热光伏系统数值模拟及其光谱控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热光伏(TPV)系统是目前最先进的分布式能源解决方案之一,它利用光伏(PV)电池将人造热源的热辐射能转换为电能输出,故其基本原理与PV系统完全相同,即利用半导体PN结的光电转换特性。由于人造热源辐射距离小,TPV系统拥有比PV系统高得多的输出电功率密度,可达数瓦每平方厘米,并且输出稳定,不受天气等因素影响,这是TPV系统最为显著的特点之一。TPV系统的其它优势和特点还包括:可应用能源形式多样,运行安静、维护成本低,安全、无污染,可实行热电联供等。上述优势和特点决定了TPV系统在工业、商业、军事和航空航天等领域都将拥有非常巨大的实用价值和应用前景。
     TPV系统的主要构成部件为热源、辐射器、TPV电池、光子回收系统和能量控制单元。热源提供系统所需的辐射能量,其形式多样,包括化学燃料燃烧能、核能、太阳能等。辐射器将热源的能量辐射至TPV电池表面,分为灰体辐射器和选择性辐射器。TPV电池将接收到的辐射能转化为电能输出,是TPV系统的核心部件,决定了TPV系统的性能水平。光子回收系统用于回收半导体能带外的光子,以降低能量损耗,包括前置滤波器和背面反射器(及其组合)。能量控制单元控制系统的电能输出、各部件的冷却和余热回收等。目前对于TPV的研究主要围绕以上各关键技术以及系统构建展开。
     辐射器、TPV电池和光子回收系统是TPV系统的关键部件,它们一起构成了TPV系统的核心——热辐射发电模块。在热光伏系统性能初步研究中,建立了该模块的数学物理模型,通过数值模拟获得了SiC灰体辐射器分别配合GaSb和Si电池所构成的TPV系统的输出伏安特性曲线;再以GaSb电池为例,分别分析了SiC灰体辐射器温度、电池温度对系统性能的影响。得出结论:辐射器温度升高,系统输出电功率密度迅速增大,电池效率也稳步提高;电池温度升高则导致系统性能下降,电池效率也大幅下降。最后,讨论了与GaSb匹配的一种选择性辐射器的辐射能量分布情况。与SiC灰体辐射器相比,选择性辐射器可以显著减少辐射能量中的不可用部分,从而有效提高系统的性能。
     TPV系统的光谱控制部件包括选择性辐射器和光子回收系统。光谱控制部件对于提高光谱效率乃至TPV系统效率具有举足轻重的作用,是构建高性能TPV系统的关键部件之一。本文从配合以GaSb电池为转换器的TPV系统的滤波器入手,分别对透明导电氧化物(TCOs)滤波器和一维Si/SiO2光子晶体滤波器进行了理论和实验研究。
     在透明导电氧化物滤波器的优化分析中,建立了TCOs滤波器的理论模型,分析了载流子浓度、迁移率等电学参数对其光学性能的影响;计算了辐射器种类分别为A1203/Er3Al5012熔融陶瓷选择性辐射器和SiC灰体辐射器、而辐射器温度为1 400~1 600 K时,应用于以GaSb电池为转换器的TPV系统的TCOs滤波器的最佳载流子浓度和薄膜厚度区间。最后,讨论了石英玻璃衬底厚度对TCOs滤波器性能的影响,并考察了A1203/Er3Al5O12熔融陶瓷选择性辐射器+TCOs滤波器+GaSb电池的TPV系统的性能。
     针对一维硅/二-氧化硅光子晶体滤波器,建立了一维Si/SiO2光子晶体滤波器的理论模型,并指出原始结构的(L/2HL/2)5型光子晶体滤波器在GaSb电池特征波长处存在较大反射峰,制约了TPV系统性能的提高;再根据对称单元的等效折射率理论,将其结构改进为[1.10(L/2HL/2)](L/2HL/2)3[1.10(L/2HL/2)],即中间三个单元不变,左、右各最外一个单元修改为折射率匹配单元。模拟结果表明:改进型滤波器在特征波长处的透过率有较大改善,且一定程度地抑制了长波光子的透过;辐射器为1250℃的黑体时,采用改进型滤波器光谱效率和输出电功率密度均提高10%以上,电池效率也有所提高。采用磁控溅射方法制作了原始结构和改进型一维Si/SiO2光子晶体滤波器的试样,试样截面电镜图像表明所得光子晶体滤波器试样结构与设计大致相符,试样的光谱反射率和透过率的测量结果与数值模拟结果吻合良好。
     在辐射热阻网络法热光伏系统热分析中,采用辐射热阻网络方法建立了LMFraas提出的典型中温TPV系统的辐射换热模型。相对于蒙特卡罗等方法,辐射热阻网络法的优势是模型较简单,计算量小。但对模型的一般求解过程中并未考虑石英玻璃管对辐射光子的波长转换作用,导致计算所得的石英玻璃管的光谱发射功率密度与普朗克定律相违背。通过在辐射热阻网络中添加虚拟的单色波热源的方式对模型进行了修正。该方式忽略了波长转换的详细过程,可以简化修正模型的复杂程度,并减少计算量和计算时间。采用修正模型得到了系统的辐射热流密度、光谱效率和石英玻璃管的等效辐射温度等一些重要参数,与参考文献中蒙特卡罗等复杂模型的结果吻合较好。
As one of the most advanced power solutions presently, thermophotovoltaic (TPV) system converts thermal radiation from man-made heat source into electricity by photovoltaic (PV) cell. It utilizes the same principle as do PV system, namely the photoelectric effect of semiconductor. Due to the small distance of the man-made heat source, the power-density output of the TPV system is much higher than the PV system, approaching a few Watt/cm2, stably without being affected by any weather condition. This is the most significant advantage of TPV system. Other advantages include versatile fuel-usage, quiet operation, low maintenance, safe, pollution free and possibility for cogeneration of electricity and heat. All those make the TPV applications in the field of industry, commerce, military and aerospace very promising and attractive.
