红麻长花柱突变体的特征特性鉴定与遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过卫星搭载红麻品种的种子,在其后代群体中选育出了4个长花柱突变体(protruded style mutant,简称PSM)自交系。以4个PSM自交系为材料,以搭载后代群体中未发生突变花柱表现正常的材料作对照,本研究进行花器性状、植物学特征、生育特性、自交结实率及异交结实率等鉴定;通过人工短日处理和异地种植的方法进行光温反应试验,以明确PSM的光温反应特性;再通过组配四个正反交组合及六个基本世代,分析各组合内各个不同世代PSM突变性状的表现,以研究PSM长花柱性状的遗传规律。结果发现:
     (1)与对照相比,PSM的花朵明显变小,花柱和雄蕊管均短于对照。但,雄蕊管缩短幅度大于花柱的缩短幅度,使PSM的花柱大幅外露,柱头远高于雄蕊管顶端。4个PSM自交系的花柱外露长度间存在显著差异。以H20-1的花柱外露最长,达11.6mm;H212-1最短,仅6.5mm;其间为H2-1和H29-2,分别是10.6mm和9.8mm。尽管4个PSM的雄蕊管大幅缩短,但其上着生的雄蕊数并未减少。同时,4个自交系间的植物学形态也各不相同。
     (2)PSM的全生育期为140-150天,属偏早熟类型。在4个PSM中,花柱外露越长,其套袋自交结实率越低,而天然异交率越高;反之,则前者越高,后者越低。即,长花柱性状易于接受外来花粉,有利杂交,而不利自交。与对照相比,4个PSM的田间播种出苗率较低,现蕾开花迟,株高和茎粗较劣。
     (3)4个PSM对光温反应均敏感。短日处理可大大提早其开花期,日长和温度对PSM的花器性状影响显著。高温、长日可使花柱和花柱外露显著增长。异地播种时,在海南花柱外露程度小于在湖北荆州;不同年分间,由于气温的变化,花柱外露长度也发生显著变化。
     (4)花柱外露长度在杂交F_1、F_2代及回交BC_1和BC_2代的正反交之间均存在显著或极显著差异,回交亲本对后代性状也有显著影响。F_2的分离曲线表现为偏向其母本的分布,但与其母本也有明显差异。据此推测,PSM花柱外露性状的遗传主要受核基因与胞质互作的控制,且表现为显著母性效应的遗传方式,属遗传较为复杂的数量性状。
     (5)花柱外露性状的广义遗传力和狭义遗传力普遍较低,且在多数组合中前者远大于后者,狭义遗传力多为负值。六参数基因效应估计中,各组合的基因加性效
    
    华中农业大学2003届硕十学位论文
    应[dl正交均为正值,反交均为负值;显性效应[h]、加性X加性效应[iJ、加性X显性
    效应山均为负值,显性X显性效应[l]均为正值。综合分析认为,红麻PsM的长花柱
    性状易受环境影响,在多数组合中其遗传的加性效应较小,非加性效应较大。在杂
    交选育时除注意亲本选择、组配方式外,应特别注意扩大分离群体,在杂交后期世
    代进行选择易收到较好效果。
Four protruded style mutant (PSM) cross-self lines have been developed in the offspring populations of space flight on Kenaf . The flower characters morphology, growth stage, the bagged seed-setting rate and rate hybrid of four PSM lines were identified, compared with common Kenaf; The response to day length and temperature of PSM was tested through the experiment with artificial short days treatment and sowing in different place; From the crossing four crosses including six basic generations were generated for studying the genetic behaviors of the mutant character -protruded style. The results showed that:
    (1) The flowers of PSM were small obviously. The style and the stamen tube of PSM were all short than the common, but the short range of stamen tube was higher then that of the style, and the style -obviously was longer than the stamen tube in PSM, so that the stigmas were protruded significantly from the stamen tubes. The extruded length of style was obviously different among the PSM. H20-1, which was 11.6mm, was the longest. H212-1, which was 6.5mm, was the shortest. H2-1 was 10.6mm, and H29-2 was 9.6mm. Their plant morphology were also very different.
