一氧化氮(NO)在拟南芥抗病信号途径中的调控机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化氮(NO)是迄今发现的自然界中十个最小的化学分子之一,是一种易扩散的生物活性分子。NO在原生动物、细菌、酵母、动物和人体的作用机制已有大量研究。NO不仅在人体和哺乳动物的血管松弛、神经传导以及先天性免疫反应等动物生理代谢过程中是一种关键的信号分子,而且被认为是一种新的植物生长调节物质参与植物的生长发育。研究者发现NO在植物的抗病防御反应中也发挥着重要作用。
     目前NO药物学的作用在植物抗病反应中已有较多报道。然而,NO与SA、JA和ET植物激素相互作用如何调节植物抗病性的分子机制不清楚。本论文将利用我们已获得的多种突变体材料,采用反向遗传学,分子生物学和药物学等技术,重点解析NO与SA、JA和ET互作在植物抗病分子机制中作用。
     实验研究结果表明:
     (1)半定量RT-PCR分析发现NO含量升高的突变体cue1植株中组成型地表达抗病相关基因PR1和PDF1.2。在cue1中SA的含量大幅上升,细菌病原计数实验表明cue1对Pseudomonas syringae pv.macicola ES4326具有一定的抗性。用不同浓度NO供体SNP处理WT(Col),PR1和PDF1.2基因的表达与SNP的浓度有一定的依赖性。在cue1npr1和cue1nahG双突变体中,植株叶片NO含量与cue1基本一样,但是PR1基因的表达完全受到抑制,并且对P.s.m.ES4326表现出完全的感病。这些实验表明NO对抗病基因PR1的诱导是通过SA和NPR1来完成的。
     (2)外源NO供体SNP处理乙烯不敏感突变体ein2和ein3不能诱导PDF1.2的表达,而处理茉莉酸不敏感突变体jar1却能诱导PDF1.2的表达。半定量RT-PCR结果显示,双突变体cue1jar1不能阻断PDF1.2的表达,而双突变体cuelein2却阻断了PDF1.2的表达。荧光染料DAF-2DA对双突变体cue1ein2和cue1jar1染色发现NO含量和cue1的基本一样。细菌病原计数实验表明cue1ein2和cue1jar1对P.s.m.ES4326都具有抗性。双突变体cue1ein2表现出晚花现象,而cue1jar1依旧与jar1同样表现为早花。由此可见,NO对抗病相关基因PDF1.2表达的影响是通过EIN2来起作用,而不是JAR1,但是对ein2和jar1开花影响的机制可能完全不一样。
     (3) SNP处理突变体eds1和eds5,结果表明对抗病基因PDF1.2和PR1表达的影响和WT基本上一样,但是NO对eds1和eds5的叶片的发育有更重要的影响,当SNP的浓度高于20μM时,它们的叶片几乎全部都出现网状叶脉。因此,NO在EDS1和EDS5的上游起作用的可能性不大,却对它们的叶片发育过程有重要的作用。
     本论文初步通过反向遗传学,分子生物学和药物学的方法揭示了NO对抗病信号途径SA途径和JA/ET途径的调控作用。NO对SA抗病信号途径的标志基因PR1的表达调控主要是通过SA和NPR1来实现的,而对JA/ET抗病信号途径的标志基因PDF1.2的表达调控是通过EIN2和EIN3来完成的,而不是JAR1。这是首次通过遗传学的方法阐明NO在植物抗病信号途径中的机理研究,同时也提出了NO在JA/ET信号途径中的新观点和证据。
Nitric oxide(NO) is one of the ten smallest chemical molecules found so far in nature and is a small highly diffusible bioactive molecule.NO has been most studied in protozoa,bacteria,yeast,animal and human.Further investigations led to the finding that NO is a multifunctional effector involved in numerous mammalian physiological processes,including the relaxation of smooth muscle,inhibition of platelet aggregation,neural communication and immune regulation.NO is also a novel regulation molecule in plant growth and development.Scientists considered that NO play an important role in plant defense.
     Recently,more studies have been done about NO pharmacological effect in plant defense.However,the underlying cellular and molecular mechanisms of NO and SA, JA/ET crosstalk in plant defense pathway remain largely unknown.Here we have use reverse genetics,molecular biology and pharmacology methods to elucidate NO signaling with SA and JA/ET in plant defense mechanisms.
     Three important findings were made.
     First,the cue1 plants were found to be constitutively resistant to virulent pathogen Pseudomonas syringae pv.maculicola ES4326;to have endogenous expression of the pathogensis-related gene 1(PR1) and plant defesin 1.2(PDF1.2) by Semi-Quantitative RT-PCR;and to have elevated level of nitric oxide(NO) and salicylic acid(SA).Homozygous lines for cue1 and either the SA-degarding bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR1 or exhibit resistance to P.s.maculicola ES4326.Treatment WT with SNP induced PR1 and PDF1.2 expression in a dose-dependent manner.The double mutants of cue1npr1 and cue1nahG displayed an elevated level of endogenous NO.Therefore,we conclude that NO acts upstream of SA in inducing SAR.
