利用FZS-89-00反循环钻头试验台进行了室内试验,找出了问题存在的原因。
     根据钻头的结构形式与实际的生产试验情况,反循环钻头的优化方向筛选为:内喷孔部位采用双排螺旋型内喷孔布置形式,钻头底唇面的扩压槽则采用螺旋切边的布置形式。
     3、采用正交试验设计与EFD仿真技术方法,在数值模拟的理论基础上,利用FZS-89-00反循环钻头模拟试验器,研究讨论诸多钻头结构参数对反循环效果的影响,以寻找每个结构参数的最优水平值和钻头结构的最佳结构参数组合。优选出一个最优反循环效果的钻头结构参数,为后续生产试验应用提供数据和理论依据。
     经过理论与试验的验证,双排内喷孔与螺旋型扩压槽形式是有利于反循环钻头对外环空间隙内的空气产生抽吸作用,是反循环钻头未来设计的一个方向。
     4、引用引射器原理设计的大直径气力反循环钻头,被用于解决工程施工、排渣难题。在钻头结构参数优化设计过程中,采用正交试验设计对钻头结构参数进行优化,得到钻头6个结构参数的主次因素和最优水平,优选出最优的钻头理论参数组合。同时钻头6个结构参数显著影响目标值Q环空,L8(27)与L18(37)正交表中各因素的主次顺序一致,它们对目标值Q环空影响的主次顺序是:喷嘴直径Dn,喷嘴数量N,喷嘴偏转角度θd,喷嘴倾斜角度θs,引导段直径Dg,喷嘴长度L。最优的理论参数组合所获得的Q环空均大于L18(37)正交表中任意参数组合的Q环空,并且这组参数组合不在L18(37)正交表中。
     本文的主要创新点包括:
     1、FZS-89-00反循环钻头模拟试验器的设计接近实际反循环钻进条件,功能多样性,可以模拟多种地层条件下反循环钻进,可以检验多规格系列反循环钻头实物的反循环效果。
     2、设计的模块化钻头具有结构参数调整方便快捷,可作为1:1钻头的实物进行试验研究的特点。
     单因素试验下筛选出最优钻头结构参数后,对筛选出的各结构参数进行正交试验设计,并考虑交互项对结果的影响。经过FZS-89-00反循环钻头模拟试验器进行钻头实物的正交试验设计,得到钻头最优结构参数的结论与理论对比分析。
     3、创新的将引射器原理应用到大直径潜孔锤气力反循环钻头结构设计中,实现了稳定的反循环效果,这有助于攻克大直径钻孔在复杂地层条件下的钻进、排渣难题。并且利用正交试验设计原理对钻头结构参数进行了详细的分析,找到了一个最优反循环效果的钻头结构参数组合。
     4、正交试验设计与回归分析贯穿整篇论文,指导钻头的理论与试验研究。全面系统地研究各结构参数对反循环效果的影响,并且检查各因素之间的交互项,最大程度的保证正交试验设计的准确性。
The social, resources and environment are closely correlated to our daily life with theblooming and development of the social economics, especially in21century. Every countryincluded China has the increasing demands for various mine resource and energy resource,especially the demands for oil and gas resource, iron ore, coal and other black metals. Inaddition, this huge demand has started to rank first place all over the word. In the meantime,the exploration as well as exploitation of mining resources deposited in shallow and easilyexploiting formations is near the end. However, remote areas in Midwest of China have notbeen fully exploited with mineral resource due to the complicated geological conditions andnatural environment. Now days, the influence of resource supply and price problem onChina’s economic development will gradually arise. In order to maintain the stable growthof China’s economic, it should be based on domestic and researches on advanced drillingequipment and drilling technology should be conducted, which is particularly important toensure the supply of various resources.