    (2) The complete growth stage of PSM were 140-150 days, and were the type of early maturing. In four PSM cross-self lines, the longer the extruded length of style was, the lower its bagged seed-setting rate was and the higher the rate of hybrid seed was; On the contrary, the former was higher and the later was lower. That is to say, the protruded style contributed to receiving exotic pollen and cross. Compared with CK, the emergence percentage in the yield of four PSM all were lower, budding and flowering date were later, plant high and diameter were worse.
    (3) Four PSM flowered early obviously when they were treated by short days, and were sensitive to day length and temperature. Day length and temperature affected the protruded style length of PSM significantly. High temperature and long days lengthened the protruded style obviously. When sowing in different place, the mutant character in
    
    
    Hainan was shorter than that in Jingzhou. In different years, the character were variation obviously with the change of temperature.
    (4) The length of protruded style have significant difference between cross and reverse cross of hybrid F1, F2, BC1 and BC2; BC parents affected the character of the offspring significantly; Segregation of the character in four F2 populations tended to its mother, but there were different obviously. It was concluded by interaction of nuclear gene and cytoplasm. Its genetic behavior had significant female effect and was complicated quantitative trait.
    (5) The h2B and h2N of the protruded style character were low generally, and the former was bigger outstanding than the later in many crosses, and the h2N was negative value largely. The estimate of six parameters showed that the addition all was positive value in crosses, all negative in reverse crosses; The dominance additionxaddition and additionxdominance all were negative, and the dominancexdominance all were positive. Synthetic analysis indicated that the protruded style character of PSM on Kenaf was affected easily by environment, the addition was low and the non-addition was high.
引文
[1]李宗道.麻作的理论与技术.上海,上海科学技术出版社,1988,325-386
    [2]南京农业大学主编.田间试验和统计方法(第二版).北京:农业出版社,1991,45-68
    [3]龚友才,等.红麻品种退化原因及防止对策.中国麻业.2001,23(2):31-33
    [4]程舟,等.日本的红麻研究,加工和利用.中国麻业.2001,23(3):16-23
    [5]陈叔酉.红麻全杆制浆造纸.中国麻作.1990,12(2):22-26
    [6]唐守伟.多种用途黄麻、红麻产品开发现状及发展趋势.中国麻作.1993,(1):38-40
    [7]陈安国,李德芳.红麻需求分析与育种技术发展趋.中国麻业.2001,23(4):26-31
    [8]史春霞,等.黄\红麻资源的优化与开发利用.中国麻作.2001,23(1):40-43
    [9]李爱青.红麻(Hibiscus Cannabinus)不同类型品种的细胞学研究.中国麻作.1985,7(6):6-10
