平板式微热光电系统能量转换过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微加工技术强有力的推动下,微型机械和机电产品的研发获得持续的突破,但其动力供给部分却未能获得大的进展,致使完整微机电系统过大过重或者不能长时间工作,这也成为MEMS发展的瓶颈。近年来,一些基于燃烧的微型动力装置由于具有能量密度高、工作时间长、体积小等优点,有望很好地解决这一问题,其能量密度被认为能够突破100kW/kg,因而受到世界范围内的普遍关注,并成为了各国科研竞争的焦点之一。
     微热光电系统是一种典型的微动力装置,它利用碳氢燃料在微燃烧器内燃烧产生的热能对燃烧室壁面进行加热,高温壁面辐射出的能量足够高的光子撞击低频带隙光电池产生电能。同其它的微动力装置相比,该系统最大的优点在于无运动部件、制造装配相对容易。本文对圆柱结构微热光电系统进行了结构改进,给出了新型平行板结构的模块化微热光电系统的设计方案,并通过数值分析的方法,开展了较系统的研究工作,取得了一些具有学术意义和实用价值的研究成果:
     (1)针对新型平行板结构的微热光电系统,分析了能量转换的各个环节,包括燃烧器中流动、传热以及燃烧的耦合过程、燃烧器壁面的辐射过程以及光电转换过程。在考虑辐射壁面温度分布不均匀性的前提下,结合Fluent和Matlab软件构建了一个从燃料化学能输入到电能输出的三维整体能量转换计算模型,并结合初步实验的测试结果对模型的正确性进行了验证。
     (2)以采用圆形喷口微燃烧器、无过滤器的系统作为研究对象,通过改变系统中辐射壁面与电池的距离、电池种类、光电池以及辐射表面工作温度等关键参数对系统的工作表现进行了一系列的计算,得出这些参数对系统性能的影响规律,从而为平板式系统的进一步优化设计提供出合理的参考依据。
     (3)鉴于辐射壁面温度分布对系统工作性能的重要影响,针对平行板微通道内的燃烧过程进行了大量模拟计算,提出了将圆形喷口改进成细长的方形喷口、适当减小燃烧通道的宽度等改善微尺度燃烧过程的措施,并通过燃烧过程的影响因素分析和计算,得出了混合气流量1500mL/min、通道高度0.6mm等平板式燃烧器合理的运行参数;随后,设计了内部带有多孔介质、内壁面催化以及入口设置稳流凸台等三种优化的燃烧器结构形式以及新型带有预热通道的平板式微燃烧器,分析了采用这些优化结构后的燃烧性能和壁面温度分布特征,并对比了它们对于提高系统工作性能所带来的积极作用,其中入口稳流凸台的设置可使系统在1500mL/min的混合气流量下获得了1.12%的整体效率,这可在一般矩形喷口燃烧器基础上提高33.9%。
     (4)为进一步提高装置的能量转化效率,在系统中设置了一维Si/SiO2光子晶体滤波器,以实现对不可用辐射能的回收利用。根据光学薄膜的设计理论以及传输矩阵的方法,获取了该类型滤波器的基本设计结构及对应的光学特性,并针对基本结构第一反射带宽度过窄的缺点,作出了相应的改进设计。系统整体计算的结果表明,过滤器的使用可在有效缓解电池冷却负荷的同时,通过提高辐射壁面的温度以达到提升系统输出性能的效果。在1500mL/min的混合气流量下,采用改进结构过滤器的系统功率输出达到了5.46W,其效率为2.6%,比采用基本结构过滤器时提高了5.7%。
     (5)微动力系统并不仅仅是常规尺度原型的简单缩小,不同装置都应该有其尺度上的极限,但很少有学者针对整体装置的尺度极限展开相关研究。本文的最后,针对平板式的微热光电系统,在考虑部件强度以及制造难度的基础上,结合文献资料、前期的微燃烧实验以及光电池冷却计算分析等,确定出一个完整的能量转换单元的极限尺寸为10mm×8mm×2.5mm,在1500mL/min的混合气流量下单元的功率密度达到了17.55W/cm3,这个数据充分彰显出平板式微热光电系统充当MEMS动力源的优势所在。
     本文的工作为微热光电系统的合理开发以及工作性能的正确评价提供了一条可行的研究思路,论文中提出的研究方法和得出的结论对于其它微动力系统的开发也有一定的参考价值。
With the powerful impulse of micro-machining technology, persistent breakthroughs have been obtained on the development of micro-machinery and electromechanical products. However, no remarkable progress has been obtained in its power supply part, which makes the complete system too big and heavy or can not woking for long time, so this problem has become the bottleneck of MEMS development. In recent years, due to the advantages of high energy density and long working time as so as small volume, several micro power generators which based on combustion are expected to well solve this problem. Their energy densities are supposed to exceed 100kW/kg, so have aroused public concern around the world and are becoming one of the focus in the scientific research competition.
