水稻卷叶性状研究及相关基因的效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过R1_((t))卷叶基因的一对近等基因系与平展叶亲本杂交,6个不同卷叶材料之间不完全双列杂交及其与7个平展叶材料pq杂交,研究卷叶基因对产量及其构成因素的影响。对部分组合中卷叶基因的效应进行遗传分析;调查亲本及杂交后代叶片卷曲状况,分析卷叶性状的遗传行为;通过分子标记手段进行卷叶基因的初步定位。
     一、以R1_((t))卷叶基因的一对近等基因系卷叶珍汕97B、珍汕97B为母本,分别与明恢63、盐恢559、特青杂交。设置正常肥力和增施穗肥两个水平处理,对获得的杂交组合F_1代进行秧苗素质、茎蘖动态、叶片性状、光合生理特性和经济性状的调查,结果表明:
     1、卷叶组合秧苗期的叶龄、茎蘖数、假茎粗、苗高等秧苗素质均低于对应组合,本田前期茎蘖数上升较缓;高峰苗以后,卷叶组合茎蘖数比对应组合下降缓慢,因此最终有效穗数显著或极显著多于对应组合。
     2、叶片性状:(1)增施穗肥,各组合倒数3张叶片的长度比正常肥力条件下显著或极显著拉长。(2)增施穗肥,各组合叶片卷曲度比正常肥力水平下略有减小,卷叶组合部分叶位叶片卷曲度减小达显著水平;同一处理水平下,相同叶位间,R1_((t))卷叶组合的叶片卷曲度在不同时期均极显著大于对应组合;(3)开花期:正常肥力下,卷叶组合的叶基角均偏小,对应组合部分叶位之间的叶基角存在显著或极显著差异;所有组合分析表明,卷曲度与叶基角之间存在极显著的负相关关系(r=-0.3554~(**));增施穗肥,部分叶位叶基角增加达显著或极显著水平;开花后20天:正常肥力下,各组合的叶基角均增大,卷叶组合增大的幅度大于对应组合;增施穗肥,平展叶组合叶基角增大达到显著或极显著水平;对应组合部分叶位叶基角之间差异达显著水平。(4)卷叶组合在两个时期两个处理水平下均不披垂。对应组合披垂度之间在不同时期不同处理水平下均达到显著或极显著差异。开花期:正常肥力下,对应组合倒2、倒3叶的披垂度之间达到显著或极显著差异;所有组合分析表明,卷曲度与披垂度之间存在极显著的负相关关系(r=-0.4675~(**));在增施穗肥水平下,平展叶组合披垂度增大。开花后20天:平展叶组合叶片的披
    
     胡俊水稻卷叶性状研究和相关基因的效应分析三
    垂度在两个处理水平下均增大;增施穗肥,倒l、倒2叶的披垂度增加达到显著或
    极显著水平。
    3、光合生理:(1)卷叶组合的消光系数在不同时期均显著或极显著小于对应组
    合,卷叶组合的叶面积指数在不同时期大于对应组合。(2)开花期,卷叶组合叶
    绿素含量大于对应组合,但差异不显著;开花后20天,卷叶组合叶绿素含t显著
    或极显著高于对应组合。(3)卷叶组合的光合速率在不同时期大于或显著大于对
    应组合。
    4、经济性状:正常肥力下,卷叶组合的单株产量显著高于对应组合,卷叶组合的
    有效穗,结实率均显著或极显著高于对应组合,每穗粒数显著或极显著少于对应
    组合;增施穗肥水平下,各组合穗粒数显著或极显著增加,千粒重降低或显著降
    低,平展叶组合结实率显著或极显著降低而卷叶组合结实率变化不明显,卷叶组
    合极显著增产而平展叶组合增产不显著。
    二、以卷叶珍汕97B、培矮645为母本分别与明恢63、盐恢559、特青、扬辐糯5
    号和9311杂交,对获得的杂交组合F,代进行调查,初步研究不同卷叶基因之间效
    应的差异。结果表明:(l)卷叶珍汕97B组合的卷曲度和叶基角在不同时期大于
    或显著大于对应的培矮645组合;培矮645组合的倒3叶在两个时期均披垂,部
    分倒3叶披垂度显著或极显著大于对应的卷叶珍汕97B组合;(2)卷叶珍汕97B
    组合消光系数在不同时期均显著小于对应的培矮645组合;卷叶珍汕97B组合在
    不同时期叶绿素含量均极显著高于对应的培矮645组合;开花期,卷叶珍汕97B
    组合的光合速率小于对应的培矮645组合,开花后20天,卷叶珍汕97B倒1叶光
    合速率大于对应组合,倒3叶光合速率小于对应组合:(3)卷叶珍汕97B组合结
    实率、千粒重和单株产量均大于对应的培矮645组合,部分对应组合之间达到显
    著或极显著差异。
    三、卷叶性状的遗传特点
     通过卷叶材料之间以及卷叶材料与平展叶材料之间的杂交F:代叶片卷曲度的
    考察,结合91SPO68/奇妙香和特青/Lemnot杂交FZ代群体的叶片卷曲度分离情况
    的表现,对卷叶性状的遗传行为进行初步研究,并通过分子标记手段进行卷叶基
    护
    
