基于微观力学的黄瓜叶片形态变化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物形态建模和形态模型的可视化是近年来计算机图形学和农业工程领域的研究热点,研究人员试图通过数字化技术实现农林植物形态变化过程的可视化表达。
     现有植物形态变化模型主要有两类,一类是从图形学出发进行植物形态变化的模型研究,该领域的研究能得到逼真的形态图像,但建模时,末考虑作物生长的真实性,该类模型不能用于实际生产指导;另一类是农业工程领域研究人员试图结合植物生理学建立符合植物自身特性的虚拟植物模型,并在虚拟环境中模拟植物对环境的响应情况,这部分模型大部分是基于宏观实验的统计模型,虽然能在一定程度上反映作物的形态变化,但并未对作物形态发生变化的机理进行探究,无法获得植物对环境的响应机制,因此在实际应用中存在局限性。
     针对现有模型的不足,本文从“作物形态的变化过程就是其内部组织细胞的变形过程”这个观点出发,对黄瓜叶片宏观形态变化及其内部细胞的变化情况进行实验研究,在此基础上建立了基于微观力学的宏观形态变化模型,并与真实形态进行了比较,模拟结果和真实形态在一定范围内具有较好的吻合度。借助该模型可以了解特定宏观形态下,作物本身对水分、光温的需求情况和自身的生命特征,从而为生产实际中水分等环境因子的调控提供理论依据;对实现我国设施农业的高效和可持续发展具有十分重要的理论意义和实用价值。
     1、考查了叶片含水量变化时,叶片表面气孔、叶片内部细胞及胞间结构变化情况。叶片含水量为89.9%时,所有的叶面气孔呈展开状态,细胞间隙明显,细胞形态饱满,细胞内部叶绿体片层清晰;当叶片含水量为86.7%时,只有1/3的表面气孔完全张开,细胞形态开始变得不饱满,细胞间隙减小,细胞内部叶绿体肿胀并出现脂类小球;叶片含水量为75.4%时,表面气孔基本处于完全闭合状态,叶片表面出现收缩,细胞呈现收缩,细胞间隙进一步减小,细胞内部叶绿体进一步肿胀甚至解体,叶绿体内部嗜锇颗粒增多增大;叶片水分含量为60%左右时,叶片完全萎蔫,表面气孔完全闭合,部分气孔的保卫细胞出现坏死现象,表面皱褶进一步加剧,细胞变形严重,细胞间隙消失,细胞内部大多数细胞器解体。
     2、利用切片技术和纳米压痕技术对黄瓜叶肉细胞的细胞壁力学特性进行了测试,并对加载-卸载曲线、以及应力-应变曲线进行了分析。结果表明,当应力小于1Mpa时,细胞壁呈现非线性弹性特征;当应力小于0.4Mpa时,细胞壁的非线性特征减弱,可以视为是线性弹性材料。本文所得到细胞壁力学参数是在对黄瓜叶片组织进行脱水处理后测最得到的,而植物体内细胞壁含有少量水分,因此两材存在一定的差异,在应用细胞壁的力学参数时需要考虑水分的影响。
     3、采用FEM有限元方法,建立了符合生理学特征的叶肉细胞力学模型—一内部充满液体的球形细胞力学模型,根据水分代谢方程,计算出于蒸腾作用而产生肉细胞内膨压变化量,对单个细胞进行受力分析,得到细胞壁上任一点在膨压随时间变化的情况。
     4、对叶脉结构进行多尺度分析的基础上,建立了细胞结构、分层结构、膨压对叶脉力学性能影响的计算模型。
     5、在植物组织力学性能方面,首次借助均匀化方法,得到了叶肉组织等效材料属性的计算模型,并比较了叶片在不同水分条件下力学特性的变化。其计算结果为计算叶片的宏观变形模型提供了有效的的依据。
     6、首次借助三维激光扫描与重建技术、显微技术,结合生物力学,建立了叶片的变形模型,根据不同的水分情况,计算得到不同的宏观形态模型。将模拟结果和真实叶片的三维扫描数据进行了比较,结果发现两者有较好的吻合度。借助该模型计算了各种形态黄瓜叶片的含水量,叶片含水量子啊70%-90%之间变化时,模型的计算值与实测值之间基于1:1上直线的决定系数R2为0.823, RMSE为3.4223。
     7、根据光温因子和黄瓜叶片的生长情况,建立了以光温因子为驱动变量,黄瓜叶特征参数、叶柄直径和长度的模拟模型。在坫此基础上,对不同光温因子条件下生长的叶片进行缺水情况的模拟,得到光温因子影响下的叶片缺水形态变化。
Plant morphologic modeling and visualizing is the research focus in computer graphics and agricultural engineering in recent years, researchers try to model and visualize the process of plant morphology variation by digital technology.
     The existing plant morphologic model mainly can be divided into two types:one type model is built by computer graphics scientist, from which lively morphologic images can be obtained. However, the lack of understanding about plant morphology change mechanism lead to this kind of model cannot be used in practical production.Another one is virtual plant model built by researchers in the agricultural engineering, which combined with plant growth process and based on macroscopic experimental, could simulate plant's response to environment to a certain extent. This kind of model also have not made thorough research about plant morphology change mechanism, so response mechanism of plant to environment can't be obtained. but it has limitation in practice.Aim at these limitations, this thesis try to establish the macro-morphological change models from the view of "morphologic changes of crop depend on the alternation of cells in it" by using micromechanics. The simulation results were compared with authenticity, they correspond with each other. With the help of the model, requirements of the crop in water, light, temperature can be learnt. The model also can provide a basis of how to control the environmental factors such as water and light. So the research is of great theoretical significance to realize the facility agriculture of high efficiency and sustainable development.
