茶条槭、山荆子、山桃和山梨抗旱性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在温室内用盆栽法研究茶条槭、山荆子、山桃和山梨的抗旱能力。设置土壤连续干旱试验和四种土壤水分梯度(土壤含水量65.2%、53.1%、40.3%、30.8%)。研究干旱胁迫下叶水势、叶水分饱和亏缺及叶保水力的变化;应用压力室和PV技术测定四个树种多项水分参数,并对四树种渗透调节和维持膨压能力进行综合评定;研究干旱胁迫对光合作用、蒸腾作用及水分利用效率的影响;测定生长指标及水分胁迫下苗木的生物量分配。结果表明:(1)四树种均属低水势耐旱机理一类树种。在干旱胁迫条件下,四树种叶水势降低幅度由大到小依次为茶条槭、山梨、山桃、山荆子;水分饱和亏缺由大到小依次为茶条槭、山桃、山荆子、山梨;叶保水力由大到小依次为茶条槭、山梨、山荆子、山桃;(2)四树种均有一定的渗透调节和维持膨压能力,但树种间存在显著差异:山荆子、山梨渗透调节和维持膨压能力最强,山桃其次,茶条槭最弱。山荆子细胞忍耐脱水能力最强,山桃、山梨次之,茶条槭忍耐脱水能力最差。在干旱胁迫条件下,山桃渗透调节能力减弱,其它三树种渗透调节能力增强。山荆子和山梨渗透调节能力最强,茶条槭次之,山桃最弱。山梨、山桃、茶条槭能通过提高束缚水比例来实现渗透调节,山荆子通过细胞体积减小和增加溶质含量来实现渗透调节。维持最大膨压及膨压能力由强至弱依次为山梨、山荆子、茶条槭、山桃。茶条槭、山桃由细胞壁弹性所反映的保持膨压能力强,山梨、山荆子由细胞壁弹性所反映的保持膨压能力弱;(3)随土壤含水量的降低,四树种净光合速率、蒸腾速率均呈降低趋势。在干旱胁迫条件下,茶条槭蒸腾速率和气孔导度降低幅度最大,山荆子、山梨次之,山桃最小。山桃光合作用对水分亏缺的忍耐性最强,山梨、山荆子居中,茶条槭光合作用对水分亏缺的忍耐性最差。四树种中只有山桃水分利用效率随土壤含水量的降低呈增长趋势;(4)茶条槭叶片对水分变化敏感,在干旱胁迫下,叶片发生明显增厚现象,单株叶面积显著减少,其它三个树种的叶片不易被水分因子所影响。茶条槭在干旱胁迫下比叶面积最高,山桃、山荆子次之,山梨最低;(5)在水分胁迫下,四树种均能通过显著增加根量分配来适应干旱。茶条槭在干旱胁迫下,根比重、根茎比增加幅度最大,山梨、山桃次之,山荆子最小。(6)综合以上结果,四种苗木抗旱能力均很强。在干旱胁迫条件下,四树种能通过各自不同的方式来适应干旱。
The ability of drought-resistance of Acer ginnala M.,Malus baccata L,Primus davidiana C. and Pyrus ussuriensis M. were studied under four soil moisture gradients (65.2%,53.1%,40.3%,30.8%) and the continuous soil drought experiments by plant seedlings in pots in greenhouse. The changes of leaf water potential,water deficiency,water-holding ability under drought stress conditions were measured. The water parameters were calculated by using Pressure-Volume technique,also the abilities of maintaining turgor and adjusting osmotic potential of the four species were comprehensively evaluated. The effects of drought stress on photosynthesis,transpiration and water use efficiency were studied. The growth and biomass allocations of seedlings under water stress conditions were measured and analyzed. The results show:(1) Drought-resistance mechanisms of the four species were drought tolerance of dehydration tolerance with low tissue water potential. Under drought conditions,the decreasing degree of water potential is:A.