     Second,treatment ein2 and ein3 plants with SNP could not induce PDF1.2 gene expression,however,treatment jar1 plants could induce PDF1.2 expression.The double mutant cue1jar1 blocked PDF1.2 expression,but cue1ein2 did not block PDF1.2 expression.Homozygous lines for cue1 and either the ethylene-insensitive mutant ein2 or the jasmonic acid-insensitive mutatant jar1 displayed an elevated level of endogenous NO or exhibit resistance to P.s.maculicola ES4326.It is surprise that the cue1ein2 plants delay flowering time,but cue1jar1 is early flowering as same as jar1.The result indicated that NO induced PDF1.2 expression by EIN2 not JAR1,but NO how to effect flowering time of ein2 and jar1,we do not know as far.
     Third,treatment salicylic acid-insensitive mutant eds1 and eds5 plants with SNP induced PR1 and PDF1.2 expression in a dose-dependent manner.Therefore,we conclude that NO does not act upstream of EDS1 and EDS5 in inducing SAR.NO play an important role in eds1 and eds5 leaf development.Treatment eds1 and eds5 with≥20μM concentrations of SNP completely induced rectilate pattern leaves compared with WT.We can conclude that NO is not upstream EDS1 and EDS5,but NO have more effection on leaves development in eds1 and eds5.
     In this thesis study,we primarily explained NO and SA,JA/ET defense pathway by genetics,molecular biology and pharmacology methods.We can conclude that NO acts upstream of SA in inducing SAR and NO induced PDF1.2 expression by EIN2 and EIN3 not by JAR1.This is first time using genetics to study NO in plant defense pathway.We also give new insights and evidence about NO and JA/ET crosstalk.
引文
韩德俊,曹莉,陈耀锋,李振歧.(2005).植物抗病基因与病源菌无毒基因互作德分子基础.遗传学报 32,1319-1326
    李杰,邱丽艳,赵方贵,侯丽霞,刘新.一氧化氮在乙烯诱导蚕豆气孔关闭中德作用.植物生理与分子生物学学报,33,349-353.
    刘维仲,张润杰,裴真明,何奕昆.(2008).一氧化氮在植物中的信号分子研究:进展与展望.自然科学进展18,10-24.
    杨红玉,李湘,杨家曙.(2006).拟南芥在植物抗病性分子机制研究中的作用.植物保护科学22,358-364.
    Alamillo,J.M.,and Garcia-Olmedo,F.(2001).Effects of urate,a natural inhibitor of peroxynitrite-mediated toxicity,in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae.Plant J 25,529-540.
    Albassam,B.A.(2000).Inhibition of wheat leaf nitrate reductase activity by phenolic compounds.Biosci Biotechnol Biochem 64,1507-1510.
    Aloni,R.,Wolf,A.,Feigenbaum,P.,Avni,A.,and Klee,H.J.(1998).The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of agrobacterium tumefaciens-induced crown galls on tomato stems.Plant Physiol 117,841-849.
    Alonso,J.M.,Hirayama,T.,Roman,G.,Nourizadeh,S.,and Eeker,J.R.(1999).EIN2,a bifunctional transducer of ethylene and stress responses in Arabidopsis.Science 284,2148-2152.
    Anbar,M.(1995).Nitric oxide:a synchronizing chemical messenger.Experientia 51,545-550.
    Asai,T.,Tena,G.,Plotnikova,J.,Willmann,M.R.,Chiu,W.L.,Gomez-Gomez,L.,Boller,T.,Ausubel,F.M.,and Sheen,J.(2002).MAP kinase signalling cascade in Arabidopsis innate immunity.Nature 415,977-983.
    Axtell,M.J.,and Staskawiez,B.J.(2003).Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377.
    Barroso, J.B., Corpas, F.J., Carreras, A., Rodriguez-Serrano, M., Esteban, F.J., Fernandez-Ocana, A., Chaki, M., Romero-Puertas, M.C., Valderrama, R., Sandalio, L.M., and del Rio, L.A. (2006). Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57,1785-1793.
    Bartha, B., Kolbert, Z., and Erdei, L. (2005). Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol Szegediensis 49, 9-12.
    Bent, A.F., Kunkel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B.J. (1994). RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265, 1856-1860.
    Belenghi, B., Romero-Puertas, M.C., Vercammen, D., Brackenier, A., Inze, D., Delledonne, M., and Van Breusegem, F. (2007). Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282,1352-1358.
    Beligni, M., and Lamattina, L. (1999). Is nitric oxide toxic or protective? Trends Plant Sci 4,299-300.
    Beligni, M.V., and Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210, 215-221.
    Belkhadir, Y., Subramaniam, R., and Dangl, J.L. (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7,391-399.
    Bethke, P.C., Badger, M.R., and Jones, R.L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16,332-341.
    Bleecker, A.B. (1999). Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4,269-274.
    Boccara, M., Mills, C.E., Zeier, J., Anzi, C., Lamb, C., Poole, R.K., and
    Delledonne, M. (2005). Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J 43,226-237.
    Bonas, U., and Lahaye, T. (2002). Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr Opin Microbiol 5,44-50.
    Boveris, A.D., Galatro, A., and Puntarulo, S. (2000). Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals. Biol Res 33, 159-165.
    Bowling, S.A., Clarke, J.D., Liu, Y., Klessig, D.F., and Dong, X. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9,1573-1584.
