水、陆稻主要形态、生理性状抗旱分析及其根系性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以旱稻品种IRAT109和水稻品种越富杂交的DH群体为材料。在水田、旱田和管种植条件下,研究水稻的形态、生理性状与抗旱性的关系以及根系QTL的定位。
    通过不同抗旱指标与性状的相关关系进行对比选择可靠指标,鉴定性状与抗旱性的关系以及不同环境下,性状变化与抗旱之间的关系。通过抗旱相关发现:不同的抗旱指标中,综合指数合理的反映性状与抗旱的关系。株高、有效分蘖、根长、根粗、根系干重与抗旱呈正相关。根粗变化率、株高的变化率、有效分蘖的变化率与抗旱呈极显著负相关。生理性状中,水势与抗旱作用明显,而渗透势对抗旱作用不明显。
    不同种植条件下和生育期内,根系性状与生理性状的相关关系有所不同:水田条件下,根数与渗透势变化呈极显著相关,在旱田条件下,根数与渗透变化相关不明显;分蘖期的根粗与水势极显著相关;生育后期,根粗与水势相关不显著。
    通过对抗旱、敏旱材料的性状进行对比发现:抗旱具有较高的株高;有效分蘖数多;较大的地上生物产量,长的叶片,比较高的渗透势,较粗的茎粗,地下部分表型的特征:根系较长,根系较粗,具有多的根数和大的根物质含量。后期产量性状表现:较高的结实率,高的千粒重。
    利用通经分析发现各性状的贡献大小顺序:根粗>根长>根含水量>根数>根茎干重比>根鲜重>下午渗透势>水势>根干重>根茎鲜重比>根冠比>上午渗透势。
    利用以构建好的水稻分子连锁图,用QTLMAPPER定位根系性状的QTL。从定位结果发现:根干重的一个主效QTL,其贡献率为18.54%,在分子育种中可以通过对这些QTL 的选择,来筛选抗旱材料。水田条件下,根粗定位1个加性效应QTL,和9个上位性互作QTL,其中7号和11号染色体上的互作QTL贡献率为9.76%,与环境互作的贡献率达到11.31%;旱田条件下,根粗定位4个加性效应QTL和6个上位性互作QTL。在根管条件下,根粗定位3对互作QTL,其中3号和11号染色体上位互作QTL的贡献率达到11.03%。水田的根数定位两个加性效应QTL。旱田条件下,根数定位一个加性效应QTL和一对上位性互作效应QTL.根管条件下,定位4对上位互作QTL.根管条件下,根长定位两对上位性互作QTL,其中3号和8号染色体的互作效应为21.51%;根干重定位7个加性效应QTL和3对互作QTL,其中9号染色体加性效应贡献率为18.45%,11号和12号染色体互作效应的贡献率25.64%
Using 116 DH(Double Haploid) individuals derived from the cross of upland rice IRAT109(Japonica)with paddy rice Yue Fu(Japonica), correlations of the different index of the drought resistance and the different traits were compared to select credible indexes measuring the drought resistance and to identify traits. The relationship of the drought resistance and traits under different conditions was obtained. Contribution of traits was identified by path analysis. It studies relationship among the different mechanism of drought resistance including root traits and physiologic traits. Using a constructed linkage map of rice,QTLs controlling root number and root thickness were obtained.
    Correlation analysis indicated that plant height, root length, root thickness, root dry matter and rate of root thickness change, rate of plant height change, rate of tiller change in rice had positively and significantly correlation with the drought resistance under both upland and lowland ecosystems. Water potential in rice had positive and significant correlation with drought resistance. There are no correlation evident between Osmotic potential and the drought resistance.
    Drought-resistant individuals showed higher 1000-grain weight, seed-setting ratio than susceptive -drought ones. Path analysis indicated that root thickness gave the biggest contribution to drought resistant all of traits; root length is the second.
    We have identified one QTLs controlling root dry matter. The QTLs explained 18.54% of phenotypic variance. It was located at chromosome 9.