     1. The alteration of stomason the surface and cells in leaves were examined when leaf water content decreased. When the leaf water content was89.9%, stomas were openmainly, the intercellular space was obvious, the shape of the cells was perfect, chloroplast lamellar was visible. The opened stomas are decreased as leaf water content reduced, when itwas86.5%, only1/3stomaswerein the open state, at the same time leaves began to fold;the cellswere atrophy, the intercellular space became small, chloroplasts were swollen,osmiophilic globulesappeared in them.When leaf water content was75%around, all the stomas on the surface of leaves closedcompletely, the leaf folded further, the intercellular space deceased further,chloroplasts were swollen much more even some of them disintegrated, osmiophilic globule became more and bigger.When the leaf water content decreased to60%around, all the stomas on the surface of leaves closedcompletely, some of them were necrotic, the leaf folded further, the cells shape changed seriously, intercellular space disappeared, and cells glued together, most organelles in the cellsdisintegrated.With the further lack of water, organelles within cells gradually disintegrated, then part of the cell walls disintegrated too.
     2. The mechanical property of cue μ mber's mosophyll cell wall was tested by using slicing technique and nano-indentation technology. The results (loading-unloading curve, andstress-strain curve) were analyzed.Results show that when the stress is less than1Mpa, the cell-wall has non-linear elastic characteristics; when the stress is less than0.4Mpa, the nonlinear characteristics of the cell walls weaken, which can be considered as a linear elastic material. In this article, the mechanical property of cell wall was measured after dehydration. Actually cell wall containing a amount of water, so there are certain differences between the two. So in the application of mechanical parameters of the cell wall, the effects of water need to be considered.
     3.A mechanical model of cue μ mber mosophyll cell (spherical ball filled with liquid)was established by using FEM (finite element method).According to the water metabolism equation, the turgor pressure change caused by transpiration have been calculated. Through mechanical analysis of single cell, dynamics equation of turgor pressure changes over time was obtained.
     4. A computation model was established to analyzethe impact of cell structure and turgor pressure on the mechanical property of vein, according to the hierarchy structure of vein.
     5.A computation model was establishedto get mesophyll tissue equivalent mechanical properties by using homogenization method for the first time. The result shows the relation between mechanical property of leaf and water in it. The result also provides an effective basis to calculate the leaf's macroscopic deformation model.
     6.By using of three dimensional laser scanning, reconstruction technique, micro technologies, combined with bio-mechanics, aleaf deformation model under different water conditions is established at the first time. Simulation results of leaf shap and scanned data of real leaf correspond well.The water contents in differentleave which were water stressed were calculated with the model, and the result was compared with the measured data. When the leafwater content change between70%and90%, the coefficient of determination (R2)of independent validation set was0.823,and RMSE is3.4223.
     7According to light, temperature factor and growth of cucμmber leaf, themodel in which light temperature factor was the driving variables was built to simulate the grow of cucμmber leaf, petiole length and diameter.The leafparameters under different light temperature conditions were calculated by the model. Then,the shape of the leave water stressed were obtained.
引文
[1]Geitmann A, Ortega JK. Mechanics and modeling of plant cell growth [J].Trends plant Sci,2009,14(9):467-478.
    [2]Timothy E, Proseus, Joseph K E. Ortega, etal. Separating growth from clastic deformation during cell enlargement [J]. Plant Physiology.1999,199 (2):775-784.
    [3]Alexis Peaucelle, Siobhan Braybrook, Herman Hoftc. Cell wall mechanics and growth control in plants:the role of pectins revisited [J]. Front Plant Sci, published online 2012 June 6
    [4]John S. Boycr Evans.Cell wall biosynthesis and the molecular mechanism of plant enlargement [J]. Functional Plant Biology,36(5)383-394
    [5]Huang R, Becker A, Jones A. Modelling cell wall growth using a fibre-reinforccd hyperelastic-viscoplastic constitutive law.[J] Journal of the Mechanics and Physics of Solids,201260()750-783
    [6]James A.Lockhart. Physical nature of irreversible deformation of plant cells[J].Plant Physiology,1967,42(11):1545-1552
    [7]EDintwa,P.Jancsok,H.K.Mcbatsion,etal. A finite clement model for mechanical deformation of single tomato suspension cells [J]. Journal of Food Engineering,2011 103(2):265-272
    [8]Jacques dumais, Sidney L.Shaw, Charles R.Stecle,ctal. An ansotropic-viscoplastic model of plant cell morphogenesis by tip growth [J]. Int.J.Dev.Biol,200650(3):209-222