     As one kind of typical power generating machine, micro-thermophotovoltaic system utilize thermal energy to heat the outer surface of combustor which coming from combustion of hydrocarbon fuels in the micro-combustor, and electricity can be generated when the sufficiently higher-energy photon reaches PV cells. Compared to other power generating machines, its greatest advantages are including no moving components and relatively easy to manufacture and assemble.
     By modifing the structure of previous cylindrical combustor system, a novel modular micro-thermophotovoltaic system with plane cell structure is proposed in this paper. Systematic research have been carried out through numerical analysis, and some achievements with scientific significance and values have been acquired:
     (1) Each links of energy conversion is analysed for the new plane cell type micro-thermophotovoltaic system, which including flow, heat transfer and combustion coupling process, radiation process of combustor's outer wall and photoelectric transformation process. Then, on the premise of non-uniformity of wall temperature distribution, a three-dimensional energy transition computational model is constructed through combining the softwares of Fluent and Matlab which describes the whole transition process of chemical energy to electricity, and the accuracy of model has been verified by preliminary experiment results.
     (2) The system adopting round nozzle combustor and without filter is taken as study object, by changing distance between radiation wall and PV cell, cell types, working temperature of radiation surface and cell, a variety of preliminary calculations about system performance are maken. According to the analysis of calculation results, some basic conditions for system operation are obtained which can provide reasonable references for the further optimal design of plane cell system.
     (3) Considering the significance of radiation wall temperature distribution to the system working performance, a great amount of simulations about combustion in the plane cell microchannel are done in the following study. Firstly, measures of improving microscale combustion are presented such as replacing the round nozzle with elongated rectangular nozzle, approximately decreasing width of combustion channel. By further analyzing the effect factors in the combustion process, suitable operating parameters for plane cell combustor such as mixture flux 1500mL/min and channel height 0.6mm are gained. Then, three optimized combustor structures namely porous media in the combustion channel, catalysis on inside walls, convex blocks for steady flow at the inlet and another new plane cell micro-combustor with preheating channels are designed. Combustion characteristics and wall temperature distribution of these optimized structures are analyzed, and the active effects of improving the system working performance are contrasted. Among these four structures, an overall efficiency 1.12% can be realized by using inlet convex blocks for steady flow at mixture flux 1500mL/min, which is 33.9% higher than the original combustor with rectangular nozzle.
     (4) To further increase the energy conversion efficiency, a one-dimension Si/SiO2 photonic crystal filter is set in the system to ensure recycle of unavailable radiation energy. The basic structure design and corresponding optical characteristics are obtained through optical thin film theory and transmission matrix method, and a improved design is done according to the narrower first reflection band of basic structure. Calculation results show that the using of filter can effectively lower the burden of cell cooling, while at the same time boost the temperature of radiation wall so as to raise system output performance. System output power density and total efficiency reaches 5.46W and 2.6% when using the improved structure filter at mixture flux 1500mL/min, which is 5.7% higher than the result of using basic structure filter.
     (5) Micro power system is not merely minification of their conventional scale prototype, and each device should has its dimension limits, but few scholar have undertaken related study on the whole device's miniaturization limitations. In the end of this paper, the minimum dimension of one energy transition cell in the plane cell micro thermophotovoltaic system is determined by considering parts strength and manufacture difficulty and combining related reference, micro combustion experiment and calculation analysis of PV cell cooling, the whole size of energy transition cell is 10mm X 8mm X 2.5mm.The power density is up to 17.55W/cm3 when the mixture flux is 1500mL/min, which fully demonstrates the advantages of plane cell micro-thermophotovoltaic system as the power sources of MEMS.
     This work provides a practicable research thought to rationally develop and correctly evaluate of working performance for micro-thermophotovoltaic system. However, the methods and conclusions presented in this paper can also be applied to other power systems.
引文
[1]田文超.微机电系统(MEMS)原理、设计和分析[M].西安:阳安电子科技大学出版社,2009.
    [2]王琪民,刘明侯,秦丰华.微机电系统工程基础[M].合肥:中国科学技术大学出版社,2010.
    [3]楼利飞.微机电系统与设计[M].北京:电子工业出版社,2010.
    [4]林忠华,胡国清,刘文艳.微机电系统的研究与展望[J].微电子学,2005,35(1):71-75.