     The reverse circulation drilling technology of hollow through DTH air hammer is a setof efficient coring with DTH air hammer, full-hole reverse circulation with drilling fluids,and continuous coring without power lack. The drilling efficiency of this technology can be6to10times compared to the conventional drilling methods. There is no erosion for thewall of borehole while drilling with full-hole reverse circulation technology, and the corescan be continuously obtained without persistent rotation. This technology can be used in thedrilling exploration in remote areas in Midwest of China, because it can’t be limited bywater, season, broken stratum and hard rock. Now, this technology is of internationaladvanced level and a large number of productive drilling problems can be solved by utilizing this technology. However, few detects has been found in the promotionalapplication process when drilling with this technology. With the development of drillingequipment, especially the great improvement of air compressor, the application of largeairflow and high pressure compressor have two opposite aspects. On the one hand, it canimprove the drilling efficiency with the DTH air hammer. On the other hand, the corerecovery is not qualified and the compressed air flows out of the orifice while drilling inextremely complicated stratum, such as broken and fractured formations. The DTH airhammer is the key component of hollow through reverse circulation continuous coringtechnology, and the successful promotion application of this advanced technology can belimited by the performance of the DTH air hammer, so it is necessary to conduct thedetailed theoretical and experimental research.
     Series of reverse circulation drill bit with different structural parameters have beendesigned by Jilin University in the20years of continuous study, but there is no quantitativeanalysis shows that the structural parameters could have an impact on the performance ofthe reverse circulation drill bit. Furthermore, once the reverse circulation can’t be generatedor the reverse circulation is not enough, the structure of the drill bit is just adjusted in thedrill site, which is not the quantitative analysis for the performance of the reversecirculation. Therefore, the structure of the applied reverse circulation drill bit has beenanalyzed in this paper, and the local structural modification is a good direction for theimprovement of the drill bit, on the other hand, some modification should be avoided bythis analysis. In the end, the experimental design and optimization can be obtained for thelocal structure of the advanced drill bit, and it can provide the theoretical and experimentalsupport for the design of reverse circulation drill bit with high-performance.
     Specific contents and conclusions of this study are as follows:
     1.This paper summarize design features of4reverse circulation bit tester in the past20years by our group。Aiming at their shortcomings (only for special drill bit size, cannot beused to test the effect of reverse circulation bit entities), and combined with the pumpkin inthe production test problems in the using process, we design the multifunctional FZS-89-00reverse circulation drilling simulatorcreatively.Expounds the design objective in detail,FZS-89-00reverse circulation drilling simulator's design principles and detailed structuresof each part of it with the respective function.Finally, we introduced the laboratory test equipment, test and measurement equipment which are used in reverse circulation bit testdesign, pile connection which is used in the indoor test(closer to the construction site) etc.
     2.We summarized the development history, structure and working principle of themulti-ejector hollow through DTH reverse circulation drill bit, the optimizationimprovement and their respective field application test.According to the improved schemewhich can achieve the anticipated effect in the field test and application, improvementwhich cannot achieve the drill bit with splined inner nozzle, laboratory experiments weredone using FZS-89-00pump kin, find out the cause of the problem.
     3. According to structure and practice in the production test, we select optimization ofreverse circulation bit as follows: the locations of inner nozzles use the arrangement ofdouble spiral nozzle in the double-nozzle reverse circulation drill bit, the bottom nozzle andbottom working face of the drill bit is arranged on the basis of the arrangement of spiralcutting edge.
     4.Using orthogonal design and EFD simulation techniques, on the theory basis ofnumerical simulation, using FZS-89-00reverse circulation bit simulation tester, we studyand discuss the influence of many parameters on the reverse circulation drill structureeffect,for optimal values for the parameters of each structure and the optimum combinationof structural parameters of the bit structure.And then an optimal bit structure parameters ofreverse circulation effect was selected,providing data and theoretical basis for thesubsequent production test and application.After verification of theory and test, double rowinner nozzle holes and spiral diffuser slot form is conducive to reverse circulation bit pumpon the air in the external ring gap, is a future direction of bit design.
     5.Large diameter pneumatic reverse circulation bit which is designed using Ejectorprinciple is used to solve the construction problem, slag.In the design process of the drill bit,orthogonal test design is used to drill bit structure parameters,we optimized optimal bittheory parameter combination. At the same time6bit structural parameters significantlyaffect the target value Q. The order of each factor in L8(27) and L18(37) orthogonal tableare consistent.