     A TPV device consists of a heat source, a radiator (emitter), a TPV cell array, a photon-recycle system and an energy-management unit. The heat source, which provides the necessary radiation energy, can be the fuel combustion, nuclear or solar energy. The radiator, which radiative the energy from the heat source towards the TPV cells includes gray-body radiator and selective radiator. The TPV cells, which converts the received radiation into electricity outputs, is the pivotal component of the system and therefore dominates the system performance. The photon-recycle system, which recycles out-band photons to reduce the energy waste, can be classified into two categories, the front filter and backside reflector (or the combination of both). The energy-management unit controls the output, cooling and waste-heat recovery of the system. Present researches mainly focus on the advance technology of those separate components and the demonstration of system prototypes.
     The key components of the TPV system are the radiator, the TPV cells and the photon-recycle system, which compose the core of the system, namely the thermal radiation-electricity module. In the primary investigation research on the TPV system performance, physical and numerical model of this module is constructed. Current/voltage characteristics of the system consisting of a SiC gray-body emitter and GaSb or Si PV cells are obtained. Influences of the emitter temperature and the cell temperatures on the performance of the system consisting of a SiC emitter with GaSb cells are analyzed, respectively. The power-density output as well as the cell efficiency increases with the emitter temperature. However, the rise of the cell temperature leads to negative effects. Whereafter, the radiative energy distribution of a selective emitter matching GaSb cell is discussed. The selective emitter cuts down the unusable radiative energy remarkably comparing with a SiC emitter, and thus improves the system performance significantly.
     In the TPV system, the selective radiator and the photon-recycle system are so called spectral-control components, which decide the spectral efficiency of the system and further contributes to the system efficiency. Considering that the spectral-control components are the very key components for high-performance systems, this paper presents a detailed theoretical and experimental discussions on the transparent conducting oxides (TCOs) as well as one dimensional (1D) Si/SiO2 photonic crystal (PhC) filter matching TPV systems based on GaSb converter.
     In the analysis and optimization of TCOs filter, the model of TCOs filter is constructed and the influence of the carrier concentration as well as mobility on the spectral properties is analyzed. The optimal carrier concentration and film thickness are evaluated for TPV system based on GaSb converter with Al2O3/Er3Al3O12 eutectic ceramic selective radiator as well as SiC gray-body radiator varying from 1400 K to 1600 K. At last, the influence of the quartz thickness on the filter properties is discussed, and the performance of the system consisting of the Al2O3/Er3Al5O12 selective radiator, the TCOs filter and GaSb cells is investigated.
     In the development of 1D Si/SiO2 PhC filter, the theoretical model of 1D Si/SiO2 PC filter is constructed, and the issue that large oscillations around the characteristic wavelength of GaSb cell in the pass band of 1D PhC filter of (L/2HL/2)5 structure leads to a discount on the system performance is pointed out. A modified 1D Si/SiO2 PhC filter of [1.10(L/2HL/2)](L/2HL/2)3[1.10(L/2HL/2)] is designed based on the theory of equivalent refractive of symmetry unit. In the modified structure, the 3 middle units remain unchanged while the left and right units serve as the refractive match units. Simulation results indicate that the transmittance around the characteristic wavelength of the modified PhC filter is improved remarkably and the transmission of long-wavelength photons are also inhibited. The spectral efficiency and power-density output of the system with a blackbody radiator at 1250℃can be improved 10% by adopting the modified 1D PhC filter comparing to the original 1D PhC filter, the cell efficiency is also improved at a certain extent. Both PhC filter samples of the modified and original structures were prepared through a magnetron sputtering process. The cross-section SEM indicates that the structures of the prepared samples approximately match the design and the measured spectral reflectance and transmittance show good coherence with the simulation.