    [5]李德桃,邓军,潘剑锋,等.微动力机电系统和微发动机的研究进展[J].世界科技研究与发展,2002,24(1):24-27.
    [6]Loy C C, Bo F. The development of a micropower (micro- thermophotovoltaic) device[J]. Journal of Power Sources,2007,165:455-480.
    [7]Epstein A H, Senturia S D, Anathasuresh G, et al. Power MEMS and microengines[C]. Proceeding of International Conference on Solid-state Sensors and Actuators. Chicago, IEEE,1997:753-756.
    [8]Mehra A, Waitz I A. Development of a hydrogen combustor for a microfabricated gas turbine engine. Presented at the Solid-State Sensor and Actuator Workshop at Hilton Head,SC,1998.
    [9]Mehra A, Zhang X, Ayon A A, et al. A six-wafer combustion system for a silicon micro gas turbine engine[J]. Journal of Microelectromechanical System,2000,9(4):517-527.
    [10]Spadaccini C M, Zhang X, Christopher P C, et al. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J]. Sensors and Actuators,2003,103:219-224.
    [11]Shan X C, Wang Z F, Jin Y F, et al. Studies on a micro combustor for gas turbine engines[J]. Journal of Micromechanics and microengineering,2005,15:215-221.
    [12]Tanaka S, Hikichi K, Togo S, et al. World's smallest gas turbine establishing brayton cycle[C]. Proceedings Power MEMS,Freiburg,Germany,2007:359-362.
    [13]Peirs J, Reynaerts D, Verplaetsen F. A microturbine for electric power generation[J]. Sensors and Actuators,2004,113:86-93.
    [14]Fu K, Knobloch A J, Cooley B, et al. Microscale combustion research for application to MEMS rotary IC engine[C].2001 National Heat Transfer Conference, Anaheim, ASME, 2001:1-6.
    [15]Fu K, Knobloch A, Martinez F, et al. Design and Fabrication of a Silicon-Based MEMS Rotary Engine[C]. Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition,New York,ASME,2001:1-6.
    [16]刘宜胜.基于三角转子发动机和微生物燃料电池的微小型电源研究[D].杭州:浙江大学,2008.
    [17]Liu Y S, Li W, Yang C J, et al. Desigh and test of small-scale rotary engine power system[C]. Proceedings of MNC2007,sanya,china,2007:1-5.
    [18]Vican J, Gajdecko B F, Dryer F L, et al. Development of a microreator as a thermal source for MEMS power generation[C]. Prceeding of 29th International Symposium on Combustion, Sapporo, Japan,2002:909-916.
    [19]Sitzki L, Borer K, Schuster E, et al. Combustion in microscale heat-recirculating burners [C].Proceedings of the Third Asia-Pacific Conference on Combustion,Seoul, Korea,2001.
    [20]Muruta K, Takeda K, Sitzki L, et al. Catalytic combustion in microchannel for MEMS power generation[C]. Proceedings of the Third Asia-Pacific Conference on Combustion,Seoul, Korea, 2001.
    [21]Ronney P D. Analysis of non-adiabatic heat-recirculating combustors[J]. Combustion and Flame,2003,135:421-439.
    [22]Zhang C B, Najafi K, Bernal L P, et al. A micromachined combustor and its application to micro thermoelectric power generation[C]. Proceedings of Inernational Mechanical Engineering Congress and Exposition,New Orleans,USA,2002:1-6.
    [23]Yoshida K, Tanaka S, Tomonari S, et al. High-energy density miniature thermoelectric generator using catalytic combustion[J]. Journal of microelectromechanical systems,2006, 15(1):195-203.
    [24]Jiang L Q, Zhao D Q, Guo C M, et al. Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation[J]. Energy Conversion and Management, 2011,52:596-602.
    [25]蒋利桥,赵黛青,郭琛绵,等.平面火焰微燃烧器及其温差热电转换系统[J].燃烧科学与技术,2010,16(5),436-441.
    [26]Yang W M, Chou S K, Shu C, et al. Development of a micro thermophotovoltaic system[J].Applied Physics Letters,2002,81(27):5255-5257.
    [27]Yang W M, Chou S K, Shu C, et al. Combustion in micro cylindrical combustors with and without a backward facing step[J]. Applied Thermal Engineering,2002,22:1777-1787.
    [28]Yang W M, Chou S K, Shu C, et al. Design, fabrication and testing of a prototype microthermophotovoltaic system[J]. Journal of Microelectromechanical System,2004,13(5): 851-856.