    Bowling, S.A., Guo, A., Cao, H., Gordon, A.S., Klessig, D.F., and Dong, X. (1994). A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6,1845-1857.
    Brandwagt, B.F., Mesbah, L.A., Takken, F.L., Laurent, P.L., Kneppers, T.J., Hille, J., and Nijkamp, H.J. (2000). A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci U S A 97,4961 -4966.
    Bryan, G.T., Wu, K.S., Farrall, L., Jia, Y., Hershey, H.P., McAdams, S.A., Faulk, K.N., Donaldson, G.K., Tarchini, R., and Valent, B. (2000). tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12,2033-2046.
    Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., and Neill, S.J. (2006). ABA-induced NO generation and Stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45,113-122.
    Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., and Kleinhofs, A. (2002). The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A 99, 9328-9333.
    Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F., and Schulze-Lefert, P. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695-705.
    Buttner, D., and Bonas, U. (2003). Common infection strategies of plant and animal pathogenic bacteria. Curr Opin Plant Biol 6, 312-319.
    Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. (1994). Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell 6,1583-1592.
    Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPRl gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.
    Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPRl gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88,57-63.
    Caro, A., and Puntarulo, S. (1999). Nitric oxide generation by soybean embryonic axes. Possible effect on mitochondrial function. Free Radic Res 31 Suppl, S205-212.
    Chang, C. (2003). Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci 8,365-368.
    Chen, N., Goodwin, P.H., and Hsiang, T. (2003). The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot 54, 2449-2456.
    Cheong, J.J., and Choi, Y.D. (2003). Methyl jasmonate as a vital substance in plants. Trends Genet 19,409-413.
    Chisholm, S.T., Dahlbeck, D., Krishnamurthy, N., Day, B., Sjolander, K., and Staskawicz, B.J. (2005). Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proc Natl Acad Sci U S A 102,2087-2092.
    Clarke, J.D., Liu, Y., Klessig, D.F., and Dong, X. (1998). Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10, 557-569.
    Clarke, J.D., Volko, S.M., Ledford, H., Ausubel, F.M., and Dong, X. (2000). Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis. Plant Cell 12,2175-2190.
    Cooney, R.V., Harwood, P.J., Custer, L.J., and Franke, A.A. (1994). Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Envir Health Persp 102,460-462.
    Crawford, N.M., Galli, M., Tischner, R., Heimer, Y.M., Okamoto, M., and Mack, A. (2006). Response to Zemojtel et al.: Plant nitric oxide synthase: back to square one. Trends Plant Sci 11, 526-527.
    Dangl, J., and Jones, J.D. (1998). Plant-microbe interactions. Affairs of the plant: colonization, intolerance, exploitation and co-operation in plant-microbe interactions. Curr Opin Plant Biol 1,285-287.
    Dangl, J.L., and Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833.
    de Ia Haba, P., Aguera, E., Benitez, L., and Maldonado, J.M. (2001). Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots. Plant Sci 161,231-237.
    De Leon, I.P., Sanz, A., Hamberg, M., and Castresana, C. (2002). Involvement of the Arabidopsis alpha-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant J 29, 61-62.
    de, J., Yakimova, E.T., Kapchina, V.M., and Woltering, E.J. (2002). A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214, 537-545.
    Dean, J., and Harper, J. (1986). Nitric-oxide and nitrous-oxide production by soybean and winged bean during the invivo nitrate reductase assay. Plant Physiol 82,718-723.
    Delledonne, M. (2005). NO news is good news for plants. Curr Opin Plant Biol 8, 390-396.
    Delledonne, M., Polverari, A., and Murgia, I. (2003). The functions of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response. Antioxid Redox Signal 5, 33-41.
    Delledonne, M., Xia, Y.J., Dixon, R.A., and Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585-588.
    Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98, 13454-13459.
    Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J., and Marco, Y. (2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRSl-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A 99, 2404-2409.
    Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y. (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100, 8024-8029.
    Dixon, M.S., Hatzixanthis, K., Jones, D.A., Harrison, K., and Jones, J.D. (1998). The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10,1915-1925.
    Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Ayliffe, M.A., and Ellis, J.G. (2004). The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16, 755-768.
    Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., and Kawakita, K. (1996). The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence~a review. Gene 179,45-51.
    Domachowske, J.B. (1997). The role of nitric oxide in the regulation of cellular iron metabolism. Biochem Mol Med 60,1-7.
    Dong, H.P., Peng, J., Bao, Z., Meng, X., Bonasera, J.M., Chen, G., Beer, S.V., and Dong, H. (2004). Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136, 3628-3638.
    Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1,316-323.
    Dong, X. (2001). Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4,309-314.
    Dong, X.D., Tyler, D., Johnson, J.L., DeMatos, P., and Seigler, H.F. (2000). Analysis of prognosis and disease progression after local recurrence of melanoma. Cancer 88,1063-1071.
    Dordas, C., Hasinoff, B.B., Igamberdiev, A.U., Manac'h, N., Rivoal, J., and Hill, R.D. (2003). Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35, 763-770.
    Dordas, C., Hasinoff, B.B., Rivoal, J., and Hill, R.D. (2004). Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219, 66-72.
    Durner, J., Wendehenne, D., and Klessig, D.F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95, 10328-10333.
    Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu Rev Phytopathol42,185-209.
    Ederli, L., Morettini, R., Borgogni, A., Wasternack, C., Miersch, O., Reale, L., Ferranti, F., Tosti, N., and Pasqualini, S. (2006). Interaction between nitric oxide and ethylene in the induction of alternative Oxidase in ozone-treated tobacco plants. Plant Physiol 142,595-608.
    
    Ellis, C., and Turner, J.G. (2002). A conditionally fertile coil allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215, 549-556.
    Ellis, C., Karafyllidis, I., and Turner, J.G. (2002a). Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant Microbe Interact 15,1025-1030.
    
    Ellis, C., Karafyllidis, I., Wasternack, C., and Turner, J.G. (2002b). The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14, 1557-1566.
    Farmer, E.E., Almeras, E., and Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6, 372-378.
    Feilner, T., Hultschig, C., Lee, J., Meyer, S., Immink, R.G., Koenig, A., Possling, A., Seitz, H., Beveridge, A., Scheel, D., Cahill, D.J., Lehrach, H., Kreutzberger, J., and Kersten, B. (2005). High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol Cell Proteomics 4,1558-1568.
    Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., and Keller, B. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A 100,15253-15258.
    Feys, B.J., and Parker, J.E. (2000). Interplay of signaling pathways in plant disease resistance. Trends Genet 16,449-455.
    Fukuto, J.M., and Chaudhuri, G. (1995). Inhibition of constitutive and inducible nitric oxide synthase: potential selective inhibition. Annu Rev Pharmacol Toxicol 35,165-194.
    Furchgott, R.F., and Zawadzki, J.V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376.
    Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. (1993). Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science 261, 754-756.
    Garcia-Mata, C., and Lamattina, L. (2001). Nitric oxide induces Stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126,1196-1204.
    Garcia-Mata, C., and Lamattina, L. (2002). Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128, 790-792.
    Gardner, P.R., Costantino, G., Szabo, C., and Salzman, A.L. (1997). Nitric oxide sensitivity of the aconitases. J Biol Chem 272, 25071-25076.
    Glazebrook, J. (2001). Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol 4, 301-308.
    Gniazdowska, A., Dobrzynska, U., Babanczyk, T., and Bogatek, R. (2007). Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta.
    Gonzalez-Aguilar, G.A., Tiznado-Hernandez, M.E., Zavaleta-Gatica, R., and Martinez-Tellez, M.A. (2004). Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochem Biophys Res Commun 313, 694-701.
    Gouvea, C.M.C.P., Souza, J.F., Magalhaes, A.C.N., and Martins, LS. (1997). NO releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21,183-187.
    Grant, M.R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R.W., and Dangl, J.L. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843-846.
    Graziano, M., and Lamattina, L. (2005). Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci 10,4-8.
    Graziano, M., Beligni, M.V., and Lamattina, L. (2002). Nitric oxide improves internal iron availability in plants. Plant Physiol 130,1852-1859.
    Greenberg, J.T. (2000). Positive and negative regulation of salicylic acid-dependent cell death and pathogen resistance in Arabidopsis lsd6 and ssil mutants. Mol Plant Microbe Interact 13,877-881.
    Grun, S., Lindermayr, C., Sell, S., and Durner, J. (2006). Nitric oxide and gene regulation in plants. J Exp Bot 57, 507-516.
    Guo, F.Q. (2006). Response to Zemojtel et al: Plant nitric oxide synthase: AtNOSl is just the beginning. Trends Plant Sci 11, 527-528.
    Guo, F.Q., Okamoto, M., and Crawford, N.M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100-103.
    Guo, H., and Ecker, J.R. (2004). The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7,40-49.
    Gupta, V., Willits, M.G., and Glazebrook, J. (2000). Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant Microbe Interact 13, 503-511.
    Guzman, P., and Ecker, J.R. (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513-523.
    Halitschke, R., and Baldwin, I.T. (2003). Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 36, 794-807.
    Halterman, D., Zhou, F., Wei, F., Wise, R.P., and Schulze-Lefert, P. (2001). The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25, 335-348.
    Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S., Seguin, A., and Ellis, B.E. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11,192-198.
    Hammond-Kosack, K.E., and Parker, J.E. (2003). Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14, 177-193.
    Hausladen, A., and Stamler, J.S. (1998). Nitric oxide in plant immunity. Proc Natl Acad Sci U S A 95, 10345-10347.
    He, Y., Tang, R.H., Hao, Y., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F., Fiorani, R, Jackson, R.B., Crawford, N.M., and Pei, Z.M. (2004). Nitric oxide represses the Arabidopsis floral transition. Science 305,1968-1971.
    Heath, M.C. (2000). Hypersensitive response-related death. Plant Mol Biol 44, 321-334.
    Heidel, A.J., Clarke, J.D., Antonovics, J., and Dong, X. (2004). Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168, 2197-2206.
    Hirano, S.S., and Upper, C.D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64, 624-653.
    Hoffman, T., Schmidt, J.S., Zheng, X., and Bent, A.F. (1999). Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119, 935-950.
    Huang, L., Brooks, S.A., Li, W., Fellers, J.P., Trick, H.N., and Gill, B.S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164,655-664.