引文
1. 鲍思伟. 2001.水分胁迫对蚕豆叶片渗透调节能力的影响 浙江师大学报(自然科学版)。24(2):198~2001
    2. 戴新宾等. 2000,土壤干旱对水稻叶片光合速率和碳酸酐美活性的影响 植物生理学报26(2)133~136
    3. 冯长根,2002,2001年我国事故与灾害状况综述。安全与环境学报.2(6):3~8
    4. 葛圣伦,1992 硕士学位论文,中国农业大学。
    5. 黄文江,王纪华,赵春江.水稻旱作条件下渗透调节物质和激素含量的研究 干旱地区农业研究 2002 1:61~66
    6. 蒋明义, 荆家海, 王韶唐,1991 水稻光合色素和膜脂过氧化的影响. 西北农业大学学报, 19(1):79~83
    7. 蒋明义,1999 下植物体内·OH产生与细胞的氧化损伤. 植物学报.41(3):229~234
    8. 蒋明义,郭绍川,张学明 1997,氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用,植物生理学报,23(4):374~352
    9. 蒋明义,郭绍川,张学明 科学通报 ..OH胁迫下稻苗体内脯氨酸积累及其抗氧化作用,1997, 42(6):646~649
    10. 蒋明义. 1996水分亏缺诱导的氧化胁迫和植物抗氧化作用.植物学通讯,,32(2):144~150
    11. 蒋明义等.1994,渗透胁迫诱导水稻幼苗的氧伤害.作物学报,20(6):733~738
    12. 李春香, 李德全, 王玮 1999 不同抗旱性玉米、小麦根、叶对水分胁迫的生理反应及渗透调节的研究.中国植物生理学会植物环境生理学术讨论会论文汇编(昆明).p92
    13. 李德全. 1992,土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质 .植物理理学报 ,(1):37~44
    14. 李德全;王玮;李春香.2001. 长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响。西北植物学报 21(5):924~930
    15. 李秋莉 杨华 .2002.植物甜菜碱合成的酶的分子生物学和基因工程。生物工程进展.(1):84~86
    16. 凌祖铭,李自超,2002,水、陆稻根部性状的研究 .中国农业大学学报. 7(3):7~11
    17. 黎裕,1993,作物抗旱鉴定方法与指标.干旱地区农业研究.11(1):91~99.
    18. 刘丽霞,程红卫,2000水稻叶片气孔分布与气孔密度的研究 沈阳农业大学学报 31(4):313~317
    19. 刘友良,1992,植物水分逆境生理. 农业出版社,北京; 79~80
    20. 卢从明. 1994水分胁迫抑制水稻光合作用的机理 作物学报, 20(5):601~605
    21. 卢少云,郭振飞等。1997,干旱条件下水稻幼苗的保护酶的活性及其耐旱性关系.华南农业大学学报,18(4):21~25
    
    
    22. 卢少云,郭正飞,水稻幼苗叶绿体保护系统对干旱的反应,热带亚热带植物学报。1999,7(1):47~52
    23. 路苹 柴丽娜,1996. 水分胁迫下小麦幼苗可溶低聚糖特征表现与抗旱性关系初探。北京农学院学报,2:13~17
    24. 骆爱玲, 刘家尧, 马德钦, 王学臣, 梁峥,2000 转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高. 科学通报45(18):1953~1956
    25. 马尧 于漱琦 1998,水分胁迫下小麦幼苗SOD活性的变化及脂质过氧化作用 农业与技术 3:18~24
    26. 孟雷1999 沈阳农业大学学报 水分胁迫对水稻叶片的气孔密度、大小及净光合速率的影响 477~480
    27. 沈义国 杜保兴 山菠菜胆碱氧化物酶基因(CMO)的克隆与分析 生物工程学报.17(1):1~6
    28. 王静,续惠云 2000,水分胁迫对春小麦苗期叶肉细胞和气孔数的影响,西北植物学报20(5):842~846
    29. 熊正英,张志勤 1996水分胁迫对全生育期水、旱稻SOD活性的影响及其抗旱性的关系陕西师范大学学报(自然科学版)24(3):71~74
    30. 杨建昌,王志琴,朱庆森.水1995,水稻在不同土壤水分状况下脯胺酸的积累与抗旱性关系.中国水稻科学, 9(7):92~96
    31. 杨建昌. 1995,水分胁迫对水稻叶片气孔导度、及脱落酸含量影响.作物学报, 21(5):533~539
    32. 余叔文,汤张城主编,1998,植物生理学.第二版. 北京科学出版社,
    33. 张玉屏 李金才 黄义德 黄文江.2001.水分胁迫对水稻根系生长和部分生理特性的影响 . 安徽农业科学, 29(1):58~59.