     ginnala > P. ussuriensis > P. davidiana. > M. baccata;the water deficiency is A. ginnala > P. davidiana. > M. baccata> P. Ussuriensis;the water-holding ability is A. ginnala > P. Ussuriensis >M. baccata> P. davidiana. (2)A11 of the four species have the abilities of osmotic adjustment and turgor maintenance,but their ability is difference. The ability to maintain turgor and adjust osmosis is :M. baccata> P. ussuriensis > P. davidiana> A. ginnala. The ability of tolerating dehydration is:M. baccata> P. davidiana> P. ussuriensis > A. ginnala. Under drought conditions,the ability of P. davidian's osmotic adjustment is decreasing,the others are increasing. The ability to adjust osmosis is:M. baccata> P. ussuriensis >A. ginnala> P. davidiana. P. ussuriensis,P. davidiana and A. ginnala can adjust osmosis by improving the proportion of bound water,M. baccata adjust osmosis by decreasing the volume of cell and increasing content of solute. The ability of maintaining maximum turgor and turgor is P. ussuriensis > M.
    baccata> A. ginnala> P .davidiana. The ability of maintaining turgor arose by elastic cell wall is A. ginnala> P. davidiana> P. ussuriensis > M. baccata.(3)With the decrease of soil moisture content,net photosynthetic rate of these four species and transpiration rate have the tendency of decreasing. Under drought conditions,the decreasing degree of transpiration rate and the conduction of stoma is A. ginnala> M. baccata> P. ussuriensis> P. davidiana. The photosynthesis of P. davidiana is the most tolerant to drought stress,P. ussuriensis and M. baccata are at second place,A. ginnala is the least tolerant to drought stress. P. davidiana's water use efficiency has increasing trend,but the other three species have decreasing trends. (4)The A .ginnala's leaves are sensitive to drought,but the others are not. Under drought conditions,A. ginnala's leaf becomes thicker and its leaf area of a plant decrease. The specific leaf area under drought conditions is:A. ginnala> P. davidiana> M. baccata> P. ussuriensis.(5)Un
    der drought conditions,all of the four species have the abilities to adapting drought environment by increasing root biomass. The improving degree of root proportion and root to shoot ratio is:A. ginnala> P. ussuriensis> P. davidiana>
    
    
    M. baccata. (6)In conclusion:the drought resistance of the four species are strong. Under drought stress,the four species can adapt drought environment by different ways.
引文
1.柴宝峰,李洪建,王孟本.晋西黄土丘陵区若干树种水分生理及抗旱性量化研究.植物研究,2000;20(1):79-85
    2.陈少良.杨树种间耐旱性差异的生理生化基础研究.北京林业大学博士论文,1997
    3.陈颖,沈惠娟.3个南方造林树种幼苗抗旱性的比较.江苏林业科技,1997;24(4):11-14
    4.戴建良.侧柏种源抗旱性测定和选择.北京林业大学硕士论文,1996
    5.冯玉龙,王文章,敖红.长白落叶松和樟子松等五种树种抗旱性的比较.东北林业大学学报,1998;26(6):16-20
    6.高玉葆.植物对水分胁迫的适应性反应及其生态学意义.现代生态学讲座.科学出版社,1995:10-24