    Huang, X., Stettmaier, K., Michel, C., Hutzler, P., Mueller, M.J., and Durner, J. (2004). Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218, 938-946.
    Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84, 9265-9269.
    Jakob, K., Kniskern, J.M., and Bergelson, J. (2007). The role of pectate lyase and the jasmonic acid defense response in Pseudomonas viridiflava virulence. Mol Plant Microbe Interact 20,146-158.
    Jasid, S., Simontacchi, M., Bartoli, C.G., and Puntarulo, S. (2006). Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142,1246-1255.
    Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. Embo J 19,4004-4014.
    Jih, P.J., Chen, Y.C., and Jeng, S.T. (2003). Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiol 132, 381-389.
    Johal, G.S., and Briggs, S.P. (1992). Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258, 985-987.
    Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J., and Jones, J.D. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266, 789-793.
    Kachroo, A., and Kachroo, P. (2007). Salicylic acid-, jasmonic acid- and ethylene-mediated regulation of plant defense signaling. Genet Eng (N Y) 28, 55-83.
    Kaiser, W.M., and Huber, S.C. (2001). Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J ExpBot 52,1981-1989.
    Kawchuk, L.M., Hachey, J., Lynch, D.R., Kulcsar, F., van Rooijen, G., Waterer, D.R., Robertson, A., Kokko, E., Byers, R., Howard, R.J., Fischer, R., and Prufer, D. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98, 6511-6515.
    Klepper, L. (1975). Evolution of nitrogen oxide gases from herbicide treated plant tissues. WSSA Abstracts 184,70.
    Klepper, L. (1979). Nitric oxide (NO) and nitrogen dioxide (NO_2) emissions from herbicide-treated soybean plants. Atmos Environ 13, 537-542.
    Klepper, L. (1987). Nitric-oxide emissions from soybean leaves during in vivo nitrate reductase assays. Plant Physiol 85, 96-99.
    Klepper, L. (1991). NO_x evolution by soybean leaves treated with salicylic acid and selected derivatives. Pestic Biochem Phys 39,43-48.
    Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H. (2000). Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97, 8849-8855.
    Knoester, M., van Loon, L.C., van den Heuvel, J., Hennig, J., Bol, J.F., and Linthorst, H.J. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci U S A 95, 1933-1937.
    Koshland, D.E., Jr. (1992). The molecule of the year. Science 258,1861.
    Kroncke, K.D., Brenner, H.H., Rodriguez, M.L., Etzkorn, K., Noack, E.A., Kolb, H., and Kolb-Bachofen, V. (1993). Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically generated nitric oxide. Biochim Biophys Acta 1182,221-229.
    Kumar, A., Singh, U.S., Singh, A., Malik, V.S., and Garg, G.K. (2000). Molecular signaling in pathogenicity and host recognition in smut fungi taking Karnal bunt as a model system. Indian J Exp Biol 38, 525-539.
    Kunkel, B.N. (1996). A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 12, 63-69.
    Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5, 325-331.
    Kunkel, B.N., Bent, A.F., Dahlbeck, D., Innes, R.W., and Staskawicz, B.J. (1993). RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5, 865-875.
    Lahaye, T. (2004). Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends Plant Sci 9,1-4.
    Lahaye, T., and Bonas, U. (2001). Molecular secrets of bacterial type III effector proteins. Trends Plant Sci 6,479-485.
    Lamattina, L., Garcia-Mata, C., Graziano, M., and Pagnussat, G. (2003). Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54, 109-136.
    Lamotte, O., Courtois, C., Dobrowolska, G., Besson, A., Pugin, A., and Wendehenne, D. (2006). Mechanisms of nitric-oxide-induced increase of free Cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radic Biol Med 40,1369-1376.
    Lamotte, O., Gould, K., Lecourieux, D., Sequeira-Legrand, A., Lebrun-Garcia, A., Durner, J., Pugin, A., and Wendehenne, D. (2004). Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135, 516-529.
    Lancaster, D.G., Richter, D., and Tittel, F.K. (1999). Portable fiber-coupled diode-laser-based sensor for multiple trace gas detection. Appl Phys B 69, 459-465.
    Lanteri, M.L., Pagnussat, G.C., and Lamattina, L. (2006). Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57, 1341-1351.
    Larios, B., Aguera, E., de la Haba, P., Perez-Vicente, R., and Maldonado, J.M. (2001). A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 212, 305-312.
    Lauge, R., and De Wit, P.J. (1998). Fungal avirulence genes: structure and possible functions. Fungal Genet Biol 24, 285-297.
    Leon, J., Rojo, E., and Sanchez-Serrano, J.J. (2001). Wound signalling in plants. J Exp Bot 52,1-9.
    Leshem, Y.Y. (1996). Nitric oxide in biological systems. Plant Grow Reg 18, 155-159.
    Leshem, Y.Y., and Wills, R.B.H. (1998). Harnessing senescence delaying gases nitric oxide and nitrous oxide - a novel approach to postharvest control of fresh horticultural produce. Biol Plant 41,1-10.
    Leshem, Y.Y., Wills, R.B.H., and Ku, V.V.V. (1998). Evidence for the function of the free radical gas - nitric oxide - as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Bioch 36, 825-833.
    Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583-593.