    34. 郑丕尧 等.1990水、陆稻 水、旱地栽培生态适应性环境 中国水稻科学,4(2):69~74
    35. 周晓阳,赵楠等.2000,水分胁迫下中东杨气孔运动与保卫细胞离子含量变化的关系.林业科学研究. 13(1):71~74
    36. 朱军.复杂数量性状基因定位的混合模型方法[A].王连铮,戴景瑞(主编):全国作物育种学术讨论文集[C].北京农业科技出版社,1998,11~20
    37. 朱抗申, 黄丕生,1994 胁迫与水稻活性氧代谢. 南京农业大学学报.17(2):7~11
    38. 宗会等.2001. 作物学报 干旱, 盐胁迫下LaCI3 和 CPZ 对稻苗脯胺酸积累的影响 27(2): 173~178
    39. 邹琦;李春香;李德全;王玮 .2000.水分胁迫对抗旱性不同的玉米品种根、叶渗透调节能力及渗透调节物质的影响 华北农学报,15.(Z1):8~15
    40. Akomeah-PA; Mensah-JK; Eruotor-PG. 1995.Screening upland rice germplasm for drought resistance in south Nigeria. Tropical-Agriculture. 72(4) 324~326.
    41. Ali M.L.·Pathan. M.S.· J. Zhang · G.. Nguyen.2000.Mapping QTLs for root traits in a recombinant inbred population from two indicaecotypes in rice. Theor Appl Genet 101:756~766
    
    
    42. Araki-H; Hirayama-M; Hirasawa-H; Iijima-M .2000, which roots penetrate the deepest in rice and maize root systems? Plant-Production-Science. 3(3) 281~288.
    43. Aruna-Tyagi; Narender-Kumar; Sairam-RK; Tyagi-A; Kumar-N. 1999. Efficacy of RWC, membrane stability, osmotic potential, endogenous ABA and root biomass as indices for selection against water stress in rice. Indian-Journal-of-Plant-Physiology., 4: (4) 302~306.
    44. Blomstedt, CK; Gianello, RD; Hamill, JD; 1998. Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass porobolus stapfianus Plant Growth Regulation, 24 (3): 153~161
    45. Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43~47
    46. Boonjung, H; Fukai. 1996. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 1. Growth during drought Field Crops Research, 48 (1): 47~55
    47. Bray EA .1997. Plant responses to water deficit. Trends Plant Sci 2: 48~54
    48. Bray EA.1993. Molecular responses to water deficit. Plant Physiol, 103: 1035~1040
    49. Cabuslay, GS; Ito, O; Alejar, A. (2002) A Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit Plant Science, 163 (4): 815~827.
    50. Cao G. Zhu J . 2001.Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice ( Oryza sativaL.) Theor Appl Genet. 103:153~160.O
    51. Chandler PM, Robertson M .1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45: 113~141
    52. Chang-TT; Loresto-GC; Tagumpay-O Agronomic and growth characteristics of upland and lowland rice varieties. Rice-breeding. 1972, 645~661.