     Primary and secondary order of their effects on the target value Q is: nozzle diameterDn, nozzle number N deflection angle θ D, nozzle, nozzle angle θ s, boot diameter Dg, nozzle length L.Q which is obtained by the optimal theoretical parameters combination aremore than that in L18(37) orthogonal table consistently. And Q which is obtained by theoptimal theoretical parameters combination is not in L18(37) orthogonal table.
     The main innovations of this paper are as follows:
     1.The design of FZS-89-00reverse circulation drilling simulator is close to the actualconditions of reverse circulation drilling and functional diverse.It can simulate theconditions of the reverse circulation drilling under a variety of formation,can test reversecirculation effect of a series of real reverse circulation bit.And we can change regulatedrilling parameters conveniently and quickly.With a lot of parameters measurementinterface,we can measure conveniently.
     2.For the production test of on-site problems that reverse circulation effect was notperfect,according to the theoretical analysis and experimental study, we explain mainlyfrom the structure and velocity within the spray hole,which illustrate that effect of innernozzle length and path of fluid into the inner orifice are very strong.
     3.Modular drill designed by us has the following features:drilling parameters canchanged conveniently and quickly and it can be used as the drill bit physical experiment atthe1:1ratio. After select an optimal bit structural parameters combination in the singlefactor test conditions,orthogonal test design is used to them,and considering the effect of theinteraction term. After orthogonal test design is used to FZS-89-00reverse circulationdrilling simulator,we can come to a conclusion: the obtained the optimal parameters isconsistently to theoretical analysis.
     4. Ejector principle was innovatively applied to the design of pneumatic large diameterDTH air hammer reverse circulation drill bit, and achieve a stable reverse circulation effect,which is conducive to solve a thorny problem of large diameter drilling slag in complicatedstratum drilling under the complex formation.And we applied the orthogonal test designprinciple to analysis the bit structure parameters,figured out a bit structure parameterscombination with which DTH hammer can achieve optimal reverse circulation effect.
引文
[1]赵凡.矿产资源紧缺形势更为严峻[N].中国国土资源报,2001-02-20(01).
    [2]中国矿产资源紧缺能保证2020年需求的只有6种[J].化工矿产地质,2004(2):128.
    [3]我国矿产资源紧缺形势更为严峻[J].矿业快报,2003(2):48-49.
    [4]张俊山,康千.资源依旧紧缺价格继续坚挺[J].中国石油,2000(1):47.
    [5]任巍,高帆,王殿茹.矿产资源紧缺与我国矿产资源战略体系的构建[J].中国国土资源经济,2005(5):14-16.
    [6]我国矿产资源将持续紧缺[J].矿业快报,2001(23):6.
    [7]赵金海.我国煤层气勘探开发现状与发展建议[J].中外能源,2008(4):30-34.
    [8]王宏,杨丽丽,李红,等.我国煤层气资源开发意义探究[J].辽宁大学学报(自然科学版),2008(1):85-88.
    [9]钱小武,袁梅,刘源俊,等.中国煤层气利用现状浅析[J].煤,2009(6):4-6.
    [10]陆家亮.中国天然气工业发展形势及发展建议[J].天然气工业,2009(1):8-12.
    [11]刘洪林,李景明,宁宁,等.我国煤层气勘探开发现状、前景及产业化发展建议[J].天然气技术,2007(4):9-12.
    [12]刘成林,范柏江,葛岩,等.中国非常规天然气资源前景[J].油气地质与采收率,2009(5):26-29.
    [13]车长波,杨虎林,李玉喜,等.中国天然气勘探开发前景[J].天然气工业,2008(4):1-4.
    [14]车长波,杨虎林,李富兵,等.我国煤层气资源勘探开发前景[J].中国矿业,2008(5):1-4.
    [15]刘广志.特种钻探工艺学[M].上海科学技术出版社,2006.
    [16]博坤.贯通式潜孔锤反循环钻进技术钻具优化及应用研究[D].吉林大学,2009.