     胡俊水稻卷叶性状研究和相关基因的效应分析2
    因的定位,结果如下:
    1、平展叶相对于卷叶为不完全显性;6个卷叶材料中的卷叶基因之间存在非等位
    关系;当卷叶基因同时处于隐性纯合状态时,在特青/Lemont和91SPO68/奇妙香
    组合中,非等位卷叶基因之间分别存在互补和累加的互作方式。
    2、通过分子标记手段在91SPO68/奇妙香组合F:群体的第5染色体上初步定位了
    一个数量卷叶基因。该数量卷叶基因位于阴430一RM289区间,可解释总变异的
    30%,来自于奇妙香(正在定位另一个效应更大的主基因);这2个卷叶基因之间
    的互作方式似乎是效应累加的。
    3、通过分子标记手段在Lemont/TQ的FZ群体的第1、3和12染色体上初步定位了
    3个数量卷叶基因,其中2个主效
Three pairs of crosses of rolled-leaf (RL) near-isogenic lines were used to study the effects of RL gene RL(t) on seedling characters, number of tiller, leaf traits, photosynthesis and yield of hybrid rice under two levels of fertilizing regimes. Results were as follows:
    1. At the treat of normal fertilizer level, the RL crosses appeared to be inferior to those of corresponding crosses in such characters as seedling leaf age, number of tillers, stem-base width and seedling height in the seedling stage. In the beginning stage after transplanting, the number of tillers of RL crosses developed slower, resulting in less tillers in the high peak seedling stage and more effective tillers than the corresponding crosses.
    2. (1) Under the normal fertilizer level, the basic angle of leaf (BAL) of RL crosses at the same leaf were smaller at the flowering, and parts of the BALs of corresponding crosses were difference significantly. The BAL was significantly and negatively correlated with leaf rolling indexes (LRI) (r=-0. 3554, P<0. 01). At the 20d after flowering, the BALs of all crosses were increased and the increased scope of RL crosses was higher than those of the corresponding crosses. At the flowering, drooping angles (DA) of the second leaf and the third leaf between corresponding crosses were difference significantly. DA was significantly and negatively correlated with LRI(r=-0.4675,P<0.01).
    
    
    
    (2) In the treat of more fertilizer applied to the early panicle growth stage, three upper leaves of all crosses grew significantly longer. Under the more fertilizer level, LRIs of all crosses were decreased, and in part of LRIs of RL crosses were decreased significantly. The BALs of most crosses were increased or increased significantly but no difference significantly in the corresponding crosses. The BALs of the non-RL crosses were increase significantly than the corresponding crosses. DAs of non-RL crosses enlarged.
    (3) Under the same treat level, LRIs of R1(t) RL crosses between the same leaf were higher significantly than those of the corresponding crosses at different stages. The BALs of RL crosses were smaller or smaller significantly than those of corresponding crosses. Leaves of RL crosses were not drooping under two levels of fertilizing regimes at two stages. At the 20d after flowering, DAs of non-RL crosses enlarged under two levels. And DAs of RL crosses were smaller significantly than those of the corresponding crosses.
    3. (1) The light extinction coefficients of RL crosses were smaller significantly than those of the corresponding crosses at two stages while LAI were higher. (2) At the flowering, chlorophyll contents of RL crosses were higher than those of corresponding crosses while higher significantly at 20d after flowering. (3) Photosynthetic rate of RL crosses were higher or higher significantly than those of the corresponding crosses at different stages.
    4. At the treat of normal fertilizer level, yield, effective tillers and seed-set rate of RL crosses were higher or higher significantly while the grain number per panicle lower than those of corresponding crosses. Under the more fertilizer level, the number of grains per panicle of all crosses increased significantly and the 1000-grain weight dropped or significantly dropped. The seed-set rate dropped significantly in the non-RL crosses but not in the corresponding crosses. The yield of RL crosses increased significantly in the treat of more fertilizer but the corresponding crosses not, which
    