    53. Close TJ .1996. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97: 795~803 。
    54. Close TJ.1997.Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100: 291~296
    55. Colmenero-Flores, JM; Moreno, LP; Smith, CE; Covarrubias, AA. 1999. Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings ,Plant Physiology, 120 (1): 93~103,
    56. Costa-WAJM-de; Zoysa-GJK-de; De-Costa-WAJM; De-Zoysa-GJK .1995. Effects of water stress on root and shoot growth of soyabean (Glycine max (L.) Merill) and rice (Oryza sativa). Sri-Lankan-Journal-of-Agricultural-Sciences. 32: 134~142.
    57. Courtois B.. 2000.Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding .6:55~66
    Cruz, -R.T.; Dingkuhn, -M.; Yambao,-E.B.; De-Datta,-S.K.; O'Toole,-J.C. 1986.Shoot and root responses to water deficits in rainfed lowland rice. [Symposium paper].
    
    58. Australian-Journal-of-Plant-Physiology (Australia). 13(4): 567~575.
    59. Culter, J .M., Shahan, K. W. and Steponkus, P.L., 1980.Alteration of the internal water relation of rice in response to drought hardening. Crop Sci., 20:307~310
    60. Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F .1998. Accumulation of an acidic dehydrin in thevicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623~638
    61. Dingkuhn-M; Audebert-AY; Jones-MP; Etienne-K; Sow-A .1999.Control of stomatal conductance and leaf rolling in O. sativa and O. glaberrima upland rice: Field-Crops-Research., 61: 3, 223 ~236
    62. Dingkuhn-M; Cruz-RT; O'-Toole-JC; Dorffling-K .1989. Net photosynthesis, water use efficiency, leaf water potential and leaf rolling as affected by water deficit in tropical upland rice. Australian-Journal-of-Experimental-Agriculture. 40: (6), 1171~1181
    63. Dure III L.1993a.Structural motifs in LEA proteins. In TJ Close, EA Bray, eds, Plant Responses to Cellular Dehydration during Environmental Stress. American Society of Plant Physiologists, Rockville, MD, 91~103
    64. Dure III L .1993b.A repeating 11-mer amino acid motifs and plant desiccation. Plant J 3: 363~369
    65. Dure III L, Crouch M, Harada J, Ho T-HD, Mundy J. 1989.Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol, 12: 475~486.
    66. Ekanayake, IJ; De Datta, SK; Steponkus, PL. 1993. Effect of water deficit stress on diffusive resistance, transpiration, and spikelet desiccation of rice (Oryza sativa L.). Annals of botany. July 72 (1): 73~80
    67. Fukai.S., and M.cooper.1995.review:Development of drought-resistant cultivars using physio-morphological trait in rice ,Field . Corps Rao, and C.A, Bey routy 1994, rice root trait for drought resistant and their genetic variation. P.ies 40: 67~86
    68. Furuya-A; Itoh-R; Ishii-R. 1994.Mechanisms of different responses of leaf photosynthesis in African rice (Oryza glaberrima Steud.) and rice (Oryza sativa L.) to low leaf water potential. Japanese-Journal-of-Crop-Science. 63(4): 625~631.
    69. Garrity, DP; O'Toole, JC. 1995. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agronomy journal. July/Aug 87 (4): 773~779
    70. Ginger A. Swire-Clark and William R. Marcotte, Jr. 1999.The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae Plant Molecular Biology 39: 117~128,.
    71. Gomes-M-de-M-de-A; Lagoa-AMMA; Machado-EC; Furlani-PR.1997,Gas exchange and assessment of abscisic acid contents in two upland rice cultivars subjected to water stress. Revista-Brasileira-de-Fisiologia-Vegetal. 9(3): 177~183;
    72. Greenland 1985 国外遗传与育种. 6:8~9
    Grumet R Hanson A D. 1986.Genetic evidence for an osmoregulatory function of glycinebetaine
    
    73. accumulation in batley [J]. Aust J Plant Physiol.13: 353~364
    74. Han B,Kermode A R,1996.Dehydrin-like protein in castor bean seeds and seedling are differentially producted in response to ABA and water-deficit-related stresses. J Exp Bot, 47:933~939
    75. Hanson A D, Wyse R. 1982.Biosynthesis.translocation, and accumulation of betaine in sugar beet and its progenitors in relation to salinity [J]. Plant physiol. 70:1191~1198
    76. Hoque-MM; Kobata-T. 2000.Effect of soil compaction on the grain yield of rice (Oryza sativa L.) under water-deficit stress during the reproductive stage. Plant-Production-Science.3 (3): 316~322.
