红麻产量与品质性状的遗传效应及其杂种优势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以福红2号(P_1)、福红991(P_2)、福红992(P_3)、福引1号(P_4)、非洲裂叶(P_5)、浙红3号(P_6)、耒阳红麻(P_7)7个红麻品种为材料,按(6×7)/2双列杂交设计配制包括亲本(P)和杂交组合(F_1)的一套遗传材料。应用加性-显性遗传模型和发育遗传模型及其相应的统计方法,分析了11个产量、品质性状的遗传效应以及不同发育时期株高、茎粗的发育遗传规律。
     1.红麻产量、品质性状遗传方差分析表明,株高、鲜皮厚、纤维支数同时受到加性和显性效应的控制,既可以通过选择加以固定,也可以通过利用杂种优势挖掘这3个性状的潜力;茎粗、单株干皮重、单株干茎重、皮骨比、出麻率、单株纤维重、精洗率、纤维强力主要受显性效应控制,杂种优势利用有较大潜力。株高、鲜皮厚、纤维支数狭义遗传率达显著或极显著水平,其余性状狭义遗传率均未达显著水平。在红麻育种上,株高、鲜皮厚、纤维支数在早代选择可望获得较好的效果,其余8个性状宜在高世代进行选择。
     2.红麻产量、品质性状遗传相关分析表明,株高和鲜皮厚均与单株干皮重、单株干茎重、单株纤维重3个性状存在明显的加性和显性相关,可以依据株高、鲜皮厚的表现在早代排除显性相关的影响后对这3个性状进行间接选择。茎粗与各性状之间不存在加性相关,而与株高、鲜皮厚、单株干皮重、单株干茎重、单株纤维重之间的显性相关明显,在杂种优势利用中,可以依据茎粗的表现预测单株干皮重、单株干茎重、单株纤维重的潜力。红麻产量与品质性状之间存在一定的负向关联性,而纤维强力、纤维支数与皮骨比之间表现明显的正向相关。通过皮骨比的测定,可以间接选择到优质的红麻品种。纤维强力与纤维支数之间存在明显的负向相关。
     3.红麻产量、品质性状杂种优势分析表明,单株干茎重、单株干皮重、单株纤维重、纤维强力4个性状具有较强的F_1群体平均优势和群体超亲优势。单株干茎重和单株干皮重F_2具有一定的正向群体超亲优势,单株纤维重、株高优势极微弱,其余性状均为负向超亲优势。11个性状杂种优势的预计世代数均达显著、极显著水平,其中单株干皮重、单株干茎重、单株纤维重3个性状可以利用F_2杂种优势,有的杂交组合杂种优势可延续至3-4代。
     4.红麻亲本遗传效应预测表明,各亲本对不同性状的遗传效应不同。可根据各个亲本对每个性状的不同遗传效应加以选择利用。综合分析认为福红2号、福红992和非洲裂叶3个亲本具有提高株高、茎粗、鲜皮厚、单株干皮重、单株干茎重、出麻率、皮骨比、精洗率、单株纤维重的遗传效应;福红2号和福红992 2个亲本具有提高纤维强力
    
    与纤维支数的遗传效应,可在红麻遗传改良中加以利用。
     5.红麻株高、茎粗不同发育时期遗传效应分析表明,株高在不同发育时期的非条件、
    条件遗传效应,均以显性效应为主,加性效应较弱。茎粗非条件、条件遗传效应表现一致,
    各个发育时期均未检测到加性效应,而各个时期的显性效应均达显著、极显著水平。在
    各个发育时期中,株高与茎粗均在7月28日至8月9日(旺长期)、9月2日至9月14
    日(纤维累积期)之间基因表达较活跃。株高与最终产量、品质性状之间的加性相关依
    发育时期不同、性状不同而有异,不同发育时期与各性状之间均存在显性相关。茎粗
    最终产量、品质性状之间仅存在显性相关,而不存在加性相关。株高进入稳长期后,Fl
    杂种优势呈逐渐增强的趋势。茎粗在7月16日之后的各个发育时期F:非条件群体平均
    优势均达显著或极显著水平,条件群体平均优势在每一发育时期均达显著或极显著水平。
An additive-dominance genetic model and corresponding statistical approaches were used to analyze 11 yield and quality traits of kenaf, and the developmental behavior of gene expression for plant height and stem diameter at different growing stages.