    [17]张永勤.反循环钻探技术的推广应用[J].探矿工程(岩土钻掘工程),2007(9):46-47.
    [18]殷琨.深化反循环工艺研究,促进钻探科技快速发展[J].探矿工程(岩土钻掘工程),2006(3):2.
    [19]胡振阳.潜孔锤反循环钻进技术在河南栾川钼矿复杂地层中的试验与理论研究[D].吉林大学,2004.
    [20]任红.贯通式潜孔锤反循环连续取心钻进取心机理研究[D].吉林大学,2008.
    [21]王文龙,王禹,李永哲,等.贯通式潜孔锤反循环连续取心(样)钻进工艺在新疆某矿区复杂地层中的应用试验[J].探矿工程(岩土钻掘工程),2006(2):54-56.
    [22]博坤,殷琨,王茂森.贯通式潜孔锤反循环钻进技术在矿区勘探中的应用研究[J].金属矿山,2009(3):133-136.
    [23]胡振阳,白鸿雁,殷琨.潜孔锤反循环钻进技术在复杂地层中的试验研究[J].地质与勘探,2006(4):94-96.
    [24]郝树青,殷琨,高科,等.气动贯通式潜孔锤反循环连续取心取样钻进新技术在河南钼矿中应用[J].钻采工艺,2006(4):1-3.
    [25]刘军,王春毅,何亚青,等.贯通式潜孔锤反循环钻进技术在探矿中的应用[J].采矿技术,2007(2):108-109.
    [26]陈家旺,殷琨,王安.贯通式潜孔锤在岩溶地层反循环水文水井钻进试验研究[J].施工技术,2007(1):89-91.
    [27]全志刚.贯通式潜孔锤在新疆白干湖钨锡矿区钻探施工的应用效果[J].探矿工程(岩土钻掘工程),2008(1):12-14.
    [28]李伟涛,殷琨,张德龙.贯通式气动潜孔锤在复杂破碎地层钻进的研究[J].山西建筑,2004(10):30-31.
    [29]郝树青,殷琨,彭枧明.潜孔锤反循环连续取芯钻进技术在复杂地层中的应用[J].西部探矿工程,2006(12):207-208.
    [30] http://www.americawestdrillingsupply.com/Bulroc/DTHrc.asp.
    [31] Meyers J. Air hammers cut barnett shale drilling time in half[J]. World Oil,2004,225(9):71-72.
    [32]刘建林.气体钻井用贯通式潜孔锤关键技术研究[D].吉林大学,2009.
    [33] Mackay P. Reverse circulation drilling avoids damage to low-pressure gasreservoirs[J]. World Oil,2003,224(3):71-72.
    [34]韩烈祥,孙海芳.气体反循环钻井技术发展现状[J].钻采工艺,2008(5):1-5.
    [35] Graham R L F J M A. Reverse circulation air drilling can reduce well boredamage[J]. Oil and Gas Journal,1993,91(12):85-94.
    [36]殷琨,王茂森,彭枧明等.冲击回转钻进[M].北京:地质出版社,2010.
    [37]张祖培,蒋荣庆,等.岩土钻掘工程新技术[M].地质出版社:北京,2003.
    [38] http://www.bulroc.com/RecirculationHammerProduct.html.
    [39] http://mc.sandvik.com/.
    [40] http://terexhalco.com/products/rc-equipment.html.
    [41] http://www.jthammer.com/.
    [42] http://www.numahammers.com/dth/bitspecsM.html.
    [43] http://www.mincon.com/index.asp.
    [44] http://pol.atlascopco.com/SGSite/default_prod.asp.
    [45] Gabrielsson F. Reverse circulation drilling with new hammer[J].Mining&Construction.Atlas Copco.,2008(8):26-27.
    [46] http://www.wingermachine.com/reversecirchammers.html.
    [47]张晓西.中心取样钻探技术(二)[J].探矿工程(岩土钻掘工程),2000(2):58-60.
    [48]王茂森.全孔反循环潜孔锤参数优化及其钻进工艺研究[D].吉林大学,2007.