    77. Hsiao, T. C., O'Toole, J. C., Yambao, E. B. and Turner, N.C., 1984 Influence of osmotic adjustment on leaf rolling and tissue death in rice. Plant phycol.75: 338~341
    78. Hsing, YC; Chen, Z; Shih, M; Hsieh, J; Chow, T1995.Unusual sequences of group 3 LEA mRNA inducible by maturation or drying in soybean seeds. Plant molecular biology. 29 (4): 863~868
    79. Ingram J, Bartels D .1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377~403
    80. Ingram K, Bueno TFD, Namuco OS, Yambao EB, Beyrouty CA(1994) Rice root traits for drought resistance and their geneticvariation. In: Kirk GJD (ed) Rice roots: nutrient and water use. IRRI, Los Banos, The Philippines, 67~77
    81. Mitchell J.H..Siamhan D, Wamala M.H. 1998.The use of seedling leaf death score for evaluation of drought resistance of rice Field-Crops-Research. 55:129~139
    82. Jongdee, B., Fukai, S., and Cooper, M.2002.Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Research 76:153~163
    83. Kaminaka-H; Morita-S; Tokumoto-M; Masumura-T; Tanaka-K. 1999.Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free-Radical-Research 31(SUPP): 219~225.
    84. Kamoshita ·A Wade L. J·Ali M. L. Pathan J M. .2002. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions Theor Appl Genet 104:880~893
    85. Kobata-T; Hoque-MM; Adachi-F. 2000.Effect of soil compaction on dry matter production and water use of rice (Oryza sativa L.) under water deficit stress during the reproductive stage. Plant-Production-Science. 3(3) 306~315.
    86. Kobata-T; Okuno-T; .1996.Yamamoto-T Contributions of capacity for soil water extraction and water use efficiency to maintenance of dry matter production in rice subjected to drought. Japanese-Journal-of-Crop-Science. 65(4): 652~662.
    87. Kondo, M; Murty, MVR; 2000. Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Science and Plant Nutrition, 46 (3): 721~732,
    88. Kondo,-M.; Winn,-Tu; Okada,-K. 1998.Structure of nodal root system of rice as affected by soil water regime and nitrogen. Philippine-Journal-of-Crop-Science (Philippines). (Apr). 23(Sup. 1): 47.
    
    
    89. Kondo-M; Murty-MVR; Aragones-DV; Okada-K. 1999. Characteristics of the root system and water uptake in upland rice.. Genetic improvement of rice for water-limited environments. 117~131.
    90. Krishnayya-GR; Murty-KS. 1991. Effect of soil-moisture stress on tillering and grain yield in rice (Oryza sativa). Indian-Journal-of-Agricultural-Sciences. 61(3) 198~200
    91. Lander E.S, Botstein S. 1989. Mapping Mendelian factors underlying quantitative trait loci using RFLP linkage maps. Genetics.121.185~199
    92. Lebreton C, Lazic′-Janc?|ic′ V, Steed A, Pekic′ S, Quarrie SA .1995. Identification of QTLs for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853~865
    93. Lilley JM, Ludlow MM, McCouch SR, O'Toole JC.1996. Locating QTLs for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427~1436
    94. Lilley-JM; Fukai-S. 1994. Effect of timing and severity of water deficit on four diverse rice cultivars: I. Rooting pattern and soil water extraction. Field-Crops-Research. 37(3): 205~213.
    95. Lin-JN; Wang-JW; Kao-CH. 1999.Effects of abscisic acid and water stress on the senescence of detached rice leaves. Biologia-Plantarum. 42: 2, 313~3168.