     In the thermal analysis of TPV system using the radiation resistor network method, the radiative heat transfer model of a typical medium-temperature TPV reported by L M Fraas is constructed by adopting the radiation resistor network method, the advantages of which include simple modeling and short computation time comparing with the Monte Carlo (M-C) method. However, in the usual solving process no consideration of the wavelength-shift for the photons when passing the quartz envelop will lead to violation of the spectral emissive power density pf the quartz with the Planck's Law. Whereafter, the model is improved by adopting a fictitious monochromatic heat source. This method ignores the detailed process of the wavelength shift, so it can predigest the complexity of the model and reduce the computation time. The calculated radiative heat flux, spectral efficiency and the equivalent radiative temperature of the quartz envelop from the improved model fit better with the results from M-C model in the literature.
引文
1. Coutts, T.J., Thermophotovoltaic principles, potential, and problems. Future Generation Photovoltaic Technologies,1997(404):p.217-233.
    2. Coutts, T.J., A review of progress in thermophotovoltaic generation of electricity. Renewable & Sustainable Energy Reviews,1999.3(2-3):p.77-184.
    3. Coutts, T.J., An overview of thermophotovoltaic generation of electricity. Solar Energy Materials and Solar Cells,2001.66(1-4):p.443-452.
    4. Coutts, T.J., G. Guazzoni, and J. Luther, An overview of the fifth conference on thermophotovoltaic generation of electricity. Semiconductor Science and Technology,2003. 18(5):p. S144-S150.
    5. Fourspring, P.M., et al., Thermophotovoltaic spectral control. Thermophotovoltaic Generation of Electricity,2004.738:p.171-179.
    6. Fraas, L.M., et al., Thermophotovoltaic system configurations and spectral control. Semiconductor Science and Technology,2003.18(5):p. S165-S173.
    7. Kruger, J.S., G. Guazzoni, and S.J. Nawrocki, Army thermophotovoltaic efforts. Thermophotovoltaic Generation of Electricity,1999.460:p.30-35.
    8. Nelson, R.E., A brief history of thermophotovoltaic development. Semiconductor Science and Technology,2003.18(5):p. S141-S143.
    9. Ostrowski, L.J., U.C. Pernisz, and L.M. Fraas, Thermophotovoltaic energy conversion: Technology and market potential. Second Nrel Conference on Thermophotovoltaic Generation of Electricity,1996(358):p.251-260.
    10. Shakouri, A., Thermoelectric, thermionic and thermophotovoltaic energy conversion. ICT:2005 24th International Conference on Thermoelectrics,2005:p.495-500.
    11. Sundaram, V.S., et al., Thermophotovoltaic (TPV):An old concept whose time has come. Physics of Semiconductor Devices, Vols 1 and 2,1998.3316:p.410-419.
    12. Wilt, D.M. and D.L. Chubb, A review of recent thermophotovoltaic energy conversion technology development at NASA Lewis Research Center. Space Technology and Applications International Forum-1998, Pts 1-3,1998(420):p.1410-1415.
    13. Becker, F.E., et al., Development of a 500 watt portable thermophotovoltaic power generator. Conference Record of the Twenty Fifth Ieee Photovoltaic Specialists Conference-1996,1996:p. 1413-1416.
    14. DeBellis, C.L., et al., Component development for 500 watt diesel fueled portable thermophotovoltaic (TPV) power supply. Thermophotovoltaic Generation of Electricity,1999. 460:p.362-370.
    15. Durisch, W., et al., Small self-powered grid-connected thermophotovoltaic prototype system. Applied Energy,2003.74(1-2):p.149-157.
    16. Durisch, W., et al., Small thermophotovoltaic prototype systems. Solar Energy,2003.75(1):p. 11-15.
    17. Qiu, K. and A.C.S. Hayden, Performance of low bandgap thermophotovoltaic cells in a small cogeneration system. Solar Energy,2003.74(6):p.489-495.
    18. Qiu, K. and A.C.S. Hayden, Thermophotovoltaic generation of electricity in a gas fired heater: Influence of radiant burner configurations and combustion processes. Energy Conversion and Management,2003.44(17):p.2779-2789.
    19. Astle, C.J., G.J. Kovacik, and T.R. Heidrick, Design and performance of a prototype thermophotovoltaic system. Journal of Solar Energy Engineering-Transactions of the Asme,2007. 129(3):p.340-342.
    20. Durisch, W., F. von Roth, and W.J. Tobler, Advances in gas-fired thermophotovoltaic systems. Journal of Solar Energy Engineering-Transactions of the Asme,2007.129(4):p.416-422.