    7.顾振瑜,文建雷,胡景江等.应用P-V技术对元宝枫水分生理特点的研究.西北林学院学报,1999;14(4):17-22
    8.关义林,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,1995;31(4):293-297
    9.郭连生,田有亮.八种针阔叶幼树清晨叶水势与土壤含水量的关系及其抗旱性研究.生态学杂志,1992;11(2):4-7
    10.郭连生,田有亮.几种针阔叶树种耐旱性生理指标的研究.林业科学,1989:25(5):389-394
    11.郭连生,田有亮.四种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性研究.应用生态学报,1994:5(1):32-36
    12.何级星,朱守谦,韦小丽.喀斯特森林树种的PV曲线研究.贵州农学院学报,1995;14(4):23-30
    13.何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响.植物生态学报,2000;24(5):630-634
    14.华东师范大学生物系植物生理教研组.植物生理学实验指导.北京:人民教育出版社,1980
    15.蒋进等.柽柳属植物抗旱性排序研究.干旱区研究,1992;9(4):41-45
    16.蒋进等.几种旱生植物盆栽苗木的水分关系和抗旱性排序.干旱区研究,1992;9(4):31-37
    17.蒋齐,梅曙光.宁夏黄土地区主要灌木树种抗旱机制的初步研究.宁夏农林科技,1992;5:25-27
    18.李海涛,陈灵芝.暖温带森林生态系统主要树种若干水分参数的季节变化.植物生态学报,1998;22(3):202-213
    19.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:111-113
    20.李吉跃,张建国,姜金璞.京西山区人工林水分参数的研究(Ⅱ).北京林业大学学报,1994;16(2):1-8
    21.李吉跃,张建国.北方主要造林树种耐旱机理及其分类模型的研究(Ⅰ).北京林业大学学报,1993;15(3):1-10
    22.李吉跃.PV 技术在油松侧柏苗木抗旱性研究中的应用.北京林业大学学报,1989:11(1):3-11
    23.李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅱ).北京林业大学学报,1991:13(增刊1):10-24
    24.李吉跃.太行山区主要造林树种耐旱特性的研究(3-4).北京林业大学学报,1991;13(2):230-239
    
    
    25.李吉跃.油松侧柏苗木抗旱性初探.北京林业大学学报,1988;10(2):23-30
    26.李吉跃.植物耐旱性及其机理.北京林业大学学报,1991;13(3):92-100
    27.李庆梅、徐化成.油松P-V曲线主要水分参数值随季节和种源的变化.植物生态学与植物地理学学报,1992;16(4):326-335
    28.李云荫,王蕴清,曹敏等.综合评价冬小麦的抗旱性.植物生理学通讯,1990:(2):17-20
    29.梁银丽,陈培元.土壤水分和氮磷营养对小麦根系生理特性的调节作用.植物生态学报,1996;20(3):255-262
    30.刘建伟,刘雅荣,王世绩.水分胁迫下不同杨树无性系苗期的光合作用.林业科学研究,1993;6(1):65-69
    31.刘建伟,刘雅荣.不同杨树无性系光合作用与其抗旱能力的初步研究.林业科学,1994;30(1):83-87
    32.刘琪景.辽西阜新地区主要造林树种抗旱性的研究.东北林业大学学报,1989;17(1):93-98
    33.刘学义.大豆抗旱性评定方法探讨.中国油料,1986;(4):23-26
    34.刘颖,邓丽琴.从根系特点分析辽西地区树种的抗旱性.沈阳农业大学学报,1995;26(2):171-176
    35.刘友良.植物水分逆境生理.北京:农业出版社,1992
    36.刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994
    37.毛达如.植物营养研究方法.北京:北京农业大学出版社.1994,7-12
    38.裴保华,陈绍光,王庆军.741杨耐旱性的研究.河北林学院学报,1994;9(4):282-287
    39.裴保华,周宝顺.三种灌木耐旱性研究.林业科学研究,1993;6(6):597-601
    40.彭祚登,李吉跃,沈熙环.林木抗旱性育种的现状与策略思考.北京林业大学学报,1998;20(4):98-103
    41.阮成江,李代琼.黄土丘陵区沙棘抗旱性的研究.植物资源与环境学报,2000;9(3):54-56
    42.阮成江等.半干旱黄土丘陵区沙棘的水分生理生态及群落特性研究.西北植物学报,2000;20(4):621-627
    43.山仑.植物水分亏缺和半干旱地区农业生产中的植物水分问题.植物生理生化进展,1983;(2):108-119
    44.上官周平.冬小麦对有限水分高效利用的生理机制.应用生态学报,1999;10(1):567-569
    45.沈繁宜,李吉跃.对P-V曲线分析方法的进一步探讨.植物生理学通讯,995;33(4):241-244
    46.沈繁宜,李吉跃.植物叶组织弹性模量新的计算方法.北京林业大学,1994;18(1):35-40
    47.孙书存,陈灵芝.辽东栎幼苗对干旱和去叶的生态反应的初步研究.生态学报,2000;20(3):893-897
    48.汤章城.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯,1984;(1):15-21
    49.汤章城.植物对水分胁迫的反应和适应性(1).植物生理学通讯.1983b;(3):24-29
    50.汤章城.植物对水分胁迫的反应和适应性(2).植物生理学通讯,1983c;(4):1-7
    51.汤章城.植物干旱生态生理的研究.生态学报,1983a;3(3):196-204
    52.田有亮,郭连生.应用pv技术对7种针阔叶幼树抗旱性的研究.应用生态学报,1990;1(2):114-119
    53.王洪春.植物抗性生理研究的进展.植物生理学专题讲座.北京:科学出版社,320-345,1987.