    [49]朱丽红.油气勘探风动潜孔锤反循环钻井系统流体动力学参数研究[D].吉林大学,2010.
    [50]杨德.试验设计与分析[M].北京:中国农业出版社,2002.
    [51]任露泉.试验设计及其优化[M].北京:科学出版社,2009.
    [52]张里千,张建方.多因素最优化的重大突破[J].数理统计与管理,1998(1).
    [53]任露泉.试验优化设计与分析[M].吉林:吉林科学技术出版社,2001.
    [54]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008.
    [55]任露泉.回归设计及其优化[M].北京:科学出版社,2009.
    [56]任露泉.拟水平追加试验的设计与分析[J].1990.
    [57]陈魁.试验设计与分析[M].北京:清华大学出版社,1996.
    [58]方开泰.正交设计的最新发展和应用[J].数理统计与管理,1999.
    [59]朱伟勇.最优设计在工业中的应用[M].沈阳:辽宁科学技术出版社,1993.
    [60]吉林大学数学学院.大学数学(线性代数)[M].北京:高等教育出版社,2004.
    [61]同济大学应用数学系.微积分(上册)[M].北京:高等教育出版社,2002.
    [62]同济大学应用数学系.微积分(下册)[M].北京:高等教育出版社,2002.
    [63]李耀清.试验的数据处理[M].合肥:中国科学技术出版社,2003.
    [64]吉林大学数学学院.大学数学(随机数学)[M].北京:高等教育出版社,2004.
    [65]沙定国.实用误差理论与数据处理[M].北京:北京理工大学出版社,1993.
    [66] http://www.caeworks.cn/soft/fluid/200811/48.html.
    [67]陈小平,曹云露.基于COSMOS/FloWorks的割炬电极冷却水道优化[J].制造技术与机床,2006(12):52-54.
    [68]郑皓,阳宁.硝酸铵改性机中气流运动基于Cosmos Floworks的有限元分析[J].矿冶工程,2006(2):22-24.
    [69]安向东,安宏伟.基于Floworks的离心泵叶片流体分析方法[J].成组技术与生产现代化,2010(3):24-26.
    [70] Tucker P G, Pan Z. A Cartesian cut cell method for incompressible viscous flow[J].Applied Mathematical Modelling,2000,24(8-9):591-606.
    [71] Causon D M, Ingram D M, Mingham C G, et al. Calculation of shallow waterflows using a Cartesian cut cell approach[J]. Advances in Water Resources,2000,23(5):545-562.
    [72] Ingram D M, Causon D M, Mingham C G. Developments in Cartesian cut cellmethods[J]. Mathematics and Computers in Simulation,2003,61(3-6):561-572.
    [73] Hartmann D, Meinke M, Schr Der W. A strictly conservative Cartesian cut-cellmethod for compressible viscous flows on adaptive grids[J]. Computer Methods in AppliedMechanics and Engineering,2011,200(9-12):1038-1052.
    [74] Causon D M, Ingram D M, Mingham C G. A Cartesian cut cell method for shallowwater flows with moving boundaries[J]. Advances in Water Resources,2001,24(8):899-911.
    [75] http://www.proewildfire.cn/viewthread.php?tid=16360&page=1&authorid=88435.
    [76] http://www.hao007.net/bbs/viewthread.php?tid=22667&page=1&authorid=75122.
    [77] Hartmann D, Meinke M, Schr der W. A Cartesian Cut-Cell Solver forCompressible Flows[M]//KRAUSE E, SHOKIN Y, RESCH M, et al. ComputationalScience and High Performance Computing IV. Springer Berlin/Heidelberg,2011:363.
    [78] Chung M. Cartesian cut cell approach for simulating incompressible flows withrigid bodies of arbitrary shape[J]. Computers&Fluids,2006,35(6):607-623.
    [79] Flow Simulation2010Online User Guide[Z]. SolidWorks Corp.:2010.
    [80] EFD.Lab7Tutorial[Z]. NIKA.
    [81] Ji H, Lien F, Yee E. Numerical simulation of detonation using an adaptiveCartesian cut-cell method combined with a cell-merging technique[J]. Computers&Fluids,2010,39(6):1041-1057.