    21. Qiu, K. and A.C.S. Hayden, Thermophotovoltaic power generation systems using natural gas-fired radiant burners. Soiar Energy Materials and Solar Cells,2007.91(7):p.588-596.
    22. Schock, A., et al., Design, Analysis, and Optimization of a Radioisotope Thermophotovoltaic (Rtpv) Generator, and Its Applicability to an Illustrative Space Mission. Acta Astronautica,1995. 37:p.21-57.
    23. Schock, A., C. Or, and V. Kumar, Small radioisotope thermophotovoltaic (RTPV) generators. Second Nrel Conference on Thermophotovoltaic Generation of Electricity,1996(358):p.81-97.
    24. Crowley, C.J., et al., Thermophotovoltaic converter design for radioisotope power systems. Space Technology and Applications International Forum-Staif 2004,2004.699:p.764-772.
    25. Murray, C.S., et al., Thermophotovoltaic converter design for radioisotope power systems. Thermophotovoltaic Generation of Electricity,2004.738:p.123-132.
    26. Crowley, C.J., et al., Thermophotovoltaic converter performance for radioisotope power systems. Space Technology and Applications International Forum-Staif 2005,2005.746:p.601-614.
    27. Wernsman, B., et al., Advanced thermophotovoltaic devices for space nuclear power systems. Space Technology and Applications International Forum-Staif 2005,2005.746:p.1441-1448.
    28. Swanson, R.M., Proposed Thermophotovoltaic Solar-Energy Conversion System. Proceedings of the Ieee,1979.67(3):p.446-447.
    29. Demichelis, F. and E. Minettimezzetti, A Solar Thermophotovoltaic Converter. Solar Cells,1980. 1(4):p.395-403.
    30. Chubb, D.L., B.S. Good, and R.A. Lowe, Solar thermophotovoltaic (STPV) system with thermal energy storage. Second Nrel Conference on Thermophotovoltaic Generation of Electricity, 1996(358):p.181-198.
    31. Stone, K.W., et al., A space solar thermophotovoltaic power system. Iecec 96-Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, Vols 1-4,1996:p.1001-1006.
    32. Stone, K.W., N.S. Fatemi, and L.M. Garverick, Operation and component testing of a solar thermophotovoltaic power system. Conference Record of the Twenty Fifth Ieee Photovoltaic Specialists Conference-1996,1996:p.1421-1424.
    33. Harder, N.P. and P. Wurfel, Theoretical limits of thermophotovoltaic solar energy conversion. Semiconductor Science and Technology,2003.18(5):p. S151-S157.
    34. Andreev, V.M., et al., Solar thermophotovoltaic converters:Efficiency potentialities. Thermophotovoltaic Generation of Electricity,2004.738:p.96-104.
    35. Andreev, V.M., et al., Solar thermophotovoltaic system with high temperature tungsten emitter. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference-2005,2005:p. 671-674.
    36. Badescu, V., Upper bounds for solar thermophotovoltaic efficiency. Renewable Energy,2005. 30(2):p.211-225.
    37. Bayramov, A.A., et al., Thermophotovoltaic solar energy converters on the basis A(V)B(VI). Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 2,2006:p.651-654.
    38. Andreev, V.M., et al., Solar thermophotovoltaic converters based on tungsten emitters. Journal of Solar Energy Engineering-Transactions of the Asme,2007.129(3):p.298-303.
    39. Fraas, L.M., J.E. Avery, and H.X. Huang, Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells. Semiconductor Science and Technology,2003.18(5):p. S247-S253.
    40. Marti, D., et al., Development of GaSb photoreceiver arrays for solar thermophotovoltaic systems. Journal of Solar Energy Engineering-Transactions of the Asme,2007.129(3):p. 283-290.
    41. Khostikov, V.P., et al., Photovoltaic cells based on GaSb and Ge for solar and thermophotovoltaic applications. Journal of Solar Energy Engineering-Transactions of the Asme, 2007.129(3):p.291-297.
    42. Zenker, M., et al., Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells. Ieee Transactions on Electron Devices,2001.48(2):p.367-376.
    43. Williams, D.J. and L.M. Fraas, Demonstration of a candle powered radio using GaSb thermophotovoltaic cells. Second Nrel Conference on Thermophotovoltaic Generation of Electricity,1996(358):p.134-137.
    44. Simcock, M.N., et al., Zinc diffusion in GaSb for thermophotovoltaic cell applications. Thermophotovoltaic Generation of Electricity,2004.738:p.303-310.
    45. Martin, D., et al., Thermophotovoltaic systems based on gallium antimonide infrared cells.2007 Spanish Conference on Electron Devices, Proceedings,2007:p.285-288.
    46. Martin, D. and C. Algora, Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling. Semiconductor Science and Technology,2004.19(8):p. 1040-1052.