    Li, H., Culligan, K., Dixon, R.A., and Chory, J. (1995). CUE1: A Mesophyll Cell-Specific Positive Regulator of Light-Controlled Gene Expression in Arabidopsis. Plant Cell 7,1599-1610.
    Li, H., Johnson, P., Stepanova, A., Alonso, J.M., and Ecker, J.R. (2004a). Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7,193-204.
    Li, L., Zhao, Y., McCaig, B.C., Wingerd, B.A., Wang, J., Whalon, M.E., Pichersky, E., and Howe, G.A. (2004b). The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16,126-143.
    Li, X., Zhang, Y., Clarke, J.D., Li, Y., and Dong, X. (1999). Identification and cloning of a negative regulator of systemic acquired resistance, SNH, through a screen for suppressors of npr1-1. Cell 98,329-339.
    Lindermayr, C., Saalbach, G., and Durner, J. (2005). Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137,921-930.
    Liu, H., Wang, Y., Xu, J., Su, T., Liu, G., and Ren, D. (2008). Ethylene signaling is required for the acceleration of cell death induced by the activation of AtMEK5 in Arabidopsis. Cell Res 18,422-432.
    Liu, Y., Jin, H., Yang, K.Y., Kim, C.Y., Baker, B., and Zhang, S. (2003). Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J 34,149-160.
    Lund, S.T., Stall, R.E., and Klee, H.J. (1998). Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10, 371-382.
    
    MacKintosh, C., and Meek, S.E. (2001). Regulation of plant NR activity by reversible phosphorylation, 14-3-3 proteins and proteolysis. Cell Mol Life Sci 58,205-214.
    
    
    Mandaokar, A., Kumar, V.D., Amway, M., and Browse, J. (2003). Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol Biol 52,775-786.
    Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D., and Tanksley, S.D. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262,1432-1436.
    Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., and Reimmann, C. (2001). Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J 25, 67-77.
    McConn, M., Creelman, R.A., Bell, E., Mullet, J.E., and Browse, J. (1997). Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A 94, 5473-5477.
    McDowell, J.M., and Dangl, J.L. (2000). Signal transduction in the plant immune response. Trends Biochem Sci 25,79-82.
    McDowell, J.M., Dhandaydham, M., Long, T.A., Aarts, M.G., Goff, S., Holub, E.B., and Dangl, J.L. (1998). Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10,1861-1874
    
    Meinke, D.W., and Sussex, I.M. (1979). Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev Biol 72, 50-61.
    Meuriot, F., Noquet, C., Avice, J.C., Volenec, J.J., Cunningham, S.M., Sors, T.G., Caillot, S., and Ourry, A. (2004). Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32-kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots. Physiol Plant 120,113-123.
    
    Meyerowitz, E.M. (1989). Arabidopsis, a useful weed. Cell 56,263-269.
    Mindrinos, M., Katagiri, F., Yu, G.L., and Ausubel, F.M. (1994). The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78,1089-1099.
    Mishina, T.E., Lamb, C., and Zeier, J. (2007). Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30, 39-52.
    Mizoguchi, T., Ichimura, K., and Shinozaki, K. (1997). Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol 15,15-19.
    Mockaitis, K., and Howell, S.H. (2000). Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24, 785-796.
    Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S., and Soave, C. (2004). Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38, 940-953.
    Nathan, C., and Xie, Q.W. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell 78,915-918.
    Navarre, D.A., Wendehenne, D., Durner, J., Noad, R., and Klessig, D.F. (2000). Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122, 573-582.
    Nawrath, C., and Metraux, J.P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11,1393-1404.
    Nawrath, C., Heck, S., Parinthawong, N., and Metraux, J.P. (2002). EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14,275-286.
    Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D., and Wilson, I. (2008). Nitric oxide, Stomatal closure, and abiotic stress. J Exp Bot 59, 165-176.
    Neill, S.J., Desikan, R., and Hancock, J.T. (2003). Nitric oxide signalling in plants. New Phytologist 159,11-35.
    Neill, S.J., Desikan, R., Clarke, A., and Hancock, J.T. (2002a). Nitric oxide is a novel component of abscisic acid signaling in Stomatal guard cells. Plant Physiol 128,13-16.
    Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., and Hancock, J.T. (2002b). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53, 1237-1247.
    Ninnemann, H., and Maier, J. (1996). Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol 64, 393-398.
    O'Donnell, P.J., Jones, J.B., Antoine, F.R., Ciardi, J., and Klee, H.J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J 25, 315-323.
    Orozco-Cardenas, M.L., and Ryan, C.A. (2002). Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130,487-493.
    Orozco-Cardenas, M.L., and Ryan, C.A. (2002). Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130,487-493.
    Orth, K., Xu, Z., Mudgett, M.B., Bao, Z.Q., Palmer, L.E., Bliska, J.B., Mangel, W.F., Staskawicz, B., and Dixon, J.E. (2000). Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594-1597.
    Parker, J.E., Coleman, M.J., Szabo, V., Frost, L.N., Schmidt, R., van der Biezen, E.A., Moores, T., Dean, C., Daniels, M.J., and Jones, J.D. (1997). The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9,879-894.
    Pagnussat, G.C., Lanteri, M.L., Lombardo, M.C., and Lamattina, L. (2004). Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135,279-286.