    [29]潘剑锋,李德桃,邓军.微热光电系统燃烧的若干影响因素的试验研究[J].机械工程学报,2004,40(12):120-123.
    [30]Pan J F, Huang J, Li D T, et al. Effects of major parameters on micro-combustion for thermophotovoltaic energy conversion[J]. Applied Thermal Engineering,2007,27:1089-1095.
    [31]潘剑锋,张会峰,唐爱坤,等.微热光电系统中多孔介质燃烧室性能试验[J].农业机械学 报,2010,41(5):193-197.
    [32]潘剑锋,杨文明,李德桃,等.微热光电系统原型的设计制造和测试[J].工程热物理学报,2005,26(5):887-890.
    [33]Nielsen O M, Arana L R, Baertsch C D, et al. A thermophotovoltaic micro-generator for portable power applications[C]. The 12th International Conference on Solid-Slate Senson,Actuators and Micosystems, Boston,USA,2003,714-717.
    [34]London A P, Ayon A A, Epstein A H, et al. Microfabrication of a high pressure bipropellant rocket engine[J]. Sensors and Actuators A,2001,92:351-357.
    [35]London A P, Epstein A H, Kerrebrock J L. High-pressure bipropellant microrocket Engine[J]. Journal of Propulsion and Power,2001,17(4):780-787.
    [36]Aichlmayr H T, Kittelson D B, Zachariah M R. Miniature free-piston homogeneous charge compression ignition engine-compressor concept-Part Ⅰ:Performance estimation and design considerations unique to small dimensions[J]. Chemical Engineering Science,2002,57(19): 4161-4171.
    [37]Aichlmayr H T, Kittelson D B, Zachariah M R. Miniature free-piston homogeneous charge compression ignition engine-compressor concept-Part Ⅱ:Modeling HCCI combustion in small-scales with detailed homogeneous gas phase chemical kinetics[J]. Chemical Engineering Science,2002,57(19):4173-4186.
    [38]Sher I, Sher D L, Sher E. Miniaturization limitations of HCCI internal combustion engines[J].Applied Thermal Engineering,2009,29:400-41.
    [39]Kirtas M, Disseau M, Scarborough D, et al. Combustion dynamics in a high aspect ratio engine[C]. Proceedings of the Combustion Institute,2002,29:917-923.
    [40]Zhang C B, Najafi K, Bemal L P, et al. Micro Combustion-Thermionic Power Generation: Feasibility, Design and Initial Results[C]. The 12th International Ccnference on Solid-Slate Senson,Actuators and Micosystems,Boston,USA,2003:40-44.
    [41]Toriyama T, HashimotoK, Sugiyama S. Design of a Resonant Micro Reciprocating Engine for Power Generation[C]. The 12th International Ccnference on Solid-Slate Senson,Actuators and Micosystems, Boston,USA,2003:1303-1306.
    [42]Muller N, Frechette L G. Performance Analysis of Brayton and Rankine Cycle Microsystems for Portable Power Generation[C]. Proceedings of Inernational Mechanical Engineering Congress and Exposition,New Orleans,USA,2002.
    [43]钟北京,王建华,李军伟.甲烷在过量焓燃烧器内的燃烧特性[J].燃烧科学与技术,2008,14(6):481-486.
    [44]杨庆涛,钟北京,龚景松.基于甲烷燃烧的热电转换特性实验研究[J].工程热物理学报,2009,30(4):714-716.
    [45]张永生,周俊虎,杨卫娟,等.微型燃烧器热电转化实验研究[J].中国电机工程学报,2006,26(21):114-118.
    [46]曹海亮,徐进良.进气方式对回热型微燃烧器燃烧特性的影响[J].自然科学进展, 2006,16(12):1598-1605.
    [47]张力,徐宗俊,余成龙.基于微型涡轮发动机实现超高能量密度Power MEMS的研究[J].中国机械工程,2003,14(15):1272-1274.
    [481下谦,陈博,陈泽.基于Matlab的微型发动机燃烧过程仿真建模[J].江苏大学学报(自然科学版),2010,31(2):179-183.
    [49]黄治国,单鹏,王延荣.微型涡喷发动机结构设计研究[J].北京航空航天大学学报,200430(3):206-209.
    [50]黎明,吴二平,索建秦.微型涡喷发动机燃烧室的设计研究[J].航空动力学报,2009,24(1):70-74.
    [51]黄国平,温泉,李博,等.微型涡喷发动机顶层设计研究[J].航空动力学报,2003,18(6):832-838.
    [52]Spadaccini C M, Mehra A, Lee J. High power density silicon combustion systems for micro gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power,2003,125: 709-719.