    47. Khvostikov, V.P., et al., Thermophotovoltaic GaSb cells fabrication and characterisation. Thermophotovoltaic Generation of Electricity,2007.890:p.198-207.
    48. Fraas, L.M., et al., Low cost high power GaSb thermophotovoltaic cells. Future Generation Photovoltaic Technologies,1997(404):p.285-292.
    49. Dakshinamurthy, S., et al., Fabrication and characterization of GaSb based thermophotovoltaic cells using Zn diffusion from a doped spin-on glass source. Journal of Electronic Materials,1999. 28(4):p.355-359.
    50. Coffegidor, V., et al., Thermophotovoltaic converters based on poly-crystalline GaSb. Thermophotovoltaic Generation of Electricity,2007.890:p.157-164.
    51. Afrailov, M.A., et al., Gallium antimonide-Based photodiodes and thermophotovoltaic devices. Six International Conference of the Balkan Physical Union,2007.899:p.447-448.
    52. Wernsman, B., et al., Molecular beam epitaxy grown 0.6 eVn/p/n lnPAs/InGaAs/InAlAs double heterostructure thermophotovoltaic devices using carbon as the p-type dopant. Journal of Vacuum Science & Technology B,2006.24(3):p.1626-1629.
    53. Hitchcock, C.W., et al., Ternary and quaternary antimonide devices for thermophotovoltaic applications. Journal of Crystal Growth,1998.195(1-4):p.363-372.
    54. Su, N., et al., Characterization and modeling of InGaAs/InAsP thermophotovoltaic converters under high illumination intensities. Journal of Applied Physics,2007.101(6):064511.
    55. Rohr, C., et al., InP-based lattice-matched InGaAsP and strain-compensated InGaAs/InGaAs quantum well cells for thermophotovoltaic applications. Journal of Applied Physics,2006. 100(11):114510.
    56. Peng, X.C., et al., Numerical analysis of the short-circuit current density in GaInAsSb thermophotovoltaic diodes. Infrared Physics & Technology,2009.52(4):p.152-157.
    57. Uppal, P.N., et al., MBE growth of GaInAsSb p/n junction diodes for thermophotovoltaic applications. Journal of Crystal Growth,1997.175:p.877-882.
    58. Mauk, M.G., et al., Liquid-phase epitaxy of low-bandgap Ⅲ-Ⅴ antimonides for thermophotovoltaic devices. Journal of Crystal Growth,2000.211(1-4):p.189-193.
    59. Hudait, M.K., M. Brenner, and S.A. Ringel, Metamorphic In0.7Al0.3As/In0.69Ga0.31As thermophotovoltaic devices grown on graded InAsyPl-y buffers by molecular beam epitaxy. Solid-State Electronics,2009.53(1):p.102-106.
    60. Hudait, M.K., et al.,0.6-eV bandgap In0.69Ga0.31As thermophotovoltaic devices grown on InAsyPl-y step-graded buffers by molecular beam epitaxy. Ieee Electron Device Letters,2003. 24(9):p.538-540.
    61. Hudait, M.K., et al., High-performance In0.53Ga0.47 as thermophotovoltaic devices grown by solid source molecular beam epitaxy. Ieee Electron Device Letters,2002.23(12):p.697-699.
    62. Huang, R.K., et al., Heterojunction thermophotovoltaic devices with high voltage factor. Journal of Applied Physics,2007.101(4):046102.
    63. Ginige, R., et al., High injection and carrier pile-up in lattice matched InGaAs/InP PN diodes for thermophotovoltaic applications. Journal of Applied Physics,2004.95(5):p.2809-2815.
    64. Dashiell, M.W., et al., Triple-axis X-ray reciprocal space mapping of InyGal-yAs thermophotovoltaic diodes grown on (100) InP substrates. Solar Energy Materials and Solar Cells,2008.92(9):p.1003-1010.
    65. Dashiell, M.W., et al., Quaternary InGaAsSb thermophotovoltaic diodes. Ieee Transactions on Electron Devices,2006.53(12):p.2879-2891.
    66. Cederberg, J.G., et al., The development of (InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs) buffers. Journal of Crystal Growth,2008.310(15):p.3453-3458.
    67. Guazzoni, G., E. Kittl, and S. Shapiro, Rare-Earth Radiators for Thermophotovoltaic Energy Conversion. Ieee Transactions on Electron Devices,1969. Ed16(2):p.256.
    68. Diso, D., et al., Erbium containing ceramic emitters for thermophotovoltaic energy conversion. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2003. 98(2):p.144-149.
    69. Diso, D., et al., Study and optimization of ceramic coatings for thermophotovoltaic applications. Thermophotovoltaic Generation of Electricity,2004.738:p.237-243.