    L9] MarzcnaPopiclarska-Konieezna, Jerzy Bohdanowicz,Ewa Starnawska. Extracellular matrix of plant callus tissue visualized by ESEM and SEM [J].Protoplasma,2010 247(1):121-125
    [10]Pathan AK,Bond J, Gaskin RE. Sample preparation for SEM of plant surfaces [J]. Micron,2008 39(8) 1049-1061
    [11]Bednorz,L, Czarna,A. SEM and stereoscope microscope observations on the seeds of some Orinithogalμm(Hyacinthaceae) spacies [J]. Biologia,2008 63(5)642-646
    [12]陈立松 刘星辉.水分胁迫对荔枝叶片超微结构的影响[J].福建农业大学学报2001,30(2):171-174
    [13].孟凡娟,庞洪影,王建中等.Nac和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构[J]生态学报,2011,31(3):0734-0741
    [14]张欢,徐志刚,崔瑾,等.光质对番茄和莴苣生长及叶绿体超微结构的影响[J].应 用生态学报,2010,21(4):959-966
    [15]景柄年,李林茹,何军,等.VFB抗烟草花叶病毒活性及对烟草叶片超微结构的影响[J].西北农林科技大学学报(自然科学版),2011 36(6):159-164
    [16]时向东,焦枫,范豪杰,等.烤烟叶片发育过程中栅栏细胞超微结构的变化[J].烟草科技,2010,(5):46-54
    [17]郁慧,刘中亮,胡宏亮,等.干旱胁迫对5中植物叶绿体和线粒体超微结构影响[J].植物研究,2011,31(2):152-158
    [18]李赤,黎永坚,于莉,等.香蕉枯萎病菌毒素对香蕉叶片超微结构的影响[J].2011,33(2):158-164
    [19]Harry J. Gilbert. The biochemistry and structural biology of plant cell wall deconstruction [J]. Plant Physiology,2010 153(6):444-455
    [20]S C Fry. Polysacharide-modifying enzymes in the plant cell wall [J].. Annual Review of Plant Physiology and Plant Molecular Biology,1995,46 (6):497-520
    [21]B A Veytsman, D J Cosgrove. A model of cell wall expansion based on the thermodynamics of polymer networks. [J]. Biophys,1998,75(5):2240-2250
    [22]Alexis Peaucelle, Siobhan Braybrook, Herman Hofte. Cell wall mechanics and growth control in plant:the role of pectins revisited [J]. Front Plant Sci.,2012,121(3) Published online 2012 June 6
    [23]Ingo Burgert. Exploring the micromechanical design of plant cell walls [J] American Journal of Botany,2002,93(10):1391-1401
    [24]Steen Laugesen Hansen, Peter Martin, Anders Ola Karlsson etal. Mechanical properties of plant cell walls probed by relaxation spectra [J] Plant Physiology,2011,155(1):246-258
    [25]D.S Thompson. Space and time in the plant cell wall:relationships between cell type, cell wall rheology and cell function [J]Ann Bot.2008,101 (2):203-211
    [26]Alexis Peaucelle, Siobhan A. Braybrook, Laurent Le Guillou, etal. Pectin-induced changes in cell wall mechanics underlie organ initiation in arabidopsis [J].Current Biology.2011, 21(20):1720-1726
    [27]Hojae Yi. Architecture-based multi-scale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of cell wall network structure model [D] Agricultural and Biological Engineering Department The Pennsylvania State University.,2006
    [28].Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides[J]. Carbohydr Res,344(14):1879-1900
    [29]Christopher A.Schuh. Nano-indentation studies of materials [J]. Materials,2006 9(5):32-40
    [30]程献宝,王小青,余雁等.纳米压痕技术在木质材料细胞壁力学研究中的应用[J].世界林业研究,2011 24(5):40-46
    [31]李卫卫,杨庆生,刘志远.血红细胞力学性能的纳米压痕实验和有限元模拟[J].力学:学报,201 24 44(3):614-621
    [32]John D. Stenson, Peter Hartley, Changxiang Wang, etal. Determining the mechanical properties of yeast cell walls [J].Biotechnology progress,2011 27(2):505-512
    [33]周兆兵,徐朝阳,张洋等.响叶杨细胞壁尺寸参数及纳米压痕特性[J].2010 46(11):138-143
    [34]N H Mendclson, S M Haag, R M Cole. Cellular organization of bacillus subtilis:sodiμm dodecyl sulfate-induced cell partition into zebra structures[J].Bacteriol,1976 126(3):1285-1296
    [35]Neil H Mendelson, David Morales,John J Thwaites. The mechanisms responsible for 2-dimensional pattern formation in bacterial macrofibcr populations grown on solid surfaces: fiber joining and the creation of exclusion zones [J] BMC microbiology 2002 2(1):245-257
    [36].Pitt R E.Model for the rheology and statical of uniformly stressed vegetative tissuc[J]. Transactions of the ASAE,1982:1776-1784
    [37]P Ghysels, G Samaey, B Tijskens, etal.Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics[J]. Phys Biol.2009,6 (1):1524-1534
    [38]高永毅植物的细胞力学行为研究及其在水果机械损伤研究中的应用[D]中国农业大学,2003
    [39]Anja Gcitmann, Joseph K H, Ortega. Mechanics and modeling of plant cell growth.[J]. Trends in Plant Science-Feature Reviw,2009,14(9):467-477
    [40]Kha H, Tublc S, Kalyanasundaram S, ctal. Finite element analysis of plant cell wall materials (C). Advanced Materials Research (32):197-201
    [41]Enrique R Rojas, Scott Hotton, Jacques D mais. Chemically mediated mechanical expansion of the pollen tube cell wall [J] Biophysical Journal.,2011,101 (8):1844-1853
    [42]Acques Dμmais, Sidney L.Shaw and Charles R.Steele. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth[J]. The International Journal of Developmental Biology.2006,50(2):209-223.
    [43]Tancrede Almeras, Masato Yoshida,Takashi Okuyama.The generation of longitudinal maturation stress in wood is not dependent on diurnal changes in diameter of trunk [J]Journal of Wood Science,2006 52(5):452-455
    [44]Pietruszka M, Lewicka S. Effect of temperature on plant elongation and cell wallextensibility[J].Gen Physiol Biophys.200726(l):40-47
    [45]Van Liedekerke P., Tijskens E,Ramon H. Discrete element simulations of the influence of fertilizer properties on the spread pattern from spinning disc spreaders [J].Biosystems Engineering,2009,102 (4):392-405
    [46]Ghysels P., Samaey G., Tijskens B.,etal.Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics [J]. Phys. Biol.2009,6(3).