    Pagnussat, G.C., Simontacchi, M., Puntarulo, S., and Lamattina, L. (2002). Nitric oxide is required for root organogenesis. Plant Physiol 129, 954-956.
    Palmer, R.M., Ferrige, A.G., and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526.
    Pedroso, M.C., Magalhaes, J.R., and Durzan, D. (2000). A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot 51,1027-1036.
    Penninckx, I.A., Eggermont, K., Terras, F.R., Thomma, B.P., De Samblanx, G.W., Buchala, A., Metraux, J.P., Manners, J.M., and Broekaert, W.F. (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8, 2309-2323.
    Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P., and Broekaert, W.F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113.
    Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., Martienssen, R., Mattsson, O., Jensen, A.B., and Mundy, J. (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103,1111-1120.
    Peterson, J.K., Moran, F., Conley, A.J., and Bird, I.M. (2001). Zonal expression of endothelial nitric oxide synthase in sheep and rhesus adrenal cortex. Endocrinology 142, 5351-5363.
    Petruzzelli, L., Coraggio, I., and Leubner-Metzger, G. (2000). Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1 -carboxylic acid Oxidase. Planta 211, 144-149.
    Pieterse, C.M., van Wees, S.C., Hoffland, E., van Pelt, J.A., and van Loon, L.C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8,1225-1237.
    Pieterse, C.M., van Wees, S.C., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and van Loon, L.C.(1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571-1580.
    Planchet, E., Jagadis Gupta, K., Sonoda, M., and Kaiser, W.M. (2005). Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41, 732-743.
    Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M., and Delledonne, M. (2003). Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16,1094-1105.
    Prats, E., Mur, L.A.J., Sanderson, R., and Carver, T.L.W. (2005). Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. hordei. Molecular Plant Pathol 6, 65-67.
    Rao, M.V., and Davis, K.R. (2001). The physiology of ozone induced cell death. Planta 213,682-690.
    Redei, G.P., and Li, S.L. (1969). Effects of x rays and ethyl methanesulfonate on the chlorophyll B locus in the soma and on the thiamine loci in the germline of Arabidopsis. Genetics 61,453-459.
    Reymond, P., Weber, H., Damond, M., and Farmer, E.E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12,707-720.
    Reymond, P., Weber, H., Damond, M., and Farmer, E.E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12, 707-720.
    Ribeiro, E.A., Jr., Cunha, F.Q., Tamashiro, W.M., and Martins, LS. (1999). Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 445,283-286.
    Rockel, P., Strube, F., Rockel, A., Wildt, J., and Kaiser, W.M. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53, 103-110.
    Rodriguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gomez, M., Del Rio, L.A., and Sandalio, L.M. (2006). Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29, 1532-1544.
    Romero-Puertas, M.C., Palma, J., M,, Gomez, M., del Rio, L.A., and Sandalio, L.M. (2002). Cadmiumcauses the oxidativemodification of proteins in pea plants Plant Cell Environ 25, 677-686.
    Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Pare, P.W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134,1017-1026.
    Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W., and Goldberg, R.B. (2000). The arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 1041-1061.
    Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., Amagai, M., Kuwata, C., Tsugane, T., Masuda, T., Shimada, H., Takamiya, K., Ohta, H., and Tabata, S. (2001). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8,153-161.
    Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., and Manners, J.M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97, 11655-11660.
    Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., and Manners, J.M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97, 11655-11660.
    Shen, K.A., Chin, D.B., Arroyo-Garcia, R., Ochoa, O.E., Lavelle, D.O., Wroblewski, T., Meyers, B.C., and Michelmore, R.W. (2002). Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant Microbe Interact 15, 251-261.
    Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., and Choi, Y.D. (2001). Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A 98, 4788-4793.
    Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., and Haas, D. (1995). Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249, 217-228.
    Shah, J. (2003). The salicylic acid loop in plant defense. Curr Opin Plant Biol 6, 365-371.
    Shah, J., Kachroo, P., and Klessig, D.F. (1999). The Arabidopsis ssil mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11,191-206.
    Song, F., and Goodman, R.M. (2001). Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol Plant Microbe Interact 14, 1458-1462.
    Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C., and Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270,1804-1806.
    Spoel, S.H., Johnson, J.S., and Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A104,18842-18847.
    Stamler, J.S. (1994). Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931-936.
    Stamler, J.S., Singel, D.J., and Loscalzo, J. (1992). Biochemistry of nitric oxide and its redox-activated forms. Science 258,1898-1902.
    Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89, 6837-6840.
    Stohr, C., and Ullrich, W.R. (2002). Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53,2293-2303.
    Stohr, C., Strube, F., Marx, G., Ullrich, W.R., and Rockel, P. (2001). A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212, 835-841.
    Streatfield, S.J., Weber, A., Kinsman, E.A., Hausler, R.E., Li, J., Post-Beittenmiller, D., Kaiser, W.M., Pyke, K.A., Flugge, U.I., and Chory, J. (1999). The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11,1609-1622.
    Swiatek, A., Van Dongen, W., Esmans, E.L., and Van Onckelen, H. (2004). Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiol 135,161-172.
    Swiderski, M.R., and Innes, R.W. (2001). The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26,101-112.