    [53]Waitz I A, Gautam G, Tzeng Y S. Combustors for Micro Gas Turbine Engines[J], ASME J. Fluids Eng.,1998,20:109-117.
    [54]张孝友,卫尧,李德桃,等.开发微型发动机燃烧器遇到的问题和解决途径[J].内燃机工程,2003,24(4),70-73.
    [55]Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J].Science,2008,321:554-557.
    [56]Guazzoni. High temperature spectral emittance of oxides of erbium,samarium,neodymium and yteerbium[J]. Applied Spectroscopy,1972,26(l):60-65.
    [57]Donald L C. Fundamentals of thermophotovoltaic energy conversion[M]. UK:Elsevier Science,2007.
    [58]Nelson R E. A brief history of thermophotovoltaic development[J]. Semiconductor Science and Technology,2003,18:141-143.
    [59]Ferguson L G, Fraas L M. Theroretical study of GaSb PV cell efficiency as a function of temperature[J]. Solar energy materials and solar cells,1995,39:11-18.
    [60]Fraas L M, Huang H X, Ye S Z, et al. Low cost high power GaSb photovoltaic cells [C]. The Third NREL Conference on the Thermophotovoltaic Generation of Electricity,New York,USA,1997,40:33-40.
    [61]Mauk M G, Shellenbarger Z A, Cox J A, et al. Liquid-phase epitaxy of low-bandgap Ⅲ-Ⅴ antimonides for thermophotovoltaic devices [J]. Journal of Crystal Growth,2000,211:189-193.
    [62]Qiu K, Hayden A C S, Mauk M G, et al. Generation of elect ricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources [J]. Solar Energy Materials and Solar Cells,2006,90 (1):68-81.
    [63]Bauer T, Forbes I, Penlington R, et al. Heat t ransfer modelling in thermophotovoltaic cavities using glass media[J]. Solar Energy Materials and Solar Cells,2005,88 (3):257-268.
    [64]陈雪,宣益民.热光伏技术基本原理与研究进展[J].半导体光电,2006,27(4):353-358.
    [65]Ferguson L G, Dogan F. A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion[J]. Materials Science and Engineering,2001,83:35-41.
    [66]Fraas L M, Han X H, She H, et al. Development of a small air-cooled "midnight sun" thermophotovoltaic electric generator[C]. The 2nd NREL Conference on Thermophotovoltaic Generation of Electricity,New York,USA,1996,358:128-133.
    [67]Durisch W, Bitnar B, Roth F V, et al. Small thermophotovoltaic prototype systems[J]. Solar Energy,2003,75:11-15.
    [68]Durisch W, Bitnar B,Mayor J C. Small self-powered grid-connected thermophotovoltaic prototype system[J]. Applied Energy,2003,74:149-157.
    [69]Morrison O, Seal M, West E, et al. Use of a thermophotovoltaic generator in a hybrid electric vehicle[C]. The 4th NREL Conference on Thermophotovoltaic Generation of Electricity,Denver,USA,1998,460:488-496.
    [70]Colangelo G, Risi A D, Laforgia D. Experimental study of a burner with high temperature heat recovery system for TPV applications[J]. Energy Conversion and Management,2006,47: 1192-1206.
    [71]Bauer T, Forbes I, Pearsall N. The potential of thermophotovoltaic heat recovery for UK industry[J]. International Journal of Ambient Energy,2004,25(1):19-25.
    [72]DiMatteo R, Greiff P, Seltzer D, et al. Micron-gap ThermoPhotoVoltaics (MTPV)[C]. The 6th International Conference on the Thermophotovoltaic Generation of Electricity, Frieburg, Germany,2004,738(1):42-51.
    [73]Schock A, Or C, Kumar V. Small radioisotope thermophotovoltaic (RTPV) generator [C]. The 2nd NREL Conference on the Thermophotovoltaic Generation of Electricity,New York,USA,1997,358:81-97.
    [74]陈雪,宣益民,韩玉阁.太阳能热光伏系统性能分析研究[J].中国科学E辑:技术科学,2009,39(5):1026-1033.
    [75]乔在祥,陈文浚,杜邵梅.热光伏技术的研究进展[J].电源技术,2005,29(1):57-61.
    [1]Yang W M, Chou S K, Shu C, et al. Design, fabrication and testing of a prototype microthermophotovoltaic system[J]. Journal of microelectromechanical system,2004,13(5): 851-856.
    [2]潘剑锋,杨文明,李德桃,等.微热光电系统原型的设计制造和测试[J].工程热物理学报,2005,26(5):887-890.