    
    
    suggested that Rl(t) gene could more easily lead to higher yield under the level of higher fertilizer.
    In this study, using RL Zhenshan 97B(JYB) and Peiai 64S(PS) as female parents, and Minghui 63, Yanhui 559, Teqing, Yangfunuo 5 and 9311 as male parents, five corresponding crosses were made and we investigated these crosses to study effects of two genes of JYB and PS. Results were as follows:
    (1) The LRIs and BALs of JYB crosses were higher or higher sigificantly than those of PS corresponding crosses at d
引文
[1] 沈福成.水稻卷叶性状遗传初探.贵州农业科学,1983,(3):9~12.
    [2] 沈福成.关于水稻卷叶性状在育种中利用的几点看法.贵州农业科学,1983,(5):6~8.
    [3] 顾兴友,顾铭洪.一种卷叶水稻的遗传分析.遗传,1995,17(5):20~23.
    [4] 袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1~3.
    [5] 袁隆平.杂交水稻超高产育种.杂交水稻,2000,15(培矮64S及其应用论文选编):31~33.
    [6] 朱德峰 林贤青 曹卫星.不同叶片卷曲度杂交水稻的光合特性比较.作物学报,2001,27(3):329~333.
    [7] Khush GS. Kinoshita T Rice Karyotype, marker genes, and linkage groups. In: Khush GS. Toenniesen GH(ed) Rice Biotechnology. 1991, 83~108.
    [8] Kinoshita T. Gene analysis and lingkage map. Biology of rice. Japan Sci Soc Press, 1984, 187-274
    [9] 李仕贵 马玉清 何平等.一种未知的卷叶基因的识别和定位.四川农业大学
    
    学报,1998,16(4):391~393.
    [10] 段祥茂 赵新华 童晓明.杂交粳稻盐优57超高产群体形成特征的研究.见:张洪程等主编.《水稻高产高效栽培技术及理论》.南京,东南大学出版社,1991年10月.14~18.
    [11] 彭桂峰 李义珍 扬高群.两系杂交稻培矮64S/E-32的超高产特性与栽培研究Ⅰ超高产的决定因素.杂交水稻,2000,15(1):27~29.
    [12] 孙仁清.水稻高产育种生理生态指标的研究初报.浙江农业科学,1986,(1):1~4.
    [13] 王铨南,邓承略,韦少忠.杂交稻高产栽培技术探讨.广东农业科学,1981,(4):1~4.
    [14] 王永锐,水稻生理育种.北京科学技术文献出版社,1995.103-114.
    [15] 中国农业科学院.中国稻作学.北京农业出版社,1986.664~671
    [16] 邱鸿步,潘裕才.籼型水稻的叶片老化与植株伤流强度及产量关系.浙江农业科学,1981,(4):175~176
    [17] 王建林,徐正进,魏树和.水稻株形育种生理生态特性的研究现状与展望.辽宁农业科学,2000(4):23~27
    [18] 黄耀祥.水稻超高产育种研究.作物杂志,1990,(4):1~2
    [19] 朱德峰,亢亚军.“超级稻”品系在杭州的表现及其评价.中国稻米,1995,(2):6
    [20] 袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1~3
    [21] 张三元,李彻,石玉海等.吉林省水稻超高产育种研究Ⅰ不同类型水稻品种产量构成与超高产育种目标.吉林农业科学,1999,24(1):4~7
    [22] 程式华,廖西元,闵绍楷.《中国超级稻研究背景、目标和有关问题思考》.中国稻米,1998,(1):3~5.
    [23] 周开达.四川水稻超高产育种的发展趋势.西南农业学报,1998年11卷 育种和栽培专辑:1~6
    [24] 苏祖芳,倪玉峰,张亚洁等.水稻高产株形指标及其调控技术.耕作与栽
    
    培2002,(1):114~15.
    [25] 凌启鸿,过益先,费槐林等.水稻栽培理论与技术兼及作物栽培科学的发展述评(上).中国稻米,1999.(1):3~8.
    [26] 陈志强,李静,李卉.籼型优质稻株形设计及选育指标研究.Ⅰ主要性状的相关性及主成分分析.华南农业大学学报,1997,18(3):7~12.
    [27] Yoshida S. Grown and development of the rice plant. In fundamentals of rice crop science. The International Rice Research Institute, Los Banos, the Philippines, 1981,1-61
    [28] Peter Horton. Prospects for improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. Journal of Experiment Botany, 2000, 51 : 475~485
    [29] Thomas R. Sinclair, John E. Sheehy. Erect leaves and photosynthesis in rice. Science, 1999, 283:1455
    [30] 杨守仁.水稻理想株形育种的理论和方法初论.中国农业科学,1984(1):6~13
    [31] 杨守仁,张龙步,徐正进等.水稻理想株形育种的基础研究及其与国内外同类研究的比较.中国水稻科学,1993,7(3):187~192
    [32] 杨守仁.水稻超高产育种的理论和方法.中国水稻科学,1996,10(2):115~120
    [33] 陆江锋.水稻凹叶性状对物质生产和产量形成影响的研究(硕士论文).2002年5月:14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700