    Tada, Y., Mori, T., Shinogi, T., Yao, N., Takahashi, S., Betsuyaku, S., Sakamoto, M., Park, P., Nakayashiki, H., Tosa, Y., and Mayama, S. (2004). Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Mol Plant Microbe Interact 17,245-253.
    Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A96,14153-14158.
    Tang, D., Christiansen, K.M., and Innes, R.W. (2005). Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol 138,1018-1026.
    Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y., and Martin, G.B. (1996). Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science 274, 2060-2063.
    Thomma, B.P., Eggermont, K., Penninckx, I.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P., and Broekaert, W.F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A95,15107-15111.
    Thomma, B.P., Eggermont, K., Tierens, K.F., and Broekaert, W.F. (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121,1093-1102.
    Ton, J., Davison, S., Van Wees, S.C., Van Loon, L., and Pieterse, C.M. (2001). The arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125, 652-661.
    Tu, W., Satoi, S., Zhang, Z., Kitade, H., Okumura, T., Kwon, A.H., and Kamiyama, Y. (2003). Hepatocellular dysfunction induced by nitric oxide production in hepatocytes isolated from rats with sepsis. Shock 19,373-377.
    Turner, J.G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway. Plant Cell 14 Suppl,S153-164.
    Uchida, A., Jagendorf, A.T., Hibino, T., and Takabe, T. (2002). Effect of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice Plant Sci 163, 515-523.
    van der Biezen, E.A., Freddie, C.T., Kahn, K., Parker, J.E., and Jones, J.D. (2002). Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J 29,439-451.
    van Wees, S.C., de Swart, E.A., van Pelt, J.A., van Loon, L.C., and Pieterse, C.M. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97, 8711-8716.
    van't Slot, K.A., van den Burg, H.A., Kloks, C.P., Hilbers, C.W., Knogge, W., and Papavoine, CH. (2003). Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel beta-sheet fold. J Biol Chem 278,45730-45736.
    Verberne, M.C., Verpoorte, R., Bol, J.F., Mercado-Blanco, J., and Linthorst, H.J. (2000). Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18, 779-783.
    Vranova, E., Inze, D., and Van Breusegem, F. (2002). Signal transduction during oxidative stress. J Exp Bot 53,1227-1236.
    Wang, D., Weaver, N.D., Kesarwani, M., and Dong, X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308,1036-1040.
    Wang, K.L., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl, S131-151.
    Weitzberg, E., and Lundberg, J.O. (1998). Nonenzymatic nitric oxide production in humans. Nitric Oxide 2,1-7.
    Wendehenne, D., Pugin, A., Klessig, D.F., and Durner, J. (2001). Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6,177-183.
    Widmann, C., Gibson, S., Jarpe, M.B., and Johnson, G.L. (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79,143-180.
    
    Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565.
    Wojtaszek, P. (2000). Nitric oxide in plants. To NO or not to NO. Phytochemistry 54, 1-4.
    Xiao, S., Ellwood, S., Calis, O., Patrick, E., Li, T., Coleman, M., and Turner, J.G. (2001). Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291,118-120.
    Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G. (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280,1091-1094.
    Xu, M., Dong, J., and Zhu, M. (2006). Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth. suspension cells through a salicylic acid (SA)-dependent and a jasmonic acid (JA)-dependent signal pathway. Sci China C Life Sci 49, 379-389.
    Yamasaki, H., and Sakihama, Y. (2000). Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Letters 468, 89-92.
    Yu, G.L., Katagiri, F., and Ausubel, F.M. (1993). Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Mol Plant Microbe Interact 6, 434-443.
    Yuan, B., Shen, X., Li, X., Xu, C., and Wang, S. (2007). Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226, 953-960.
    Zago, E., Morsa, S., Dat, J.F., Alard, P., Ferrarini, A., Inze, D., Delledonne, M., and Van Breusegem, F. (2006). Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 141,404-411.
    Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., and Durner, J. (2004). Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A 101,15811-15816.
    Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M., and Lamb, C. (2004). Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol 136,2875-2886.
    Zemojtel, T., Frohlich, A., Palmieri, M.C., Kolanczyk, M., Mikula, I., Wyrwicz, L.S., Wanker, E.E., Mundlos, S., Vingron, M., Martasek, P., and Durner, J. (2006). Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11, 524-525; author reply 526-528.
    Zhang, C., Czymmek, K.J., and Shapiro, A.D. (2003). Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol Plant Microbe Interact 16, 962-972.
    Zhang, S., and Klessig, D.F. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci 6, 520-527.
    Zhao, M.G., Tian, Q.Y., and Zhang, W.H. (2007). Nitric Oxide Synthase-dependent nitric Oxide Production Is Associated with Salt Tolerance in Arabidopsis. Plant Physiol (Plant Physiology Preview. Published on March 9,2007, as DOI:10.1104/pp.l07.096842).
    Zhao, Z., Chen, G., and Zhang, C. (2001). Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Austr. J. Plant Physiol 28,1055-1061.
    Zhou, F., Kurth, J., Wei, F., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R., and Schulze-Lefert, P. (2001). Cell-autonomous expression of barley Mlal confers race-specific resistance to the powdery mildew fungus via a Rarl-independent signaling pathway. Plant Cell 13, 337-350.
    Zottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F., and Lo Schiavo, F. (2007). Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700