    [3]Loy C C, Bo F. The development of a micropower (micro-thermophotovoltaic) device[J]. Journal of Power Sources,2007,165:455-480.
    [4]Ferguson L G, Fraas L M. Theroretical study of GaSb PV cell efficiency as a function of temperature[J]. Solar energy materials and solar cells,1995,39:11-18.
    [5]Nicolas C, Ravine G, Brian C, et al. Thermal modelling of TPV systems[C]. Inter Society Conference on Thermal Phenomena,IEEE,2002:605-609.
    [6]Mao L, Ye H. Thermal modeling for thermophotovoltaic systems adopting the radiation network method[J]. Solar Energy Materials & Solar Cells,2009,93:1705-1713.
    [7]Ballinger C T, Charache G W. Monte Carlo analysis of a monolithic interconnected module with a back surface reflector[C].The 4th NREL Conference on Thermophotovoltaic Generation of Electricity,New York,USA,1999,460:161-74.
    [8]Aschaber J, Hebling C, Luther J. Realistic modelling of TPV systems[J]. Semiconductor Science and Tcchnology,2003,18:158-164.
    [9]Lindberg E, Broman L. Faberge optics and edge filter for a wood powder fuelled thermophotovoltaic system[J]. Renewable Energy,2003,28:373-384.
    [10]董金梁,金荣洪,耿军平,等.改进射线跟踪法效率的新方法[J].微波学报,2006,22(6):6-8.
    [11]Zenker M, Heinzel A, Stollwerck G, et al. Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells[C]. IEEE Conference of Transaction on Electron Devices,2001,48(2):367-76.
    [12]Bitnar B, Durisch W, Mayor J C,et al. Development of a small TPV prototype system with an efficiency>2%[C].17th European Photovoltaic Solar Energy Conference and Exhibition, Munich,German,2001,33-36.
    [13]陈雪,宣益民,韩玉阁.太阳能热光伏系统性能分析研究[J].中国科学E辑:技术科学,2009,39(5):1026-1033.
    [14]Yang W M, Chou S K, Shu C, et al. Research on micro-thermophotovoltaic power generators[J]. Solar Energy Materials & Solar Cells,2003,80:95-104.
    [15]潘剑锋.微热光电系统的实验研究和数值模拟[D].镇江:江苏大学,2005.
    [16]陈熙.动力论及其在传热与流动研究中的应用[M].北京:清华大学出版社,1996.
    [17]范维澄,万跃鹏.流动及燃烧的模型与计算(第一版)[M].合肥:中国科学技术大学出版社.1992.
    [18]FLUENT 6.3 User's Guide. Fluent Inc,2006.
    [19]Norton D G, Vlachos D G. Combustion Characteristics and Flame Stability at theMicroscale:a CFD study of Premixed Methane/air mixtures[J]. Chemical Engineering Science,2003, 58:4871-4882.
    [20]王婧.Power MEMS氢气微燃烧过程的数值模拟[D].重庆:重庆大学,2007.
    [21]Chen G B, Chen C B, Wu H Y, et al. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube[J]. Applied Catalysis,2007,332(1):89-97.
    [22]戴锅生.传热学(第二版)[M].北京:高等教育出版社,1999.
    [23]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [24]David K, Ward C.数值分析(第三版)[M].北京:机械工业出版社,2003.
    [25]胡建伟,汤怀民.微分方程的数值方法(第一版)[M].北京:科学出版社,1999.
    [26]Magrab E B, Azarm S, Balachandran B, et al. Matlab原理与工程应用(第二版)[M].北京:电子工业出版社,2006.
    [27]Qiu K, Hayden A C, Mauk M G, et al. Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources[J]. Solar Energy Materials & Solar Cells,2006,90:68-81.
    [28]Iles P A, Chu C, Linder E. The influence of bandgap on TPV converter efficiency[C]. The 2nd NREL conference on thermophotovoltaic generation of electricity,New York,USA, 1996,358:446-457.
    [29]Martin D,Algora C. Temperature dependent GaSb material parameters for reliable thermophotovoltaic cell modelling[J]. Semiconduction Science and Technology,2004, 19:1040-1052.
    [30]薛宏,段炼,潘剑锋,等.平板式MTPV系统中燃烧若干影响因素的试验[J].江苏大学学报(自然科学版),2009,30(1):44-48.
    [31]潘剑锋,万彦辉,李德桃,等.甲烷和氢气在亚毫米微燃烧室内燃烧的试验对比[J].热科学与技术,2010,9(4):333-338.
