稀土辐射器热光伏系统余热发电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁、玻璃生产过程中产生大量的高温废气,热光伏系统作为一种新型发电方式,能够利用工业废气余热产生电能。本文对该余热型热光伏系统展开分析研究。
     首先,依据热光伏发电的基本原理,结合具体的工作环境,确定余热型热光伏系统的基本组件为稀土辐射器、透明导电氧化物(TCOs)滤波器、硅光伏电池。基于辐射传输方程和能量平衡方程基本理论,引入典型波长的光谱分析方法,对稀土辐射器的选择性涂层厚度进行优化分析。研究表明:稀土材料氧化镱具有良好的选择性辐射特性,适合作为辐射器涂层材料。不同的工作温度下,氧化镱涂层的最优厚度略有变化,最优涂层厚度随工作温度升高而线性增长,针对玻璃熔窑高温废气进行余热回收的热光伏系统,其工作温度在1000~1800 K之间,氧化镱涂层的最佳厚度应在L=0.2~0.23mm之间,此时系统具有最大的输出功率和发电效率。
     再次,对稀土辐射器光谱发射特性、TCOs滤波器滤波特性、硅光伏电池发电特性进行分析,并利用蒙特卡罗法对整个热光伏系统发电性能进行理论研究。结果表明:在碳化硅基体上涂氧化镱后,热光伏系统的热电转换效率大幅度提高;TCOs滤波器对提高系统效率也作用明显,但其滤波性能仍有较大的改善空间。该余热型热光伏系统在T=1600 K工作温度下,理论上发电功率可达1.4 kW/m2,热电转换效率可达16.6%。热光伏发电模型试验证明了热光伏发电的可行性,实现能量由热能到辐射能再到电能的全过程。
     最后对余热型热光伏系统的经济性及工业应用进行了分析,经计算其投资成本在14500¥/kW左右,发电成本为0.21¥/kw.h,具有较好的经济性;由于热光伏系统可使电池板的冷却系统与玻璃窑炉的空气余热环节结合起来,能源利用率高达64%,达到了节能降耗效果,有较好的应用前景。
As a novel way to generate power, Thermophotovoltaic (TPV) utilizes the high-temperature exhaust gas produced in manufacture processes of steel and glass. This paper analyzes and researches TPV system used for waste heat recovery.
     On the basis of fundamental and specific environment, we choose rare-earth emitter, TCOs filter and Si photovoltaic cell as the main components of TPV system. In accordance with radiation transfer equation and energy balance equation, we introduce the typical spectral analysis to determine the optimized selective coating thickness of rare-earth emitter. Results indicate that Yb2O3 is the suitable material for coating due to its selective radiation characteristic. The optimized thickness has a linear relationship with the temperature of emitter. Working temperature of TPV system applied to recover waste heat of exhaust gas from glass kiln ranges between 1000-1800 K at which the optimized thickness L of Yb2O3 is 0.20-0.23 mm. Under this condition, the maximum of output power and generating efficiency could be achieved.
     Then we analyze the emission spectral of rare-earth emitter filtering performance of TCOs filter as well as generating characteristics of Si cell, and use Monte Carlo Method to study the generating performance of total system. Results show that TPV system with Yb2O3 coated on the SiC substrate has a significant improve in efficiency. Meanwhile, TCOs filter makes the similar effect and still has a huge potential for efficiency improvement. This system has a generating power of 1.4 kW/m2, as well as an efficiency of 16.6% at temperature T of 1600 K. TPV used for generating is proved to be feasible in the experiment, which converts heat into radiation energy, and electrical energy finally.
     Lastly, we analyze the economy and industrial application of TPV system used for waste heat recovery. When the investment is around 14500¥/kW, the cost for generating is 0.21¥/kw.h. Combining cooling system of Si cell and preheating system of glass kiln makes the total energy utilization efficiency up to 66%. TPV makes a remarkable effect in energy saving and has a bright application prospect.
引文
[1]Coutts T J. An overview of thermophotovoltaic generation of electricity[J].Solar Energy Materials and Solar Cells,2001, Vol 66(1),443-452.
    [2]J.S. Kruger, G. Guazzoni, S.J. Nawrocki. Army thermophotovoltaic efforts.[A] Fourth NREL Conference Thermophotovoltaic Generation of Electricity, Denver, Colorado,1998,30-35.
    [3]Sehroeder K L. M. F. Rose,J. E. Burkhalter. An improved model for TPV performance predictions and optimization [A]. Third NREL Conference on thermophotovoltaic generation of electricity, Boston, United states,1997,505-519.
    [4]茆磊,叶宏,程倩.TPV系统热辐射发电模块数值分析.计算物理.2008.第25卷第4期:450-456.
    [5]H Sai, H Yugami. Thermophotovoltaic generation with selective radiators based on tungsten surface gratings.Applied Physics Letters,2004, Vol85(16):3399-3401
    [6]C.J. Crowley, N.A. Elkouh, P.J. Magari. Thermal spray approach for TPV emitters [A]. Fourth NREL Conf. Thermophotovoltaic Generation of Electricity, Denver, Colorado,1998,197-213.