    [47].高永毅,焦群英,陈安华.剪切载荷作用下植物细胞的力学特性分析[J].应用力学学报,2006,23(4):682-387
    [48]Dominique M R Georget*,Annie Ng, Andrew C Smith, etal.The thermomechanical properties of carrot cell wall material [J] Journal of the Science of Food and Agriculture,1998 78(1):73-80
    [49]李长锋,郭新宇,陆声链,等.玉米群体冠层实时物理模拟[J].系统仿真学报,2009,21(16):5088-5091
    [50].张吴平,李保国.棉花根系生长发育的虚拟研究[J].统仿真学报,2006,18(增刊):283-286
    [51]周淑秋,郭新宇,雷蕾.黄瓜生长可视化系统的设计与实现[J].计算机技术与发展,2007,17(1):227-229
    [52]徐刚,郭世荣,张吕伟,等.基于生长模型的温室小型西瓜栽培管理专家系统(ESWCM)的研究和建立[J].农业工程学报,2006,22(4):157-161
    [53]刘骥,朱庆生,曾令秋,等.基于虚拟器官的植物可视化[J]系统仿真学报,201022(10):2363-2367
    [54]Qin, Peng, Xu,Lin, Zhong,Wenjing,etal. Ultersound-microbunnle mediated cavitation of plant cells:effects on morphology and viability [J].Ultrasound in Medicine and Biology,2012 38(6):1085-1096
    [55]Gibbs, Melanie, Van Dyck, Hans, Breuker, Casper J. Development on drought-stressed host plants affects life history, flight morphology and reproductive output relative to landscape structure[J].Evolutionary Applications,2012,5(1):66-75
    [56]Nosheen, Asia, Bano, Asghari, Ullah, Faizan,etal. Effect of plant growth promoting rhizobactcria on root morphology of Safflowcr [J].African Journal of Biotechnology,2011 10(59):12669-12679
    [57]Zhao, Shouping, Ye, Xuzhu, Zheng, Jici. Lead-induced changes in plant morphology cell ultrastructure, growth and yields of tomato [J]., African Journal of Biotechnology,2011 10(50):10116-10124
    [58]蒋德安.植物生理学[M].北京:高等教育出版社,2011
    [59]Taiz, Lincoln.植物胜利学[M]北京:科学出版社,2009
    [60]Zhang J,Li DM, Gao Y,etal. Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucμmber leaves [J] Biologia Plantarum.2012 56(4):780-784
    [61]Anne-Gaelle Rolland-Lagan, Mira Amin and Malgosia Pakulska. Quantifying leaf venationpattcrnstwo-dimensionalmaps[J]ThePlant ournal,2009,57(10):195-205.
    [62]Francis Croson,Mokhtar Adda-Bedia,Arczki Boudaoud. In silico leaf venation network:Growth and reorganization driven by mechanical forces[J]. Journal of Theoretical Biology,2009,259 (5):440-448.
    [63]Lionel Dupuy, Jonathan Mackenzie, Tim Rudgc,ct al. A System for modelling cell-cell interaction during plant morphogenesis[J]. Annals of Botany,2008,101(10):1255-1265.
    [64]韦泽秀,梁银丽,周茂娟等.水肥组合对日光温室黄瓜叶片生长和产量的影响[J].农业工程学报,2010,26(3):69-74.
    [65]倪继恒,毛罕平,马万征.不同营养液浓度对温室黄瓜叶片光合特性影响[J].农业工程学报2011,27(10):277-281.
    [66]张立志,张鲁刚,付文婷.橙色大白菜球叶有色体的显微和超微结构变化[J].西北农业学报,2010,19(12):148-151.
    [67]L.Andrew Staehelin.Chloroplast structure:from chlorophyll granules to supra-molecular architecture of thylakoid membranes[J].Photosynthesis Research,,2003,76(3):185-196
    [68]J.Philipp Bcnz,Minna Lintala,Jurgen Soil, et al. A new concept for ferredoxin-NADP(H) oxidorcductase binding to plant thylakoids[J].Trends in Plant Science,2010 115(11):608-613
    [69]S.Redondo-Gomezm,E,Mateos-Naranio,F.Moreno.Physiological characterization of photosynthesis, chloroplast ultrastructure, and nutrient content in bracts and rosette leaves from Glauciμm flavμm[J].Photosynthetica,2010,48(4):488-493.