    [32]万彦辉,潘剑锋,周俊,等.微热光电系统整体性能的试验研究[J].小型内燃机与摩托车(已录用)
    [1]何振良,丁建宁,马春红,等.微热光电系统中光电池的述评[J].传感器与微系统,2008,27(2):11-13.
    [2]JX Crystals Inc. [EB/OL].http://www.jxcrystals.com/4sale5.pdf,2011-4-01.
    [3]Stalmans L, Poortmans J, Bender H, et al. Porous silicon in crystalline silicon solar cells:a review and the effect on the internal quantum efficiency[C]. Progress in Photovoltaics: Research and Applications,1998,6(4):233-246.
    [4]Charache G W, Baldasaro P F, Danielson L R, et al. InGaAsSb thermophotovoltaic diode physics evaluation[J]. Journal of Applied Physics,1999,85:22-47.
    [5]Durisch W, Bitnar B, Mayor J C. Small self-powered grid-connected thermophotovoltaic prototype system[J]. Applied Energy,2003,74:149-157.
    [6]Ferguson L G, Fraas L M. Theroretical study of GaSb PV cell efficiency as a function of temperature[J]. Solar energy materials and solar cells,1995,39:11-18.
    [7]陈雪,宣益民,韩玉阁.太阳能热光伏系统性能分析研究[J].中国科学E辑:技术科学,2009,39(5):1026-1033.
    [8]唐爱坤,潘剑锋,薛宏,等.MTPV系统中热光电能量转换的数值分析[J].机械工程学报,2010,46(20):134-138.
    [1]Richard J R. North American combustion handbook:a basic reference on the art and science of industrial heating with gaseous and liquid fuels[M]. USA:North American Mfg. Co.,1986.
    [2]戴锅生.传热学(第二版)[M].北京:高等教育出版社,1999.
    [3]Norton D G, Vlachos D G. Combustion Characteristics and Flame Stability at theMicroscale:a CFD study of Premixed Methane/air mixtures[J]. Chemical Engineering Science,2003,58: 4871-4882.
    [4]Fan Y, Suzuki Y, Kasagi N. Experimental study of micro-scale premixed flamein quartz channels[C]. Proceedings of the Combustion Institute,2009,32:3083-3090.
    [5]薛宏,段炼,潘剑锋,等.平板式MTPV系统中燃烧若干影响因素的试验[J].江苏大学学报(自然科学版),2009,30(1):44-48.
    [6]赵怡钦,许家睿,陈冠邦.现阶段微尺度燃烧科技发展简介[J].燃烧季刊,2002,11:2-10.
    [7]杨帆,杨庆涛,钟北京.微尺度正丁烷催化反应的实验研究[J].工程热物理学报,2009,30(5):890-892.
    [8]Chen G B, Chen C P, Wu C Y, et al. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube [J]. Applied Catalysis,2007,332(9):89-97.
    [9]周俊虎,汀洋,杨卫娟,等.不同外部风温对微尺度火焰的影响[J].浙江大学学报,2011,45(1):146-150.
    [10]Chewning S R. Micro adiabatic combustion engine:concept development,simulation and combustion experiments[D]. USA:Oregon State University,2008.
    [11]Aichlmayr H T, Kittelson D B, Zachariah M R. Micro-HCCI combustion:experimental characterization and development of detailed chemical kinetic model with coupled piston motion[J]. Combution and Flame,2003,135(3):227-248.
    [12]Ronney P D. Analysis of non-adiabatic heat-recirculating combustors[J]. Combustion and Flame,2003,135:421-439.
    [13]Lee K H, Kwon O C. Studies on a heat-recirculating microemitter for a micro-thermophotovoltaic system[J]. Combustion and Flame,2008,153:161-172.
    [14]王谦,李德桃,潘剑锋.燃烧学[M].北京:中国科学文化出版社,2002.
    [1]Loy C C, Bo F. The development of a micropower (micro-thermophotovoltaic) device[J]. Journal of Power Sources,2007,165:455-480.
    [2]Sullivan F O, Celanovic I, Jovanovic N, et al. Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications[J]. Journal of Applied Physics,2005,97:1-7.
    [3]刘广平,宣益民,韩玉阁,等.应用于热光伏电池的一维Si/SiO2光子晶体滤光器研究[J].中国科学E辑:技术科学,2009,39(1):129-130.
    [4]Cotter T J, Wu X, Mulligan W P. High performance transparent conducting oxides based on cadmium stannate [J]. Journal of Electronic Materials,1996,25(6):935-943.
    [5]Vigil O, Ruiz C M, Seuret D. Transparent conducting oxides as selective filters in thermophotovoltaic devices [J]. Journal of Physics:Condensed Matter,2005,17:6377-6384.