    [82] http://www.ca800.com/apply/html/2008-4-18/n28519.html.
    [83] http://www.81tech.com/2009/1207/4913.html#top.
    [84]金张凯,王瑞,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [85]王福军.计算流体动力学——CFD软件园里与应用[M].北京:清华大学出版社,2004.
    [86]韩占中,王敬,兰小平. Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [87] http://www.cfluid.com/bbs/viewthread.php?tid=50180.
    [88] http://www.newmaker.com/art_29138.html.
    [89] http://forum.simwe.com/viewthread.php?tid=833291.
    [90]廖达雄,任泽斌,余永生,等.等压混合引射器设计与实验研究[J].强激光与粒子束,2006(5):728-732.
    [91]张鲲鹏,薛飞,潘卫明,等.高压气体引射器的试验研究和仿真[J].热科学与技术,2004(2):133-138.
    [92]王铁进,朱孝业.单级超声速多喷管中心引射器的性能研究,中国上海,2000[C].
    [93]邱义芬,王俊清,袁修干,等.多喷嘴引射器性能计算模型[J].北京航空航天大学学报,1997(5).
    [94]沈坚,胡国新.引射器及引射循环在工程中的应用[J].煤气与热力,2005(1):34-38.
    [95] Bartosiewicz Y, Aidoun Z, Etc P D. Numerical and experimental investigations onsupersonic ejectors[J]. International Journal of Heat and Fluid Flow,2005(26):56-70.
    [96] Zhu Y, Cai W, Wen C, et al. Numerical investigation of geometry parameters fordesign of high performance ejectors[J]. Applied Thermal Engineering,2009,29(5-6):898-905.
    [97] Yadav R L P A W. Design aspects of ejectors: Effects on suction chambergeometry[J].2008,63:3886-3897.
    [98] J H H. Design of ejectors for single-phase material [J]. German ChemicalEngineering,1983,6(5):292-300.
    [99] Yadav R L P A W. Design aspects of ejectors: Effects on suction chambergeometry[J]. Chemical Engineering Science,2008,63:3886-3897.
    [100] Aphornratana S E I W. A small capacity steam-ejector refrigerator: experimentalinvestigation of a system using ejector with movable primary nozzle[J]. InternationalJournal of Refrigeration,1997,20(5):352-358.
    [101] Bhutada S R P V G. Gas induction and hold-up characteristics of liquid jet loopreactors[J]. Chemical Engineering Communications,1987,61:239-261.
    [102] Kandakure M T G V G P. Hydrodynamic aspects of ejectors[J]. ChemicalEngineering Science,2005,60:6391-6402.
    [103]姜正良,吴万敏.气体引射器的一维流动特性计算及优化设计[J].空气动力学学报,1995(4).
    [104]范黎明,殷琨,张永光,等.基于引射原理的侧吸式反循环钻头结构参数数值研究[J].中南大学学报(自然科学版),2011(1):220-226.
    [105]张也影.流体力学[M].北京:高等教育出版社,2000.
    [106]郝树青.贯通式潜孔锤反循环取心(取样)钻进孔底流场模拟与实验研究[D].吉林大学,2007.
    [107]林建忠.流体力学[M].北京:清华大学出版社,2005.
    [108]范黎明.贯通式潜孔锤钻头反循环机理研究及结构优化[D],建设工程学院,长春,2011
    [109]赵志强,殷琨等.大直径气力反循环钻头结构参数数值模拟与优化,中南大学学报(自然科学版),2013(44),4264—4272
    [110] Zhiqiang Zhao,Lijia Li et al,Numerical Investigation Based on Orthogonal Designof Structural Parameters on Large-Diameter DTH Hammer Bit,Advanced Technologies inManufacturing,Engineering and Materials,2013,774-776,1442—1445
    [111] Zhao Zhiqiang,Yin Kun et al.Optimal Design on the Drag Reduction Structure forthe Cylinder of Percussion-Compact DTH Hammer,ICPTT2012,2012.10,1732—1742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700