    96. Matin, M .A., Brown, J. H., Ferguson, H., 1989. Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agron.J.81: 100~105.
    97. Morgan JM, Tan MK .1996.Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803~806.
    98. Morgan, J.M., 1995.Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Corps Res.40: 142~152
    99. Namuco-OS; Ingram-KT; Fuentes-LT .1993.Root characteristics of rice genotypes with different drought responses. International-Rice-Research-Notes. 18(1): 38~39.
    100. Nguyen HT, Chandra Babu R, and Blum A (1997). Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37:1426~1434
    101. Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263~279
    102. Pantuwan .G; Fukai .S; Cooper .M. Rajatasereekul, S; O'Toole. 2002. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowland 3. Plant factors contributing to drought resistance. Field Crops Research, 73 (2-3): 181~200.
    103. Premachandra, GS; Saneoka, H; Fujita, K; Ogata, S,1992. Osmotic adjustment and stomatal response to water deficits in maize. Journal of experimental botany. 43 (256): 1451~1456
    104. Premachandra-GS; Saneoka-H; Fujita-K; Ogata-S .1993.Water stress and potassium fertilization in field grown maize (Zea mays L.): effects on leaf water relations and leaf rolling. Journal-of-Agronomy-and-Crop-Science. 170(3): 195~201.
    
    
    105. Price A.H. Steele · K.A. Moore B.J .2000.A combined RFLP and AFLP linkage map of upland rice( Oryza sativaL.) used to identify QTLs for root-penetration ability Theor Appl Genet 100:49~56
    106. Price AH, Young EM, Tomos AD .1997.Quantitative trait loci associated with stomatal conductance, leaf rolling and heading data mapped in upland rice (Oryza sativa L.). New Phytol 137:83~91
    107. Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N .1994.Location of a gene regulating drought-induced abscisic acidproduction on the long arm of chromosome 5 A of wheat. Theor Appl Genet 89:794~800
    108. Quarrie SA, Laurie DA, Zhu J, Lebreton C, Semikhodskii A,Steed A.1997.QTL analysis tostudy the association between leaf size and abscisic acid accumulationin droughted rice leaves and comparison across cereals.Plant Mol Biol 35:155~165
    109. Rathinasabapathi-B; Gage-DA; Mackill-DJ; Hanson-AD.1993. Cultivated and wild rices do not accumulate glycinebetaine due to deficiencies in two biosynthetic steps. Crop-Science. 33(3) 534~538.
    110. Ray J D, Yu L, McCouch S R, et al. 1997.Mapping quantitative trait loci associated with root penetration ability in rice (Qryza sativa) L. [J]. Theor.Appl.Genet, 95:143~152
    111. Redona E D, Mackill D J.1996.Mapping quantitative trait loci for seeding vigour in rice using RLFPs [J]. Theor Appl Genet. 92:395~402
    112. Romo-Silvia; Labrador-Emilia {a}; Dopico-Berta .2001.Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant-Physiology-and-Biochemistry-Paris. 39 (11): 1017~1026.
    113. Rosenberg LA, Rinne R W. 1986.Moisture loss as a prerequisite for seeding growth in soybean seeds. J EXP BOT, 77:1663
    114. Santamaria. F. J., Ludlow, M. M. and Fukai,S.,1990.Contribtion of osmotic adjustment to grain yield in Sorghum bicolor(L.) Moench. under water-limited conditions. I. Water stress before anthesis. Aust, J.Agric.Res.41: 51~65
    115. Dingkuhn M.Farquhar GD.De Datta.sk, O'Toole JC, 1991,Discrimnation of 13C among upland rice's having different water use efficiencies. Australian Journal of Agricultural Research.40: 1123~1131
    116. Sheela-KR; Alexander-VT. 1995. Physiological response of rice varieties as influenced by soil moisture and seed hardening. Indian-Journal-of-Plant-Physiology. 38(3) 269~271.