    [6]茆磊,叶宏.热光伏系统中透明导电氧化物滤波器的优化分析[J].兵工学报,2008,29(7):781-787.
    [7]Kristensen R T, Beausang J F, DePoy DM. Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control[J]. Journal of Applied Physics,2004,95(9):4845-4851.
    [8]Fourspring P M, DePoy D M, Rahmlow T D, et al. Optical coatings for thermophotovoltaic spectral control[J]. Applied Optics,2006,45(7):1356-1358.
    [9]Fourspring P M, DePoy D M, Beausang J F, et al. Thermophotovoltaic Spectral Control[C].The 6th International Conference on the Thermophotovoltaic Generation of Electricity,Frieburg,Germany,2004:171-179.
    [10]周鹏,游海洋,王松,等.金属插层对一维光子晶体中光传输特性的影响[J].物理学报,2002,51(10):2276-2280.
    [11]毛谨.光在一维光子晶体中的传输特性研究[D].成都:电子科技大学,2005.
    [12]陈军.现代光学及技术[M].杭州:浙江大学出版社,1996.
    [13]Born M, Wolf E.光学原理(上)(第七版)[M].北京:电子工业出版社,2005.
    [14]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术[M].杭州:浙江大学出版社,2006.
    [15]茆磊,叶宏.一维Si/SiO2光子晶体应用于热光伏的新进展[J].太阳能学报,2009,30(11):1506-1512.
    [16]陈雪,宣益民,韩玉阁.太阳能热光伏系统性能分析研究[J].中国科学E辑:技术科学,2009,39(5):1026-1033.
    [1]Tsai B J, Wang Y L. A novel Swiss-Roll recuperator for the microturbine engine[J]. Applied Thermal Engineering,2009,29:216-223.
    [2]Lee K H, Kwon O C. Studies on a heat-recirculating microemitter for a micro-thermophotovoltaic system[J]. Combustion and Flame,2008,153:161-172.
    [3]Yoshida K, Tanaka S, Tomonari S, et al. High-energy density miniature thermoelectric generator using catalytic combustion[J]. Journal of Microeletromechanical Systems, 2006,15:195-203.
    [4]Sher I, Sher D L, Sher E. Miniaturization limitations of HCCI internal combustion engines[J].Applied Thermal Engineering,2009,29:400-41.
    [5]Fan Y, Suzuki Y, Kasagi N. Experimental study of micro-scale premixed flame in quartz channels[C]. Proceedings of the Combustion Institute,2009,32:3083-3090.
    [6]赵怡钦,许家睿,陈冠邦.现阶段微尺度燃烧科技发展简介[J].燃烧季刊,2002,11:2-10.
    [7]Kim K T, Lee D H, Kwon S. Effects of thermal and chemical surface-flame interaction on flame quenching[J]. Combustion and Flame,2006,146:19-28.
    [8]Bellenoue M, Kageyama T, Labuda S A, et al. Direct measurement of laminar flame quenching distance in a closed vessel[J]. Experimental Thermal and Fluid Science,2003,27:323-331.
    [9]Spadaccini C M, Zhang X, Cadou C P, et al. Preliminiary development of a hydrocarbon-fueled catalytic micro-combustor[J]. Sensors and Actuators A:Physical,2003, 103:219-224.
    [10]薛宏,段炼,潘剑锋,等.平板式MTPV系统中燃烧若干影响因素的试验[J].江苏大学学报(自然科学版),2009,30(1):44-48.
    [11]Narayanaswamy A, Shen S, Hu L, et al. Breakdown of the Planck blackbody radiation law at nanoscale gaps[J]. Applied Physics A,2009,96:357-362.
    [12]Hu L, Narayanaswamy A, Chen X, et al. Near-field thermal radiation between two closely spaced glass plates exceeding Planck's blackbody radiation Law[J]. Applied Physics Letters,2008,92(13):133106.
    [13]罗小平,陈海洋.矩形微槽道内对流换热的试验研究[J].石油机械,2009,37(11):1-4.
    [14]Mehra A, Zhang X, Ayon A A, et al. A six-wafer combustion system for a silicon micro gas turbine engine[J]. Journal of Microelectromechanical System,2000,9(4):517-527.
    [15]Sitzki L, Borer K, Schuster E, et al. Combustion in microscale heat-recirculating burners[C]. Proceedings of the Third Asia-Pacific Conference on Combustion,Seoul,Korea,2001.
    [16]潘剑锋.微热光电系统的实验研究和数值模拟[D].镇江:江苏大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700