    [70]魏晓东,陈国祥,徐艳丽等.银杏叶片衰老过程中光合生理特性及叶绿体超微结构变化[J]植物研究,2008,28(4):433-437
    [71]胡伟娟,张启翔,潘会堂,等.灰岩皱叶报春和滇北球花报春在热锻炼和热胁迫在叶肉细胞超微结构的差异[J].华南农业大学学报,2010,31(3):43-47
    [72]申龙斌,梁胜伟,段瑞军.Hg2+对海马齿叶肉细胞超微结构的影响[J]西北植物学报,2012.32(6):1161-1165
    [73]石吉勇,邹小波,赵杰文等.黄瓜叶片叶绿素含量近红外光谱无损检测[J]农业机械学报.2011 42(5):178-141
    [74]石吉勇,邹小波,赵杰文等.基于GA-ICA和高光谱图像技术的黄瓜叶叶绿素检测[J]江苏大学学报(自然科学版)2011 32(2):134-139
    [75]Renau-Morata, B, Nebauer, S. G, Sanchez, M, etal. Effect of corm size, water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron[J].Industrial crops and Products.2012,39(9)40-46
    [76]Jonaviciene K, Studer B, Asp T, etal. Identification of genes involved in a water stress response in timothy and mapping of orthologous loci in perennial ryegrass [J]. Biology Plantar μ w,2012,56(3):473-483
    [77]Fernandez, D. A, Roldan A., Azcon R, etal. Effects of water stress, Organic Amendment and Mycorrhizal Inoculation on Soil Microbial Community Structure and Activity During the Establishment of Two Heavy Metal-Tolerant Native Plant Species[J]. Microbial Ecology,2012,63(4):794-803
    [78]Bunce James A, Nasyrov Muhtor. new method of applying a controlled soil water stress, and its effect on the growth of cotton and soybean seedlings at ambient and elevated carbon dioxide [J]. Environmental and Experimental Botany,2011,77(11):165-169
    [79]Delzon, Sylvain, Douthe, Cyril, Sala, Anna,etal Mechanism of water stress induced cavitation in conifers:bordered pit structure and function support the hypothesis of seal capillary-seeding [J].Plant Cell and Enviroment,2010 33(12):2101-2111
    [80]Hassanpanah, Davoud. Evaluation of potato cultivars for resistance against waterdeficit stressunder in vivo conditions[J]. Potato Reserch,2010 53 (4 SI):383-392
    [81]高晶晶,王瑞斌,贺军民.乙烯对UV-B辐射诱导蚕豆孔关闭的调控效应[J].西北植物学报,2011,31(4):690-696
    [82]HaiselD, Pospisilova J. SynkovaH, etal..Effects of abscisic acid or bcnzyladcnine on pigment contents, chlorophyll fluorescence, and chloroplast ultra-structure during water stress and after rehydration [J].Photosynthetica,2006,44(4) 606-614
    [83]Vitoria AP, Lage-Pinto F, da Silva LBC,etal. Structural and ecophysiological alterations of the waterhyacinth -due to anthropogenic stress in brazilian rivers [J] Brazilian Archives of Biology and Technology,2011,54(5):1059-1068
    [84]Ginbot, ZG, Farrant, JM. Physiological response of selected cragrostis species to water-deficit Stress [J] African Jounal of Biotechnology,2011 10(51):10405-10417
    [85]Chernyad'ev, H. Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins:A review [J]. Applied Biochamistry and Microbiology,2005,41 (2):115-128
    [86]Vassileva V, Demirevska K, Simova-Stoilova L. Long-term field drought affects leaf protein pattern and chloroplast ultra-structure of winter wheat in a eultivar-specific manner [J] Journal of Agronomy and Crop Science,2012 198)2):104-117
    [87]WangShuncai, LiangDong,LiChao,etal. Influence of drought stress on the cellular Ultra-structure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks.[J]Plant Physiology and Biochemistry,2011,51 (10):81-89
    [88]Zechmann, Bernd, Mueller, Maria, Zcllnig, ctal. Membrane associated qualitative differences in cell ultra-structure of chemically and high pressure cryofixed plant cells [J] Journal of Structure Biology,2007 158(3):370-377
    [89]Navarro, A, Banon, S, Olmos, E,ctal. Effects of sodiμm chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultra-structure of Arbutus unedo plants [J]. Plant Science.2007,172(3):473-480
    [90]Liu, Zhong-Jing, Guo, Yan-Kui, Bai, Ji-Gang,ctal. Exogenous Hydrogen Peroxide Changes Antioxidant Enzyme Activity and Protects Ultra-structure in Leaves of Two Cucμmber Ecotypes Under Osmotic Stress [J].Journal of Plant Growth Redulation,2010,29(2):171-183
    [91]Zabler S, Paris O, Burgert I,ctal. Moisture changes in the plant cell wall force cellulose crystallites to deform [J].Journal of Strutural Biology,2010,171(2):133-141
    [92]Spurr R A low-viscosity epoxy resin embedding medi u m for electron microscopy [J].Ultra-structure Research,1969,26(3):31-43
    [93]徐柏森,杨静.实用电镜技术[M].南京:东南大学出版社,2008
    [94]周兆兵,张洋,王思群.基于AFM的木质材料的纳米压痕技术[J].林业工程,2008,(2):23-26
    [95]孙霁宁,佟金,闫久林,等.臭蜣螂股节表皮纳米压痕力学性能测试[J].农业机械学报,2004,35(5):158-160
    [96]田正磊,金杰,田省委.薄膜/基体结构的纳米压痕实验及其有限元分析[J].工具技术.2012(2):16-19
    [97]胡劲松.昆虫柔性冀的本构关系及静动力特性研究[D].中国科技大学,2007
    [98]ZhouZL,Ngan A. H. W, Tang B,etal.Reliable measurement of elastic modulus of cells by nano-indentation an atomic force microscope [J]. Journal of the Mechanical Behavior of Biomedical materials.2012,8 (10):134-142
    [99]Jaeger A, HofstetterK, Buksnowitz Ch,etal. Identification of stiffness tensor components of wood cell walls by means of nano-indentation[J].Composites parta-applied Science and Manufacturing,2011,42(12):2101-2109
    [100]Hung Kha, Sigrid Tuble, Shankar Kalyanasundaram et al. Structure-based models for determining the mechanical properties of plant walls.Australasian[J] Congress on Applied Mechanics,2007, December 2007,Brisbane, Australia:10-12
    [101]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2004
    [102]张振宇.基于纳米压痕仪的薄膜力学性能纳米测试与表征研究[D].天津大学博十学位论文,2005
    [103]李卓球,董文堂.非线性弹性理论基础[M].北京:科学出版社,2004
    [104]陆明万,罗学富.弹性理论基础(第二版)[M].北京:清华大学出版社,2001
    [105]Mingrui Li, Fuliang zhang. The finitedeformation theory for beam,plate,and shell,Part IV[J].Comput Methods Appl Mech Engrg,2000,182(4):187-203
    [106]黄克智.非线性连续介质力学[M]北京:清华大学出版社,1989
    [107]Zhou Zhaobing. Micro-mechanics property and the dynamic wettability of fast-growing poplar wood surface[D]. Nanjing forestry University 2008
    [108]Hambardzμmyan, Arayik, Molinari, etal. Structure and optical properties of plant cell wall bio-inspired materials:Cellulose-lignin multilayer nanocomposites [J].Fractionnement des Agro Ressources et Environment.2011,334(11):839-850
    [109]Boyer JS. Cell Wall Biosynthesis and the molecular mechanism of plant enlargement[J]. Funct Plant Biol.2009,36(5):383-394
    [110]LIONEL DUPUY, JONATHAN MACKENZIE, TIM RUDGE,et al. A system for modelling cell-cell interactions during plant morphogenesis[J]. Annul of Botany 101 2008:1255-1265
    [111]高永毅.植物细胞力学行为研究及其在水果机械损伤研究中的应用[D].中国农业大学博士学位论文,2003
    [112]Pierre Fayant, Orlando Girlanda, Youssef Chcbli. Finiteelementmodclofpolargrowthinpollentubes[J]. The Plant Cell.2010,22(8):2579-2593
    [113]Tamoutsidis Efstathios, Lazaridou Martha, Papadopoulos Ioannis, etal. The effect of treated urban wastewater on soil properties, plant tissue composition and biomass productivity in bcrseem clover and corn [J]. Journal of food agriculture & Enviroment,2009,7(3):782-786
    [114]R.E.Pitt. Models for the Rheology and Statistical Strength of Uniformly Stressed Vegetative Tissue[J]. Transaction of the ASAE.1982(2):1776-1784.