    The results of genetic analysis for yield and quality traits of kenaf showed as follows. (1)Plant height, fresh bark thickness, fibre fineness were controlled by additive gene action and dominant gene action. Stem diameter, dry bark wcigllt per plant, dry stem weight per plant, bark rate, rate of bark and jarkstraw, fibre weight per plant, retting rate, fibre strength were mainly controlled by dominant gene action. Narrow heritabilities of plant height, fresh bark thickness, fibre fineness were significant, while the other traits were not. Broad heritabilities of all traits were significant. So, the better selecting effects for plant height, fresh bark thickness, fibre fineness could be expected in early generations; the selection of other traits must be conducted in high generations to avoid the interference of dominant gene action.
    (2) Correlation analysis showed that the dominance correlations between plant height and dry bark weight per plant, dry stem weight per plant, and fibre weight per plant were significant at 0.01 level, their additive correlations were significant at 0.1 level. Plant height might be simultaneously selected with dry bark weight per plant, dry stem weight per plant, and fibre weight per plant in hybrid combination. Fresh bark thickness had the same correlations as plant height. No additive correlation was found between stem diameter and the other traits. The dominance correlations between stem diameter and plant height, fresh bark thickness, dry bark weight per plant, dry stem weight per plant, and fibre weight per plant were significant. Yield traits had negative correlation with quality traits. But fibre fineness and fibre strength all had significant positive correlations with rate of bark and jarkstraw. Indirect selection was expected for fibre fineness and fibre strength through rate of bark and jarkstraw. Fibre fineness existed nagetive correlation with fibre strength.
    (3) Among all traits dry bark weight per plant, dry stem weight per plant, fibre weight per plant and fibre strength had mainly F1 heterosis over mid-parent and FI heterosis over better parent. F2 heterosis over mid-parent was similar to F1. But most traits had negative p2 heterosis over better parent, except for dry bark weight per plant, dry stem weight per plant, fibre weight per plant and plant height.
    (4)Each parent had different genetic effect. Predicted genetic effects of yield traits showed that Fuhong 2, Fuhong 992 and Feizhong leiye were better than other parents, their genetic effects could improve the yield of kenaf. Some parents such as Fuhong 2, Fuhong 992 were better than others for improving the quality of kenaf.
    The results of genetic analysis for plant height and stem diameter at different stages showed as follows.
    (l)Dominance effect played more important role at different stages for plant height, while additive effect was weak. No additive effect was found for stem diameter, but dominance effect was significant at each stage. Plant height and stem diameter all had active
    
    
    
    gene expression from July 28 to August 9, September 2 to September 14.
    (2) Additive correlation between plant height and the other traits varied with traits and stages, but positive dominance correlation existed all the time. Positive dominance correlation was detected between stem diameter and the other traits, but no additive correlation existed.
    (3) After August 9, Ft unconditional heterosis of plant height was significant. After July 16, FI unconditional heterosis over mid-parent of stem diameter was significant; FI conditional heterosis over mid-parent was significant at all stages.
    The results of unconditional and conditional genetic effects of plant height and stem diameter were not completely the same. According to practice, conditional genetic analysi
引文
[1]陈安国,李德芳.红麻需求分析与育种技术发展趋势[J].中国麻业,2001,23(4):26-31.
    [2]程舟,鲛岛一彦,陈家宽.日本的红麻研究、加工和利用[J].中国麻业,2001,23(3):16-24.
    [3]孙进昌.红麻全杆造纸前景广阔[J].中国麻作,1995,
    [4]Sellers T, et al. Kenaaf properties, processing and products[J]. Missinssippi State Universith, MS, 1999.
    [5]American Kenal Society AKS). Proceedings of the third annual American kenaf society conference[C]. Crops Christi,TX, USA, 2000,23-25.
    [6]Japan Kenaf Association(JKA). Proceeding of the 2000 international kenaf symposium[C], Hiroshima, Japan, 2000,13-14.