    [10]陈安国,等.红麻杂种优势利用的现状与展望.中国麻作.2000,22(1):44-45
    [11]邓丽卿,等.红麻种质资源的农艺性状研究与利用.中国麻作.1994,16(4):1-4
    [12]杨龙,等.安徽省引进红麻新品种适应性分析.中国麻业.2001,23(3):5-8
    [13]粟建光,邓丽卿.木槿属植物种的形态分类学研究.中国麻作.1996,18(2):18-20
    [14]周瑞阳.光周期钝感全雌性苎麻特性的初步鉴定.湖北农学院学报.1993,13 (1):25-32
    [15]周瑞阳.卫星搭载红麻种子SP2代的变异研究.空间科学学报.1996增刊
    [16]周瑞阳.红麻雄性不育材料的发现.中国农业科学.2002,35(4):
    [17]肖杰华.棉花雌雄异熟系选育初步研究.中国棉花.1991,18(3):11-12
    [18]纪家华,等.棉花柱头外露种质.作物品种资源.1992,(2):16
    [19]张天真.棉花开放花蕾性状的遗传研究.中国棉花.1992,19(3):12-14
    [20]张正圣,等.陆地棉长花柱系的选育及其杂种优势利用.中国农业科学.1999,32(4):27-33
    [21]陈旭升,等.棉花杂种优势应用研究现状及发展趋势.中国农业科技导报.2002,4(3):43-46
    [22]谭石林,李德芳.红麻植株形态、性状与其倒伏关系的研究.中国麻作.1994,16(1):24-27
    [23]傅福道,胡兆金.红麻“浙萧麻1号”不同花期的种子质量及其对出苗的影响.中国麻作.1994,16(3):24-25
    [24]刘伟杰,等.红麻造纸、纺织兼用品种917的选育.中国麻作.1991,13(2):1-5
    [25]彭定祥,蔡明历.光照时间对红麻不同熟期品种和光钝感材料发育影响研究.中国麻作.1998,20(4):9-11
    [26]翟正文,等.红麻品种对光温反应的研究.中国麻作.1985,7(1):1-5
    
    
    [27]李德芳.红麻对光长变化钝感材料的挖掘及其利用价值.中国麻作.1993,15(1):7-9
    [28]邓丽卿.红麻品种的光温反应特性研究.中国农业科学.1987,20(4):56-62
    [29]唐锡华,等.在控制条件下对不同稻种日长和温度反应发育特性的研究.植物生理学报.1978,4(2):153-167
    [30]伍晓明,等.白菜型无花瓣油菜突变体的花器官形态特征.中国油料作物学报.2001,23(2):68-69
    [31]张波,等.中国苎麻属植物比较形态学研究.中国农业科学.1998,31(2):56-62
    [32]中国农业科学院麻类研究所.中国黄红麻品种志.农业出版社,1985
    [33]李德芳,等.高产、抗病、适应性广的红麻新品种“中国红麻10号”的选育.中国麻作.2001,23(1):1-6
    [34]陈洪福.红麻炭疽病及其防治研究综述.中国麻作.1991,13(1):29-32
    [35]丘荣熙,等.红麻受精作用和胚胎发育的研究.中国麻作.1991,13(3):1-3
    [36]陈祥云,李树川.红麻花粉植株诱导的研究.中国麻作.1985,7(1):1-4
    [37]唐守伟,熊和平.我国麻类生产现状和发展对策.科技导报.2000(3):44-46
    [38]中国赴泰国红麻生产与加工考察组.泰国红麻牛产与加工的考察报告.中国麻作.1991,13(2):44-47
    [39]汤永海.我国红麻种子工作的主要问题及其对策.中国麻作.1994,16(3):37-41
    [40]韩芒雄,等.红麻不同植物激素喷叶试验总结.中国麻作.1993,15(3):33-37
    [41]卢耀广.红麻育种的成效与经验总结.中国麻作.1993,15(4):23-24
    [42]陈廷文.高杆隐性水稻GRLC株高的遗传研究.四川农业大学学报.1992,10(3):509-521
    [43]危文亮.甘蓝型油菜长角果变异的遗传研究.遗传.2000,22(2):93-95
    [44]韩祥铭,等.陆地棉新种质纤维品质性状的遗传分析.作物学报.2002,28(2):45-248
    [45]沈又佳,等.杂种小麦抗穗发芽性的遗传研究.南京农业大学学报.1996,19(2):1-5
    [46]吴吉祥,等.陆地棉种子性状直接效应和母体效应的遗传分析.作物学报.1995,21(6):659-664
    [47]张名位,等.色稻直链淀粉含量的遗传研究.作物学报.1996,22(4):431-435
    [48]杜雄明,等.棉花纤维相关性状的主基因—多基因混合遗传分析.棉花学报.1999,11(2):73-78
    [49]陈建华,等.植物基因工程研究成果及其在麻类作物育种上的应用前景.中国麻作.2000,22(4):1-4
    [50]曹德菊,等.花粉管法将外源除草剂基因导入红麻的有效方法及参数研究.中国麻作.2000,22(1):1-5
    [51]吴江生.甘蓝型油菜黄籽突变体的遗传研究.中国油料作物学报.1998,20(3):5-8
    
    
    [52] 袁俊水,等.一个辣椒功能性不育系的花器形态及遗传研究.遗传.2000,22(1):28-30
    [53] 王家训,等.黄瓜黄绿叶突变性状的遗传分析.遗传.2000,22(5):313-315
    [54] 吴沿友,等.甘蓝型油菜抗HYP突变体的筛选及鉴定.中国油料作物学报.1998,20(2):10-14
    [55] 李仕贵,等.一个新的水稻迟熟性基因的遗传分析和分子标记定位.遗传学报.2000,27(2):133-138
    [56] 李逸平,李万几.大麦多节分枝天然突变体的形态及遗传分析.中国农业科学.1994,27(4):1-9
    [57] 阿布东,张全德.高赖氨酸玉米(Opaque-2)数量性状的遗传研究.浙江农业大学学报.1994,20(6):560-565