    [115]Zhou J, Wang BC, Zhu LQ, etal. A system for studying the effect of mechanical stress on the elongation behavior of immobilized plant cells[J]. Colloids and surfaces Biointerfaces,2006,49(2):195-174
    [116]Mark F Coughlin. A quantitative model of cellular elasticity based on tensegrity [J]. Journal of Biomechanical Enginerrng,2000,122 (2); 39-41
    [117]Burgcrt, Fratzl P. The plant cell wall acts as a sophisticated mechanical device. (C).Annual Meeting of the. Society-for-integrative-and-Comparative-Biology 03-07,2009.
    [118]Kohlcr L, Spatz HC. Micromcchanics of plant tissues beyond the linear-elastic range[J]. Planta,2002,251(1):33-40
    [119]Jacques Dμmais, Sidney L.Shaw and Charles R.Steelc. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth[J]. The International journal of developmental biology.2006,50(2):209-223.
    [120]Smith AE, Moxham K E and Middelberg APJ. On uniquely determining cell-wall material properties with the compression experiment[J]. Chemical Engineering Science,1998,53 (23):3913-3922.
    [121]Wu HI, Spence RD, Sharpc PJ. Cell wall elasticity:I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles[J].Plant Cell Environ.1985,8 (8):563-570.
    [122]Boyer JS. Cell Wall Biosynthesis and the molecular mechanism of plant enlargement J]. Funct Plant Biol.2009,36(5):383-394
    [123]Pierre Fayant,Orlando Girlanda, Youssef Chebli.Finite Element ModelofPolarGrowthinPollenTubes[J].The Plant Cell.2010,22(8):2579-2593)
    [124]Guo Zhitong, Lee, Kwang Y. Modeling and Simulation of a Power Conditioning System for the Hybrid Fuel-Cell/Turbine Power Plant [C].2011 50TH IEEE Conference on Decision and Control and European Control Conference,,2011:3658-3663
    [125]Wang rong, Jiao Qun Ying,Wei De Qiang. Mechanical Response of single Plant Cell to Cell Poking[J]. Journal of integrative Plant biology.2006,48(6)700-705
    [126]Zhu h x, MELROSE J R. A Mechanics Model for the Compression of Plant and Vegetative Tissues[J] Journal of Thesretical Biology.2003,221(1):89-101
    [127]Hansen Steen Laugesen, Ray Peter Martin,Karlsson Anders Ola,etal. Mechanial Properties of Plant Cell Walls Probed by Relaxation Spectra [J]. PLANT PHYSIOLOGY,2011,155(1): 246-258
    [128]Campbell N A, Reece J B, Mitchell L,G. Biology, Beijing,Beijamin C μ mmings,2002
    [129]CroatThomas. The Araceae of VeneZuela[J]. Aroideana,1986,9,(3):205-213
    [130]Wainwright S A, Biggs W D,Curry J D, etal..Mechanical Design in Organisms, Princeton University Press, Princeton, New Jersey,USA,1982.
    [131]Georget D M, Smith A C, Waldron K W. Modelling of carrot tissue as a fluid-filled foam[J]. Journal of Materials Science,2003 38(4):1933-1938
    [132]Vogel S. Drag and Reconfiguration of Broad Leaves in high Winds [J]. Journal of Experimental Botany,1989,40(4):941-948
    [133]Pasini D. Modelling the micro-and macro-Structure efficiencies of a compliant petiole beam.[C].The 4th International Conference on Design and Nature,200S,107-117
    [134]Aizenberg J, Weaver J C, Thanawala M S, etal. Skeleton of Euplectella sp.:structural hierarchy from the nanoscale to the macroscale[J]. Science.2005 309(8):275-278.