    [7]V. Tomer, R. Teye-Mensah, J. C. Tokash et al.Selective emitters for thermophotovoltaics:erbia-modified electrospun titania nanofibers [J] Solar Energy Materials and Solar Cells Vol85(4),2005:477-488.
    [8]L M Fraas, J E Avery, H X Huang et al. Thermophotovoltaic system configurations and spectral control [J]. Semiconductor Science and Technology,2003, Vol18(15): 165-173.
    [9]茆磊,叶宏.一维Si/SiO_2光子晶体应用于热光伏的新进展[J].太阳能学报,2009,vo130(11),1506-1512.
    [10]H Yamaguchi,M Yamaguchi. Thermophotovoltaic potential applications for civilian and industrial use in Japan[C]:Fourth NREL Conference:Denver, Colorado.1998,17-30.
    [11]Bernd Bitnar, Wilhelm Durisch, and Alfred Waser.TPV Systems—From Research Towards Commercialisation[C]:Thermophotovoltaic Generation of Electricity, six conference, Freiburg, Germany,200433-42.
    [12]孙承绪.蓄热室效能剖析.玻璃与搪瓷.2002年30卷6期:53-56.
    [13]徐侃,刘明侯等.应用于热光伏系统中的多孔介质燃烧器.工程热物理学报.2009,30(5):887-891.
    [14]T.Bauer, I.Forbes. The potential of thermophotovoltaic heat recovery for the glass industry [C]. Thermophotovoltaic Generation of Electricity,5th,2002.101-110.
    [15]金颖,周伟国等.钢铁行业能源消耗与污染物排放量的分析.上海节能.2002.第1期:17-23.
    [16]T.J. Coutts.A review of progress in thermophotovoltaic generation of electricity [J].Renewable and sustainable Energy Reviews,1999,vol 3,77-184.
    [17]Bitnar B. Record electricity-to-gas power efficiency of a silicon solar cell based TPV system.proc[J].29thIEEE PVSC.Orlando.USA:2002,880-883.
    [18]Lewis F, Leonid M. TPV History from 1990 to Present & Future Trends[C].Thermophotovoltaic Generation of Electricity,7th.2007.17-23
    [19]Lewis M. F, James E, Avery, et al. TPV tube generators for apartment building and industrial furnace applications[C]. AIP Conf. Proc,2003:1-11
    [20]Bitnar B, Durisch W, Mayor J C, et al. Characterisation of rare earth selective emitters for thermophotovoltaic applications [J]. Solar Energy Materials & Solar Cells. 2002,73:p221-234.
    [21]Donald L. Chubb, Brian S. Good, and Eric B. et al Effect of temperature gradient on thick film selective emitter emittance[R].USA, NASA Technical Memorandum,1997.
    [22]. Donald L., AnnaMarie P, Martin O.et al. Rare earth doped high temperature ceramic selective emitters[R]. NASA Technical Memorandum,1999.
    [23]Lucian G. Ferguson,Faith Dogan.A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion[J]. Materials Science and Engineering.2001,35-41.
    [24]Prashant Nagpal,Sang Eon Han.et al.Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals[J].nano letters.2008.
    [25]Bauer T,et al. Heat t ransfer modelling in thermophotovoltaic cavities using glass media[J].Solar Energy Materials and Solar Cells.2005:257-268.
    [26]D.C. White, H.C. Hottel, Important factors in determining the efficiency of TPV systems[C] First NREL Conf. Thermophotovoltaic Generation of Electricity, Copper Mountain, Colorado,1994,425-456.
    [27]K.Qiu,A.C.S.Hayden.Thermophotovoltaic power generation systems using natural gas-fired radiant burners[J]. Solar Energy Materials & Solar Cells 91 (2007) 588-596.
    [28]M. Contreras, H. Wiesner, J. Webb, Thin-film polycrystalline Gal?xInxAs materials, Third NREL Conf. Thermophotovoltaic Generation of Electricity, Colorado Springs, CO,1997:403-410.
    [29]23. S. Wojtczuk, P. Colter, G. Charache,et al. Performance status of 0.55 eV InGaAs thermophotovoltaic cells, Fourth NREL Conf. Thermophotovoltaic Generation of Electricity, Denver, Colorado,1998,417-426.
    [30]T Takamoto, E Ikeda, H Kurita.Over 30% efficient InGaP/GaAs tandem solar cells[J].Applied Physics Letters,Vol70(3),1997.381-384.
    [31]J.Aschaber,C.Hebling.Realistic modelling of TPV systems[J]. Semiconductor Science Technology.2003.158-164.
    [32]33. C.T. Ballinger, G.W. Charache, C.S. Murray, Monte Carlo analysis of a monolithic interconnected module with a back surface reflector[C], Fourth NREL Conf. Thermophotovoltaic Generation of Electricity, Denver, Colorado,1998, pp. 161-174.