    70. Bitnar, B., et al., Characterisation of rare earth selective emitters for thermophotovoltaic applications. Solar Energy Materials and Solar Cells,2002.73(3):p.221-234.
    71. Nakagawa, N., et al., Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. Journal of the European Ceramic Society,2005.25(8):p.1285-1291.
    72. Sai, H., et al., Selective emission ofAl2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2000.39(4A):p.1957-1961.
    73. Yugami, H., et al., Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter. Conference Record of the Twenty-Eighth Ieee Photovoltaic Specialists Conference-2000,2000:p.1214-1217.
    74. Ferguson, L.G. and F. Dogan, A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2001.83(1-3):p.35-41.
    75. Ferguson, L.G. and F. Dogan, Spectral analysis of transition metal-doped MgO "matched emitters" for thermophotovoltaic energy conversion. Journal of Materials Science,2002.37(7):p. 1301-1308.
    76. Ferguson, L.G. and F. Dogan, Thermal shock performance of magnesia tapes for thermophotovoltaic applications. Innovative Processing and Synthesis of Ceramics, Glasses, and Composites Iv,2000.115:p.635-642.
    77. Ferguson, L.G. and F. Dogan, Spectrally selective, matched emitters for thermophotovoltaic energy conversion processed by tape casting. Journal of Materials Science,2001.36(1):p. 137-146.
    78. Cockeram, B.V. and J.L. Hollenbeck, The spectral emittance and long-term thermal stability of coatings for thermophotovoltaic (TPV) radiator applications. Surface & Coatings Technology, 2002.157(2-3):p.274-281.
    79. Fraas, L., et al., Antireflection coated refractory metal matched emitters for use with GaSb thermophotovoltaic generators. Conference Record of the Twenty-Eighth Ieee Photovoltaic Specialists Conference-2000,2000:p.1020-1023.
    80. Chen, Y.B. and Z.M. Zhang, Design of tungsten complex gratings for thermophotovoltaic radiators. Optics Communications,2007.269(2):p.411-417.
    81. Sai, H. and H. Yugami, Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Applied Physics Letters,2004.85(16):p.3399-3401.
    82. Sai, H., Y. Kanamori, and H. Yugami, Spectral and thermal properties of tungsten selective emitters with rectangular microcavities for thermophotovoltaic generations.Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Vols a-C,2003:p.208-211.
    83. Sai, H., et al., Thermophotovoltaic generation with microstructured tungsten selective emitters. Thermophotovoltaic Generation of Electricity,2004.738:p.206-214.
    84. Fleming, J.G., Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation (vol 83, pg 380,2003). Applied Physics Letters,2005.86(24):p.380-382.
    85. Lin, S.Y., J. Moreno, and J.G. Fleming, Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters,2003.83(2):p.380-382.
    86. Nagpal, P., et al., Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals. Nano Letters,2008.8(10):p.3238-3243.
    87. Hofler, H., et al., Interference Filters for Thermophotovoltaic Solar-Energy Conversion. Solar Cells,1983.10(3):p.273-286.
    88. Lindberg, E. and L. Broman, An animation tool for demonstrating the importance of edge filters in thermophotovoltaic applications. Renewable Energy,2003.28(8):p.1305-1315.
    89. Deopura, M., et al., Dielectric omnidirectional visible reflector. Optics Letters,2001.26(15):p. 1197-1199.
    90. Fink, Y., et al., A dielectric omnidirectional reflector. Science,1998.282(5394):p.1679-1682.
    91. Celanovic, I., et al., Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications. Optics Letters,2004.29(8):p.863-865.
    92. O'Sullivan, F., et al., Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications. Journal of Applied Physics,2005.97(3):033529.
    93. Celanovic, I., et al., 1D and 2D photonic crystals for thermophotovoltaic applications. Photonic Crystal Materials and Nanostructures,2004.5450:p.416-422.
    94. Wu, X., T.J. Coutts, and W.P. Mulligan, Properties of transparent conducting oxides formed from CdO and ZnO alloyed with SnO2 and In2O3. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1997.15(3):p.1057-1062.
    95. Coutts, T.J., et al., High-performance, transparent conducting oxides based on cadmium stannate. Journal of Electronic Materials,1996.25(6):p.935-943.
    96. Vigil, O., et al., Transparent conducting oxides as selective filters in thermophotovoltaic devices. Journal of Physics-Condensed Matter,2005.17(41):p.6377-6384.
    97. Home, W.E., et al., Frequency selective surface bandpass filters applied to radioisotope thermophotovoltaic generators. Space Technology and Applications International Forum-Staif 2005,2005.746:p.593-600.
    98. Kiziltas, G., J.L. Volakis, and N. Kikuchi, Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter. Ieee Transactions on Antennas and Propagation,2005.53(7):p.2282-2289.