    [135]柴国钟.材料力学[M].北京:科学出版社,2012
    [136]Zuo Liang, Xiao Fei-xiong.Analysis of materials coefficient of Mooney-Rivlin model impacting on the axial stiffness.[J] China Elastomerics,2008,18(3):54-56
    [137]W Gindl,T Schoberl.The significance of the clastic modulus of wood cell walls obtained from nanoindentation measurements[J].Applied Science and Manufacturing,2004,35(11):1345-1349
    [138]A Jager, Th Bader, K Hofstetter,etal. The relation between indentation moduls,microfibril angle,and elastic properties of wood cell wall.[J] Applied Science and Manufacturing, 2011,42(6):677-685
    [139]Zhiguo Li,Pingping Li,Hongling Yang,ctal.Internal mechanical damage prediction in tomato compression using multiscale finite clement models.[J].Journal of Food Engineering 2013,116:639-647
    [140]SBertil Nilsson, CHellmuth Hertz, Stig Falk. On the relation between turgor pressure and tissue rigidity.II.theoretical calculations on model systems [J] Physiologia Plantarμm.1958,11 (4):818-837
    [141]T-T Lin, R. E. Pitt. Rhcology of Apple and Potato Tissue as Affected by Cell Turgor Pressure [J] Journal of Texture Studies,1986,17(3):291-313
    [142]Grigorios A Pavliotis, Andrew M Stuart郑健龙,李友云,钱国平译.多尺度计算方法均匀化和平均化[M]北京:科学出版社,2010
    [143]E,Weinan. Principles of multiscale modeling [M].北京:科学出版社2010
    [144]赵勇,张若京.基于Crsscrat弹性理论的直接均匀化方法[J].同济大学学报(自然科学版),2011,39(3):462-466
    [145]杨庆生,刘健,杨辉.基于均匀化方法的天然复合材料等效弹性能分析[J].北京工业大学学报,2010,36(6):759-765
    [146]Ncto, Maria Augusta, Yu, Wenbin, Tang, Tian, ctal. Analysis and optimization of heterogeneous materials using the variational asymptotic method for unit cell homogenization [J]. Composite Structures,2010,92(12):2946-2954
    [147]Rekik, Amna, Brenner, Renald. Optimization of the collocation inversion method for the linear viscoelastic homogenization [J]. MECHANICS RESEARCH COMMUNICATIONS,2011,38(4):305-308
    [148]Pantz, O, Trabelsi, K.. A post-treatment of the homogenization method for shape optimization[J].Siam Journal on Control and optimization,2008,47(3):1380-1398
    [149]黄富华,梁军,杜善义.均匀化方法的ABAQUS实现[J]哈尔滨工业大学学报,2010,42(3):389-393
    [150]曹俊英,王自强,宋世仓.具有小周期参数抛物型方程双尺度有限元分析[J].工程数学学报,2010,27(6):1035—1041
    [151]范颖,王磊,章青.多尺度有限元法及其应用研究进展[J].2012,32(3):90-94
    [152]ClementA,SoizeC,YvonnetJ.Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis[J]. International Journal for Numberical Methods in Engineering,2012,91(8):799-824
    [153]McLennanRebecca, DysonLouise, PratherKatherine W,etal. Multiscale mechanisms of cell migration during development:theory and experiment [J].Stowers Institute for Medical Research,2012,139(16):2935-2944
    [154]Zhang H. W, Lv J. A multiscale method for the numerical analysis of active response characterization of 3D nastic structures[J].Smart Martmaterials and Structures,2012,21 (8):1524-1534
    [155]OrtolevaPeter J, KeyesTom, Tuckerman Mark.. Macromolecular Systems Understood[J]Journal of Physical Chemistry,2012,6(29):8335-8336
    [156]Willoughby N, Parnell W J,Hazel A L,etal. Homogenization methods to approximate the effective response of random fibre-reinforced composites [J].International Journal of Solids and Structure,2012,49(13):1421-1433
    [157]Kozlowski T; Xu Y L, Downar, T J,etal.Cell homogenization method for pin-by-pin neutron transport calculations [J].Nuclear Science and Engineering,2011,169(1):1-18;
    [158]Abdulle A, Nonnenmacher A.Adaptive finite element heterogeneous multiscale method for homogenization problems [J] Computer Methods in Applied Mechanics and Engineering,2011,200(37-40 SI):2710-2726;
    [159]Perdahcioglu, E. Semih; Geijselaers, etal. Constitutive modeling of two phase materials using the mean field method for homogenization [J]. International Journal of Material Forming,2011,4(2SI):93-102
    [160]Lefik M, Boso DP, Boso DP. Generalized self-consistent homogenization using the Finite Element Method [J]. Zamn-zeitschrift for Angewandte Mathematik and Mechanic,2009,89(4):306-319
    [161]Broc D, Sigrist JF. Fluid-structure interaction in tube bundles:homogenization methods, physical analysis [J]. Mechanique &Industries,2009,10(2):103-108
    [162]Ratier N, Lcnczncr M. Simulation of Large-Scale Periodic Circuits by a homogenization methods [C]. Micro-electronics and Micro-Systems,2009:601-606
    [163]宋广兴,齐了华,李贺军..均匀化方法在C/C复合材料中的营养研究[J].科学技术与工程,2007,7(13):3081-3084
    [164]黄富华.周期性复合材料有效性能的均匀化计算[D].哈尔滨工业大学博士学位论文,2010.
    [165]董纪伟.基于均匀化理论的三维编织复合材料宏细观力学性能的数仇模拟[D].南京航空航天大学博士学位论文,2007.
    [166]董纪伟,冯淼林,陈文,等..基于均匀化理论的三维编织复合材料弯曲细观应力数值模拟[J].材料科学与工程学报,2010,28(6):801-806
    [167]董纪伟,孙良新,洪平.三维编制复合材料宏细观结构的计算机图形模拟[J]新材料新工艺.2004(4):21-24
    [168]候亚君.均匀化理论在骨力学中的应用[D],吉林大学博士学位论文,2004.
    [169]张研,张子明.材料细观力学[M].北京:科学出版社,2008.