    [7]敖日格勒等.革皮酸素化酸素漂白.纸技协计,2000,54(7):969-976.
    [8]平井慎治.使自动车内装材开仓.International Kenaf Forum,Tokyo,2000.
    [9]阿部等.水田植栽、田间灌水水质净化机能.日本土壤肥料学会讲演要旨集(第47集).2001,207.
    [10]邓丽卿,粟建光,李爱青.红麻种质资源的农艺性状研究与利用[J].中国麻作,1994,16(4):1-4.
    [11]潘其辉,赖占钧,邹国秀,等.江西黄、红麻优异种质的筛选与利用[J].中国麻作,1996,18(3):9-12,24.
    [12]粟建光,邓丽卿.红麻优异种质在不同生态地区的利用潜力研究[J].中国麻作,1997,19(3):9-12.
    [13]汤清明,臧巩固.1999-2000年全国红麻新品种(系)区域试验总结[J].中国麻业,2001,23(2):2-7.
    [14]祁建民,郑云雨,卢浩然,等.红麻产量和纤维品质性状的遗传变异及其选择指数[J].福建农学院学报,1992,21(3):271-277.
    [15]汤永海.红麻韧皮纤维产量简易预测的研究[J].中国麻作,1996,18(1):20-26.
    [16]汤永海.红麻主要农艺性状和茎中部纤维重与单株纤维重关系的研究[J].中国麻作,1985,(1):10-13,9.
    [17]龚友才,郭安平,刘伟杰.红麻杂种一代及其亲本的遗传组成与配合力分析[J].中国麻作,1998,20(3):1-6.
    [18]徐其斌.红麻几个数量性状的相关和通径分析[J].中国麻作,2000,22(3):6-9.
    [19]祁建民,卢浩然,郑云雨,等.红麻品种产量与纤维品质性状的配合力分析[J].福建农学院学报,1990,19(1):13-18.
    [20]祁建民,卢浩然,郑云雨,等.红麻产量和纤维品质性状的杂种优势及其与配合力效应的关系[J].
    
    福建农学院学报,1991,20(2):134-139.
    [21]龚友才,郭安平,刘伟杰.红麻品种间杂交杂种一代优势及其与亲本的关系[J].华北农学报,1998,13(2):18-24.
    [22]汤永海.红麻五个品种产量性状的配合力和遗传组成的分析[J].中国麻作,1990,(1):9-16.
    [23]中国农业科学院麻类研究所.中国麻类作物栽培学[M].北京:农业山版社,1993.258-262.
    [24] Nieschlag H J, et al. A search for new fiber crops[J]. Tappi J, 1960,43(3):93-201.
    [25] Nieschlag H J, et al. A search for new fiber crops. Ⅳ. Kenaf composition[J]. Tappi J,1960,44(7):515-516.
    [26] Clark T F, et al. A search for new fiber crops. ;Ⅴ. Pulping studies on kenaf[J]. Tappi J, 1962,45(10):780-786.
    [27] Clark T F, et al. A search for new fiber crops. Ⅵ. Kenaf and wood blends[J]. Tappi J,1962,45(10):786-789.
    [28] Clark T F, et al. A search for new fiber crops. Ⅷ. Sulfate pulping of kenaf (Hibiscus cannabinus) [J]. Tappi J, 1965,48(6):381-384.
    [29] Clark T F, et al. A search for new fiber crops. ⅩⅣ. Bond paper containing continuously pulped kenaf[J]. Tappi J, 1971 ,54(1):63-65.
    [30] Atchison J E. Twenty-five years of global progress in nonwood plant fiber repulping[J]. Tappi J, 1996,79(10):87-95.
    [31]谭石林.我国红麻制浆造纸原料生产现状及其对策[J].中国麻业,2002,24(3):34-37.
    [32]龙超海,张木祥.我国红麻制浆造纸发展探讨[J].中国造纸,2000,(3):61-64.
    [33]李敬机.红麻制浆造纸现状及发展方向(上)[J].中国造纸,1996,(1):52-57.