    117. Singh,-S.;Singh,-T.N.2000.Significance of leaf rolling in rice during water stress.Indian-Journal-of-Plant-Physiology (India). 5(3)214~218
    118. Singh, -S.; Singh, -T.N. 2000.Morphological, chemical and environmental factors affecting leaf rolling in rice during water stress. Indian-Journal-of-Plant-Physiology (India). 5(2): 136~141
    Skriber K, Mundy J. 1990.gene expression in reponse to abscisic acid and osmotic stress. Plant
    
    119. Cell.2: 503
    120. Somdej-Immark.1989.Study method on selection rice varieties (Oryza sativa. L.) for drought resistance controlled with PEG 6000 for soil water stress at seedling stage. Bangkok (Thailand) 98.
    121. Sullivan CY .1972. Mechanisms of heat and drought resistance in grain sorghum and method of measurements. In: Rao NGP, House LR (eds) Sorghum in the seventies Oxford and IBH Publ, New Delhi, p: 247~264
    122. Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A .1998. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688~698
    123. Teulat B. Borries C. 2001.New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes Theor Appl Genet.103: 161~170
    124. Thomashow MF .1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118: 1~17
    125. Tiwari-HS; Agarwal-RM; Bhatt-RK.1998.Photosynthesis, stomatal resistance and related characteristics as influenced by-potassium under normal water supply and water stress conditions in rice (Oryza sativa L.). Indian-Journal-of-Plant-Physiology. 3(4): 314~316.
    126. Tomar-JB; Prasad-SC. 1996. Relationship between inheritance and linkage for drought tolerancein upland rice(Oryza sativa)varieties. Indian-Journal-of-Agricultural-Sciences. 66(8): 459~465.
    127. Tripathy J.N. Zhang · J. ·Robin S. Nguyen Th. T Nguyen H.T. 2000.QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress Theor Appl Genet 100:1197~1202
    128. Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S .1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor Appl Genet 97:744~755
    129. Turner, N. C., Jones, M.M., and 1980.Turgor maintenance by osmotic adjustment: a review and evaluation. In: Turner, N.C., Kramer, P. J. (Eds.), Adaptation of plant to water and high Temperature stress. Wiley, New York, pp.87~103
    130. Wikinson S, Davies W J, 1997.Xylem sap PH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast Plant Physiol, 113:559~573
    131. Wopereis-MCS; Kropff-MJ; Maligaya-AR; Tuong-TP. 1996. Drought-stress responses of two lowland rice cultivars to soil water status. Field-Crops-Research. 46: 1~3, 21~39;
    132. Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R: 1996. Expressionof a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249~257
    Yadav R.Courtois B.·Huang N. McLaren G. 1997.Mapping genes controlling root morphology and
    
    133. root distribution in a doubled-haploid population of rice .Theor Appl Genet 94 : 619~632
    134. Yambao, EB; Ingram, KT; Real, JG. 1992. Root xylem influence on the water relations and drought resistance of rice. Journal of experimental botany 43 (252) : 925~932
    135. Yang,-J.; Zhang,-J.; Wang,-Z.; Zhu,-Q.; Wang,-W. 2001.Hormonal changes in the grains of rice subjected to water stress during grain filling Plant-physiol. 127 (1): 315~323.
    136. Yang-JianChang; Yang-JC. 1995. Response of ABA content in rice leaves to water stress. Chinese-Rice-Research-Newsletter. 3: 4~9.
    137. Yu.l.,J.D Day.J.co'Toole and H.T Nguyen ,1995,use of wax-potrolatum layers for screening rice root penetration ,Corp.Sci. 35:684~687
    138. Zeng Z B. 1993.Theoretical basis of separation of multiple linked gene effects on mapping quantitative loci [J]. Proc Natl Acad Sci USA, 90:10972~10976
    139. Zhang J, Nguyen HT, Blum A .1999. Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291~302.
    140. Zheng HG, Babu RC, Pathan MS, Ali ML, Huang N, Courtois B, Nguyen HT .2000. Quantitative trait loci for root penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53~61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700