    [170]曹礼群,崔俊芝.复合材料拟周期结构的均匀化方法[J].1999,21(3):331-334
    [171]孙杰.编织复合材料结构与材料一体化优化设计[D],南京航学航天大学,2010
    [172]唐绍锋.复合材料热/力学性能的双尺度渐近分析[D],哈尔滨工业大学,2009
    [173]Lam R; Vlachos DG, Katsoulakis MA. Homogenization of mesoscopic theories: effective properties of model membranes [J].Aiche Journal,2002.48(5):1083-1092
    [174]Ppoutet J, D Manzoni,F Hagc-Chehade, ctal. The Effective mechanical property of random porous media [J] Mechanics and Physics of solids,1996,44(10):1587-1620
    [175]唐欣薇,张楚汉.基于均匀化理论的混凝土宏细观力学特性研究[J].计算力学学报,2009,26(6):877-883
    [176]http://baike.baidu.com/view/2630.htm
    [177]杨晓东,董泽民,杨坤,等.颗粒增强复合材料弹性结构的双尺度有限元分析[J].机械工程学报,2012,48(8):34-39
    [178]谢桂兰.聚合物基复合材料多尺度方法的研究[D].湘潭大学博士学位论文,2006
    [179]Zihui Xia,Yunfa Zhang, Fernand Ellyin. A unified periodical boundary conditions for repress-entative volμme elements of composites and applications [J]. International Journals of Solids and Structures,2003,40(3):451-455
    [180]Falk S. Hertz C H, Virgin H I.On the relation between turgor pressure and tissue rigidity.1. experiments on resonance frequency and tissue rigidity [J] Physiologia Plantarμm,1958,11:802-817
    [181]Qin, P, Xu, L,Zhong, WJ,etal. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability [J]. Ultrasound in Medicine and Biology,2012,38(6):1085-1096
    [182]Xu X L; Ma K M, Fu BJ,etal. Influence of three plant species with different morphologies on water runoff and soil loss in a dry-warm river valley, SW China [J] Forest Ecology and Management,2008,256(4):656-663
    [183]Weil J.The synthesis of cloth object[J]. Computer Graphics,1986,20(5):49-54
    [184]Feynman. Modelling the appearance of cloth [J] Bibliography,1987:71-72
    [185]Kass M, Witkin A,Terzopoulos D. Snakesactive contour models [J]. International Journal of Computer Vision.1988,20(4):321-331
    [186]Demetri Terzoulos, Tim Mclnerney. Deformable models in medical image analysis:a survey.[M].Medical Image Analysis,1996,1 (2):91-108
    [187]Jirasek C, Prusinkiewicz P. A biomechanical model of branch shape in plant [C]. In Lantinm Proceedings of the Western Computer Graphics Symposi μ m. Whistler Canada,1998:23-26
    [188]陆声链.植物行为特性建模及其可视化仿真技术研究[D].上海交通大学博十,2008
    [189]Blμm H.Symposiμm on modelsfor percepti of speech and visual form[M], MIT Press,1967
    [190]Campbell N A, Reece B, Mitchell L G.Biology[M]Benjamin Cummings,2002
    [191]Niklas K J.The mechanical roles of clasping leaf sheaths:Evidence from Arundinaia tecta shoots subjected to bending and twisting forces[J]. Annals of Botany,1998,81(1):23-24
    [192]Metselaar K, van Lier QD. The shape of the transpiration reduction function under plant water stress [J]. Vadose Zone Journal,2007,6 (1):124-139
    [193]陆玲,王蕾.植物叶脉可视化造型研究[J].农业机械学报,2011,42(6):179-184
    [194]唐丽玉,邹杰,林定.虚拟树木风中运动可视化模拟[J].农业机械学报,2012,43(1):165-169
    [195]郭浩,戈振扬,蒋海波.基于体着色的植物构型三维重建和可视化模拟[J]农业工程学报,2010,26(10):195-200
    [196]周淑秋,郭新宇,雷蕾.黄瓜生长可视化系统的设计与实现[J].计算机技术与发展,2007,17(1):227-229
    [197]王雪,郭新宇,路声链,等.基于骨架模型的玉米生长运动仿真与动画生成技术[J].农业机械学报,2009,40(增刊):198-202
    [198]宋有洪,郭焱,李保国,等.基于器官生物量构件植株形态的玉米虚拟模型[J].生态学报,2003,23(12):2579-2586
    [199]INFINITE 2.0使用说明书
    [200]李振,技文忠,韩雪松,等.Imageware逆向工程软件在固定桥建模中的应用[J].川济大学学报(医学版),2010,31(2):47-50
    [201]金茜.基于Imageware的逆向工程曲面重构技术[J].2009,38(11):27-31
    [202]Van Krcveld M, Loffler M, Silvcira RI. Optimization for first order delaunay triangulations[J].ComputationalGeometry-theory and applications.2010,43(4):377-394
    [203]Loffler M, Snocyink J. Delaunay triangulation of imprecise points in linear time after preprocessing[J]. Computational Geometry-theory and applications.2010,43(4):234-242
    [204]袁舒,杨恒.基于Delaunay三角网生长法的并行图像插值方法[J].计算机应用于软件,2012,29(3):62-68
    [205]ANSYS help.
    [206]张红菊,戴剑锋,罗卫红,等.温室盆栽一品红深圳发育模拟模型[J].农业工程学报,2009,25(11):241-248
    [207]倪纪恒,陈学好,陈春宏,等.用辐热积法模拟温室黄瓜果实生长[J]农业工程学报2009,25(5):192-197
    [208]李永秀,罗卫红,倪继恒等.温室黄瓜生育期模拟模型的研究.南京气象学院学报2008,31(2):258-265
    [209]郭银巧,赵传德,朱艳等.棉花地上部形态建成的光温模型.作物学报,2009,35(11):2102-2108
    [210.]迟明韩,常丽英,黄丹枫.温度驱动的温室甜瓜节间和茎叶夹角动态生长过程模拟[J].上海交通大学学报,2009,27(5):448-454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700