    [34]谭石林,刘伟杰.高产优质造纸红麻品种的筛选与影响因素研究[J].作物研究,1994,8(1):33-36.
    [35]邝仕均,王菊华,薛崇昀,等.红麻纤维及其造纸基本特性(上)[J].中国造纸,1997,(1);7-10.
    [36]胡镇修.造纸用红麻纤维形态特征与纤维品质的变异[J].中国造纸,(6):32-34.
    [37]陈叔酉.红麻全杆制浆造纸[J].中国麻作,1990,(2):22.
    [38]孙焕良,等,红麻韧皮纤维与木质部纤维显微结构观察[J].湖南师范大学自然科学学报,1993,16(增刊):55.
    [39]汤永海,陈安国.红麻茎皮骨比值的测定和分析[J].中国麻作,1994,16(2):3-7,10.
    [40]孙焕良,邝秀明.红麻茎中部韧皮纤维发育与主要农艺性状、纤维产量的关系及其简易观测方法[J].中国麻作,1993,(3):6-12.
    [41]朱军.遗传模型分析方法[M].北京:中国农业出版社,1997.71.
    [42]朱军.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学学报,1993,8(1):32-44.
    
    
    [43] 朱军. Mixed model approaches for estimating covariances between two traits with unequal design matrices[J].生物数学学报,1993,8 (3):24-30
    [44]朱军.广义遗传模型与数量遗传分析新方法[J].浙江农业大学学报,1994,20(6):551-559.
    [45]朱军,等.作物品种间杂种优势遗传分析的新方法[J].遗传学报,1993,20(3):262-271.
    [46]朱军,季道藩,许馥华.棉株不同果枝节位开花和成铃的遗传分析[J].棉花学报,1993,5(1):25-32.
    [47]吴吉祥,朱军,季道藩,等.陆地棉产量性状的遗传效应及其与环境互作的分析[J].遗传,1995,17(5):1-4.
    [48]王雪仁,梁康迳,兰斌.籼粳杂交稻秘部性状的加性-显性遗传分析[J].福建稻麦科技,2000,18(3):1-3.
    [49]徐绍英,闫新甫,陈庆良,等.二棱大麦熟期性状的遗传研究[J].生物数学学报,1998,13(1):74-79.
    [50] Stewart A D. The genetics basis of development[J]. Blackie, Glasgrowa and London, 1982.
    [51]杨太兴,曾孟潜.玉米胚乳和胚发育过程中干物质积累和同工酶、蛋白质的变化[J].植物生理学报,1984,10(1):77-86.
    [52] Atchley W R. Ontogeny timing of development and genetic variance -covariance structure[J]. Am Nat, 1984,124:519-540.
    [53] Atchley W R, Zhu J. Developmental quantitative genetic, conditional epigenetic variability and growth in rice[J]. Genetics, 1997,147:765-776.
    [54] Atchley W R, et al. Developmental quantitative genetic models of evolutionary change. Developmental Genetics, 1994,15:92-103.
    [55] Kherialla A I, Whittington A J. Genetic analysis of growth in tomato: the F1 generation[J]. Ann Bot, 1962,26(104): 489-504.
    [56] Xu Y B, Shen Z T. Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L) [J]. Theor Appl Genet, 1991,83:243-249.
    [57]朱军,等.陆地棉花铃动态的遗传分析[C].北京国际棉花学术讨论会论文集,1992.
    [58]吴国海.玉米几个数量性状在不同发育阶段的基因效应分析[J].遗传学报,1987,14(5);363-369.
    [59]叶子弘,朱军.数量性状发育遗传模型及期分析方法的研究进展[J].遗传,2001,23(1):65-68.
    [60]朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业与生命科学版),2000,26(1):1-6.
    [61] Zhu J. Analysis of conditional effects and variance components in developmental genetics[J]. Genetics, 1995,141 (4): 1633-1639.
    [62] Yan J Q, Zhu J, He C X, et al. Quantitative trait loci analysis for developmental behavior of tiller number
    
    in rice (Oryza sativa L.)[J]. Theor Appl Genet,1998,97:264-267.