    [58] 莫惠栋.谷类作物胚乳品质性状的遗传研究.中国农业科学.1995,28(2):1-7
    [59] 张海洋,等.棉花半配合材料的形态特征和遗传特性研究初报.南京农业大学学报.1994,17(1):6-14
    [60] 左清凡,等.水稻籽粒不同发育时期灌浆速率的遗传及其与环境互作的分析.中国农业科学.2002,35(5):465-470
    [61] 朱旭东,等.标记两用核不育水稻M25的花药培养及遗传分析.中国水稻科学.2002,16(2):124-128
    [62] 陈志雄,等.水稻耐光氧化反应特性的遗传规律.福建农业大学学报.2002,31(1):1-4
    [63] 翟虎渠,等.籼型杂交水稻光合性状的配合力及遗传力分析.作物学报.2002,28(2):154-160
    [64] 陈光辉,等.两系亚种间杂交稻籽粒充实度的遗传研究.作物学报.2001,27(6):811-815
    [65] 纪家华,等.标记型柱头外露种质系与陆地棉亲本间杂种优势与配合力分析.棉花学报.1999,11(3):117-122
    [66] 马国荣,等.大豆细胞质遗传芽黄突变体的发现.作物学报.1994,20(3):334-338
    [67] 龚红兵,等.水稻叶绿素B减少突变体的遗传分析及其相关特性.中国农业科学.2001,34(6):686-689
    [68] 朱军.广义遗传模型与数量遗传分析新方法.浙江农业大学学报.1994,20(6):551-559
    [69] 朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江农业大学学报.2000,26(1):1-6
    [70] 任全兴,等.我国大豆品种生育期生态特性研究.中国农业科学.1987,20(5):23-28
    [71] 李宗道,等.麻类生物工程进展.中国农业出版社,1999
    
    
    [72] 高之仁.数量遗传学.四川大学出版社,1986
    [73] 马育华.植物育种的数量遗传学基础.江苏科技出版社,1982
    [74] 朱军.遗传模型分析方法.中国农业出版社,1997
    [75] 浙江农业大学主编.遗传学(第二版).农业出版社
    [76] 潘家驹.作物育种学总论.农业出版社,1994
    [77] 周明全,章志红,等.植物QTL分析的理论研究进展.武汉植物学研究.2001,19(5):428-436
    [78] 章元明,盖钧镒,等.数量性状分离分析的精确度及其改善途径.作物学报.2001,27(6):787-793
    [79] 莫惠栋.数量遗传学的新发展-数量性状基因图谱的构建和应用.中国农业科学.1996,29(2):8-16
    [80] 刑永忠,徐才国.作物数量性状基因研究进展.遗传.2001,23(5):498-502
    [81] 高用明,朱军.植物QTL定位方法的研究进展.遗传.2000,22(3):175-179
    [82] 张继益,等.旱麦草属种质资源的鉴定评价与特性研究.中国农业科学.1998,31(2):63-69
    [83] Zhu Jun and B.S. weir. Analysis of cytoplasmic and maternal effects. I. A genetic model for diploid plant seeds and animals. Theor. Appl. 1994, 89:160-166
    [84] Loisel P, B Goffinet, H Monod et al. Detecting a major gene in an F2 population. Biometrics, 1994, 50:512-516
    [85] Charles-Edwards, D. A., R. C. Muchow and I. M. wood. Effects of sowing date on the growth and yield of Kenaf growth under irrigation in tropical Australia. Ⅲ. Physiological analysis of growth. Field crop Research, 1983, 7:103-113
    [86] Nelson C J. Genetic association between photosynthetic characteristics and yield: review of the evidence. Plant Physiol Biochem, 1998, 26:543-554
    [87] Guilin Wang, Manjit S K, Orlando M. Genetic analyses of grain-filling rate duration in maize. Field Crops Research, 1999, 61:211-222
    [88] Zhang M-Q, Chen R-K, Lu J-L, et al. Analysis for inheritance and combining ability of photochemical activities measured by chlorophyll fluorescence in the segregation generation of sugarcane. Field Crops Research, 2000, 65:31-39
    [89] Rashid A,Rakow G, Downey R K. Development of yellow seeded Brassica napus L. through interspecific crosses. Plant breeding, 1994, 112:127-134