    99. Kristensen, R.T., J.F. Beausang, and D.M. DePoy, Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control. Journal of Applied Physics,2004. 95(9):p.4845-4851.
    100. Walsh, T.A. and S.Y. Lin, Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter. Ieee Transactions on Electron Devices,2008.55(5):p.1101-1108.
    101. Xu, B., et al., Integrated bandpass filter contacts for GaSb thermophotovoltaic cells. Space Technology and Applications International Forum-Staif 2005,2005.746:p.615-622.
    102. Rahmlow, T.D., et al., Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion. Thermophotovoltaic Generation of Electricity,2007.890:p.59-67.
    103. Colangelo, G., A. de Risi, and D. Laforgia, Experimental study of a burner with high temperature heat recovery system for TPV applications. Energy Conversion and Management,2006.47(9-10): p.1192-1206.
    104. Fraas, L.M., et al., Development of a small air-cooled "midnight sun" thermophotovoltaic electric generator. Second Nrel Conference on Thermophotovoltaic Generation of Electricity, 1996(358):p.128-133.
    105. Yang, W.M., et al., Research on micro-thermophotovoltaic power generators. Solar Energy Materials and Solar Cells,2003.80(1):p.95-104.
    106. Yang, W.M., et al., Microscale combustion research for application to micro thermophotovoltaic systems. Energy Conversion and Management,2003.44(16):p.2625-2634.
    107. Yang, W.M., et al., Effect of wall thickness of micro-combustor on the performance of micro-thermophotovoltaic power generators. Sensors and Actuators a-Physical,2005.119(2):p. 441-445.
    108. Basu, S., Y.B. Chen, and Z.M. Zhang, Microscale radiation in thermophotovoltaic devices-A review. International Journal of Energy Research,2007.31(6-7):p.689-716.
    109. Chia, L.C. and B. Feng, The development of a micropower (micro-thermophotovoltaic) device. Journal of Power Sources,2007.165(1):p.455-480.
    110. Pan, J.F., et al., Effects of major parameters on micro-combustion for thermophotovoltaic energy conversion. Applied Thermal Engineering,2007.27(5-6):p.1089-1095.
    111. Yang, W.M., et al., Experimental study of micro-thermophotovoltaic systems with different combustor configurations. Energy Conversion and Management,2007.48(4):p.1238-1244.
    112. Lee, K.H. and O.C. Kwon, Studies on a heat-recirculating microemitter for a micro thermophotovoltaic system. Combustion and Flame,2008.153(1-2):p.161-172.
    1. 沈辉,曾祖勤,太阳能光伏发电技术.北京:化学工业出版社,2005.p.34-35.
    2. Coutts, T. J., A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews,1999.3:p.77-184.
    3. Ferguson, L.G., Fraas, L.M., Theoretical study of GaSb PV cell efficiency as a function of temperature. Solar Energy Materials and Solar Cells,1995.39:p.11-18.
    4. Fraas, L.M., Hydrocarbon Fired Thermophotovoltaic Generation Prototypes Using Low Bandgap Gallium Antimonide Cells. Proceedings of the 25th IEEE Photovoltaic Specialists Conference, USA,1996.
    5. Sundaram, V.S., Saban, S.B., et al., GaSb based ternary and quaternary diffused junction devices for TPV applications.//Coutts, T.J., Allman, C.S., Benner, J.P., The 3rd NREL Conference on the Thermophotovoltaic Generation of Electricity. Am Inst Phys Conf Series[C]. New York: American Institute of Physics 1997.401:p.15-105.
    6. Stalmans, L., Porous Silicon in Crystalline Silicon Solar Cells:A Review and the Effect on the Internal Quantum Efficiency, Progress in Photovoltaics:Research and Applications. Prog Photovolt:Res Appl,1998.6:p.233-246.
    7. 葛新石,孙孝兰,多层透明盖板-吸收板系统的辐射换热问题.太阳能学报,1981.2(1):p.299-314.
    8. Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes.2nd Edition, John Wiley & Sons INC,1991.
    9. Adams, J.G., Northrop Aircraft Inc Hawthorne Calif. The Determination of Spectral Emissivities, Reflectivities, andAbsorptivities of Materials and Coatings.1962. p:1-259, TPRC No.29405.
    1. Coutts, T.J., A review of progress in thermophotovoltaic generation of electricity. Renewable & Sustainable Energy Reviews,1999.3(2-3):p.77-184.
    2. Coutts, T.J., Wu, X., et al., High performance, Transparent Conducting Oxides Based on Cadmium Stagnate. Journal of Electronic Materials,1996.25(6):p.935-943.
    3. Vigill, O., Ruiz, C.M., Transparent conducting oxides as selective filters in thermophotovoltaic devices. Journal of Physics:Condensed Matter,2005.17:p.6377-6384.