    [63]Yan J Q, Zhu J, He C X, et al. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.)[J].Genetics,1998, 150: 1257-1265.
    [64]陈柏清,陈青,吴吉祥.陆地棉不同铃期和不同铃位单铃重杂种优势遗传研究[J].棉花学报,1998,10(4):199-204.
    [65]陈青,朱军,吴吉祥.陆地棉不同铃期单株成铃数和籽棉产量的遗传动态研究[J].浙江农业大学学报,1999,25(2):155-160.
    [66]陈青,朱军,吴吉祥.陆地棉不同铃期和铃位籽棉产量杂种优势的遗传研究[J].中国农业科学,2000,33(4):97-99.
    [67]叶子弘,朱军.陆地棉开花成铃性状的遗传研究 Ⅱ.不同果枝节位的遗传规律[J].作物学报,2001,27(2):243-252.
    [68]叶子弘,朱军.陆地棉开花成铃性状的遗传研究 Ⅲ.不同发育阶段的遗传规律[J].遗传学报,2000,27(9):800-809.
    [69]叶子弘,卢正中,朱军.陆地棉种子物理性状的发育遗传研究[J].棉花学报,2001,13(6):323-329.
    [70]王国建,朱军,臧荣春,等.陆地棉种子品质性状与棉花产量性状的遗传相关性分析[J].棉花学报,1996,8(6):295-300.
    [71]骆霞虹,卢正中,刘鹏渊,等.陆地棉棉籽不同发育期容重和种仁率的遗传分析[J].浙江农业学报,1998,10(5):225-229.
    [72]吴吉祥,朱军,季道藩,等.陆地棉F2产量性状杂种优势及与环境互作的预测[J].科技通报,1998,14(5):343-347.
    [73]石春海,吴建国,朱军,等.不同环境条件下稻米透明度的发育遗传分析[J].遗传学报,2002,29(1):56-61.
    [74]左清凡,朱军,刘宜柏,等.非等试验设计水稻产量构成性状基因型×环境互作的遗传分析[J].作物学报,2001,27(4):482-488.
    [75]石春海,吴建国,朱军,等.籼稻精米重量性状的发育遗传分析[J].浙江大学学报,2001,27(5):483-488.
    [76]石春海,何慈信,朱军.稻米碾磨品质性状遗传主效应及其与环境互作的遗传分析[J].遗传学报,1998,25(1):46-53.
    [77]陈建国,朱军.籼粳交稻米品质性状的遗传相关分析[J].湖北大学学报(自然科学版).1998,20(3):286-290.
    [78]石春海,朱军.籼稻稻米外观品质的细胞质、母体和胚乳遗传效应分析[J].生物数学学报,1996,11
    
    (1):73-80.
    [79]梁康迳.籼粳杂交稻穗部性状的遗传效应及其与环境互作[J].应用生态学报,2000,11(1):78-82.
    [80]梁康迳.基因型×环境互作效应对水稻穗部性状杂种优势的影响[J].应用生态学报,1999,10(6):683-688.
    [81]梁康迳,王雪仁,章清杞,等.基因型×环境互作效应对水稻茎秆抗倒性杂种优势的影响[J].福建农业大学学报,2000,29(1):12-17.
    [82]王雪仁.籼型三系杂交水稻产量形成的发育遗传研究[D].福州:福建农林大学,2001.
    [83]李亚娟,梁康迳,王雪仁,等.籼型三系杂交稻生育期的遗传分析[J].福建农林大学学报(自然科学版),2003,32(1):10-14.
    [84]Atchley W R, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics,1999,147:765-776.
    [85]陈文华,王仁杯,吴银良,等.二棱大麦茎杆特性的ADAA模型的遗传研究[J].生物数学学报,2000,15(4):480-486.
    [86]朱军.复杂数量性状基因定位的混合模型方法[A].王连铮,戴景瑞.全国作物育种学术讨论会论文集[C].北京:中国农业科技出版社,1998.19-20.
    [87]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报,1999,33(3):327-335.
    [88]Audtveit A A, Aastveit K. Effects of genoype-environment interactions on genetic correlationst[J]. Theor Appl Genet, 1993, 89:1007-1013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700