    [90] Mosjidis J A, J G Waines, D M Yermanos et al. Methods for the study of cytoplasmic effects of quantitative traits. Theor Appl. Genet. 1981, 77:195-199
    [91] Sato S et al. Identification of earliness genes derived form 15 reciprocal translation homozygotes of dee, Oryza sativa L. Breeding science, 1995, 45: 45-49
    [92] Ichitani K et al. Genetic analysis of the rice cultivar kasalath with special reference
    
    to two photoperiod sensitivity loci; E and Se-1. Breeding Science, 1998, 48:51-57
    [93] Li z, Pinson S R Met al. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L). Theor. Appl. Genet, 1995, 91:374-381
    [94] Xu Z C, Zhu j. A new approach for predicting heterosis bassed on an additive, dominance and additive×additive model with environment interaction. Heredity, 1999, 82(5): 510-517
    [95] Shi C H, Xue J M, Yu Y G, et al. Analysis of genetic effects for nutrient quality traits in indica rice. Theor Appl Genet, 1966, 92(8): 1099-1102
    [96] Shi C H, Zhu J, Zang R C, et al. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. Theor Appl Genet, 1977, 95:294-300
    [97] Yan X F, Xu S Y, Xu Y h, et al. Genetic investigation of contributions of embryo and endosperm genes to malt kolbach index, alpha-amylase activity and wort nitrogen content in barley. Theor Appl Genet, 1998, 96(5): 709-715
    [98] Cockerham C C,weir B S. Quadratic analysis of reciprocal crosses. Biometrics, 1977, 33:187-203
    [99] Yuan Y L, Zhang T Z, et al. Heterosis and gene action of boll weight and lint percentage in high quality fiber property varieties in upland cotton Acta Agronomica Sinica. 2002, 28(3): 196-202
    [100] SINGH R J, T M. Klein Cytological characterization of transgenic soybean. Theoretical and Applied Genetics, 1998, 96(2):319-324
    [101] Zhou Ruiyang. Mutational Effects of space flight on Kenaf seeds. Oral report in: The 3rd Annual Conference of the American Kenaf Society, 24 April, 2000
    [102] Medham N J, Shipway P A, Scott R K. The effects of delayed sowing and weather on growth, development and yield of winter-oil-seed rape (Brassica napus). Journal of Agricultural Science, 1981, 96:389-416
    [103] Atchley W R, et al. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 1999,147:756-776
    [104] Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639
    [105] Chay p and Thurling N. Identification of genes controlling pod length in spring rapeseed, Brassica napus L, and their utilization for yield improvement. Plant Breeding. 1989, 103:54-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700