    4. Heavens, O.S., Optical properties of thin solid films. London:Butterworth Scientific Publications, 1955. p.76-78.
    5. Bauer, T., Forbes, I., Heat transfer modeling in thermophotovoltaic cavities using glass media. Solar Energy Materials & Solar Cells,2005.88:p.257-268.
    6. 黄水平,王利,徐剑等,在线Low-E玻璃光学等性机理及其功能层光学常数的确定.光学仪器,2006.28(4):129-132.
    7. 方容川,固体光谱学.合肥:中国科学技术大学出版社,2001.p.31-32.
    8. 孟扬,杨锡良,高价态差掺杂氧化物透明导电薄膜的研究.光电子技术,2001.21(1):p.17-24.
    9. Narihito Nakagawa, Hideki Ohtsubo, Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. Journal of the European Ceramic Society,2005.25:p.1285-1291.
    1. Fink, Y., et al., A dielectric omnidirectional reflector. Science,1998.282(5394):p.1679-1682.
    2. Winn, J.N., et al., Omnidirectional reflection from a one-dimensional photonic crystal. Optics Letters,1998.23(20):p.1573-1575.
    3. O'Sullivan, F., Celanovic, I., et al., Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications. Journal of Applied Physics,2005.97:033529.
    4. Celanovic, I., O'Sullivan, F., et al., ID and 2D photonic crystals for thermophotovoltaic applications. Proceeding of SPIE,2004.5450:p.416-422.
    5. Celanovic, I., O'Sullivan, F., et al., Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications. Optical Letter,2003.29:p.863-865.
    6. Qiu, K., Haydena, A.C.S., et al., Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources. Solar Energy Materials and Solar Cells,2006.90:p.68-81.
    7. 茆磊,叶宏等,TPV系统热辐射发电模块数值分析.计算物理,2008.25(4):p.450-456.
    8. 唐晋发,顾培夫,现代光学薄膜技术.杭州:浙江大学出版社,2006.p.24-31.
    9. Born, M., Wolf, E., Principles of Optics,7th ed. Cambridge University Press, Cambridge, UK, 1999.
    10. Lee, B.J., Zhang, Z.M., Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics,2006.100:063529.
    11. Palik, E.D., Handbook of Optical Constants of Solids. Academic, New York,1985.
    1. Coutts, T.J., A review of progress in thermophotovoltaic generation of electricity. Renewable & Sustainable Energy Reviews,1999.3(2-3):p.77-184.
    2. Fraas, L.M., Avery, J.E., et al., Thermophotovoltaic system configurations and spectral control. Semicond Sci Technol,2003.18:p.165-173.
    3. Fraas, L.M., Samaras, J.E., et al., TPV generators using the radiant tube burner configurations. Proceedings of the 17th European PV Solar Energy Conference, Munich (Germany),2001. p. 22-26.
    4. Aschaber, J., Hebling, C., et al., Realistic modelling of TPV systems. Semicond. Sci. Technol., 2003.18:p.158-164.
    5. Lindberg, E., Broman, L., Faberge'optics and edge filter for a wood powder fuelled thermophotovoltaic system. Renewable Energy,2003.28:p.373-384.
    6. Cordero, N., Ginige, R., et al., Thermal modeling of TPV systems. In:Ieee Inter Society Conference on Thermal Phenomena,2002. p.605-609.
    7. Holman, J.P., Heat transfer. New York:Mcgraw-Hill Inc,8th edition,1997. p.457-459.
    8. 葛新石,孙孝兰,多层透明盖板-吸收板系统的辐射换热问题,太阳能学报,1981.2(1):p.299-314.
    9. O'Sullivan, F., Celanovic, I., et al., Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications. Journal of Applied Physics,2005.97:033529.
    10. 唐晋发,顾培夫,现在光学薄膜技术.杭州:浙江大学出版社,2006.p.24-31.
    11. Khvostikov, V.P., Rumyantsev, V.D., et al., Thermophotovoltaic Cells Based on Low-Bandgap Compounds.6th Conference on Thermophotovoltaic Generation of Electricit, Freiburg (Germany), June 2004.
    12. 方容川,固体光谱学.合肥:中国科学技术大学出版社,2001.p.31-32.
    13. Touloukian, Y.S., DeWitt, D.P., Thermal radiative properties:nonmetallic solids. New York: IFI/Plenum,1972. p.1571-1572.
    14. Bauer, T., Forbes, I.., Heat transfer modeling in thermophotovoltaic cavities using glass media. Solar Energy Materials and Solar Cells,2005.88:p.257-268.
    15. Fraas, L.M., Samaras, J.E., et al., AR Coated Refractory Metal Matched Emitter for Use with GaSb TPV Generators.28th IEEE PVSC, Anchorage (USA),2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700