    [33]乔在祥,陈文浚,杜邵梅.热光伏技术的研究进展[J].电源技术,2005,29(1)57-61.
    [34]陈雪,宣益民,韩玉阁STPV系统中辐射吸收器热分析及优化[J],中国科学E辑:技术科学.2009年,第39卷,第10期:1757-1765.
    [35]陈雪,宣益民,韩玉阁.太阳能热光伏系统辐射器热设计[J],工程热物理学报.2009 30(5)860-865.
    [36]陈雪,宣益民.热光伏技术基本原理与研究进展[J]半导体光电.2006 27(4),353-358.
    [37]刘广平.微结构热辐射光谱控制特性及其应用研究.工学博士论文[D],南京理工大学,2008:3-10.
    [38]马玉龙,叶宏.聚光型热光伏系统结构优化分析[J].太阳能学报.2010vol31(3):333-337.
    [39]薛宏,段炼,潘剑锋等.平板式MTPV系统中燃烧若干影响因素的试验[J].2009年.第30卷第1期.44-48.
    [40]郭欣.锑化物半导体材料的MOCVD生长研究及其热光伏器件的模拟分析.工学硕士论文[D],吉林大学,2009年.
    [41]苏锵,《稀土元素:您身边的大家族》[M],北京,清华大学出版社,2002,,3-5.
    [42]任慧娟,稀土发光配合物的合成表征应用[M],长春,吉林人民出版社,2006,12-15.
    [43]Robert E, Nelson. Thermophotovoltaic Emitter Development[C].The first NREL conference on thermophotovoltaic generation of electricity, Colorado,AIP Conference. Proceedings.1995,80-96.
    [44]Tomoyuki Kumano, Katsunori Hanamura.Control of spectral emittance using a rare-earth oxide film coated on a ceramic plate [J]. Heat Transfer—Asian Research, 2010,39 (4),209-221.
    [45]Licciulli A, Diso D, Torsello G, et al. The challenge of high-performance selective emitters for thermophotovoltaic applications [J]. Semiconductor Science And Technology,200318(5):S174-S183.
    [46]T Kumano, K Hanamura.Control of spectral emittance using a rare-earth oxide film coated on a ceramic plate[J]. Heat Transfer—Asian Research,2010,39 (4), 209-221.
    [47]W.J. Tobler, W. Durisch. Plasma-spray coated rare-earth oxides on molybdenum disilicide High temperature stable emitters for thermophotovoltaics[J]. Applied Energy,2008,85(5):371-383.
    [48]谈和平,夏新林,刘林华等,红外辐射特性与传输的数值计算[M].哈尔滨,哈尔滨工业大学出版社,2006,P3-67.
    [49]莱姆库勒,王凤森.玻璃窑炉烟气余热的综合利用[J].中国玻璃.1993,第四期52-56.
    [50]L Mao, Y Hong. Thermal modeling for thermophotovoltaic systems adopting the radiation network method[J]. Solar Energy Materials & Solar Cells.2009,93(10): 1705-1713.
    [51]Francis O, Ivan C, Natalija J,et al. Optical characteristics of one-dimensional Si/SiO2 photonic crystals[J]. Journal Of Applied Physics,2002,92(4):1816-1820.
    [52]L Mao, H Ye. New development of one-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications[J]. Renewable Energy,2010,35(1):249-256.
    [53]卯磊,叶宏.采用TCOs滤波器的硅电池热光伏系统的性能研究[J].太阳能学报.2009,30(1):81-88.
    [54]K. Y. Wang, C. L. Tien. Thermal Insulation in Flow Systems:Combined Radiation and Convection Through a Porous Segment[J]. Journal of Heat Transfer,1984,106:453-459.
    [55]Gunther Palfinger, Bernd Bitnar, Wilhelm Durisch, Cost estimate of electricity produced by TPV[J],Semiconductor Science and Technology,2003, vol 18 (5), 254-261.
    [56]Bitnar B, Durisch W, Mayor J C et al. Record electricity-to-gas power efficiency of silicon solar cell based TPV system[c] Proc.5th NREL Conf. on Thermophotovoltaic Generation of Electricity (AIP Conf. Proc.653),2002,18-28.
    [57]杨世铭,陶文铨。传热学[M]。高等教育出版社。北京,2005,266-272.
    [58]沈辉,曾祖贤太阳能光伏发电技术[M],化学工业出版社北京,2005:170-171.
    [59]杨志强,杨宏,吴亚丽.玻璃熔制效率的关键及熔窑大幅节能的方向[J].玻璃,2007,vol(1):14-20.
    [60]彭岩,姚敏娟。大型干法水泥生产线纯低温余热发电热量利用分析[J]。中国水泥,2005,第5期:51-54.
    [61]胡帆.玻璃窑余热发电系统的仿真建模[D].哈尔滨.哈尔滨工程大学,2009:9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700