    
    
    54.王均明,孟丽,孙金花等.林木抗旱性与其根次生构造关系的研究.中国水土保持,1999;(6):20-22
    55.王孟本,冯彩平,李洪建等.树种保护酶活性与PV曲线水分参数变化的关系.生态学报,2000;20 (1):173-176
    56.王孟本,李洪建,柴宝峰.晋西北3个树种抗旱性指数的研究.植物研究,1996;16 (2):195-200
    57.王淼,陶大力.长白山主要树种抗旱性的研究.应用生态学报,1998;9 (1);7-10
    58.王沙生,王世绩,裴保华.杨树栽培生理研究.北京:北京农业大学出版社.1991,73-75
    59.王韶唐.植物抗旱的生理机理.植物生理生化进展.北京:科学出版社,1983.120-133
    60.王万里.压力室在植物水分状况研究中的应用.植物生理学通讯,1984;(3):52-57
    61.文建雷,张檀,胡景江等.三种杜仲无性系抗旱性比较.西北林学院学报,2000;15 (3):12-15
    62.谢寅峰,沈惠娟,罗爱珍.水分胁迫下南方四种针叶树幼苗水分参数的测定.南京林业大学学报,1999;23 (1):41-44
    63.谢寅峰,沈惠娟,罗爱珍等.南方7个造林树种幼苗抗旱生理指标的比较.南京林业大学学报,1999;23 (4):13-16
    64.谢寅峰,沈惠娟.水分胁迫下3种针叶树幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性的关系.浙江林学院学报,2000;17 (1):24-27
    65.许长成,邹琦,樊继莲等.抗旱性不同的两个大豆品种对外源H202的响应.植物生理学报,1996;22 (1):13-18
    66.许大全.气孔的不均匀关闭与光合作用的非气孔限制.植物生理学通讯,1995,31(4):246-252
    67.严昌荣,韩兴国,陈灵芝.北京山区落叶阔叶林优势种叶片特点及其生理生态特性.生态学报,2000;20(1):53-60
    68.杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响.生态学报,1997;17 (4):364-370
    69.杨敏生,裴保华,张树常.树木抗旱性研究进展.河北林果研究,1997;12 (1):87-93
    70.曾凡江,宋轩.新疆绿洲杨树的生理生态学研究展望.应用生态学报,2000;(11)5:780-784
    71.曾鸣.川柏、露丝柏抗旱生理对比研究.四川农业大学研究生论文,1987
    72.张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅰ).北京林业大学学报,1994;16 (1):1-11
    73.张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅲ).北京林业大学学报,1994;16(4):46-53
    74.张建国,李吉跃.北方主要造林树种耐旱机理及其分类模型的研究.河北林学院学报,1995;10 (3):187-193
    75.张建国.中国北方主要造林树种耐旱特性及其机理的研究.北京林业大学博士论文,1993
    76.张万儒,许本彤.森林土壤定位研究方法.中国林业出版社,1986
    77.赵忠,李鹏,王乃江.渭北主要造林树种根系抗旱性研究.水土保持研究,2000;7 (1):92-94
    78.郑希伟等.辽西地区主要造林树种抗旱性的研究.林业科学,1990;26 (4):253-258
    79.周海燕.科儿沁沙地主要植物种的生理生态学特性.应用生态学报,2000;11 (4):587-590
    80. Bastow-Wilson JA. Review of evidence on the control shoot: root ratio in relation to models. Annals of Botany, 1988;61:433-449
    
    
    81. Beardsell MF, Cohen D. IN Bleleski RL, et al.Eds. Mechanisms of regulation of Plant Growth. Bulletin 12. . Royal Sci. Of New Zealand. Wellington. 411
    82. Beets PN, Whitehead D. Carbon partitioning in Pinus radiata stands in relation to foliage nitrogen status. Tree Physiology, 1996:16:131-138
    83. Begg JE. In:Turner NC, Kramer PG(eds).Adaptation of Plants to Water and High Temperature Stress. Wiley&Sons. New York 1980. 33-42
    84. Bierhuizen JF.and Slatyer RO. Effect of atmospheric concentration of water vapor and CO2 on determining transpiration, photosynthesis relation ships of cotton leave.Agric. Meteorol, 1965; 2:259-270
    85. Bijlsma RJ,Lambers H. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. Plant and Soil, 2000;220:49-87
    86. Bowman, WD,Roberts SW. Seasonal changes in tissue elasticity in chaparral shrubs. Physiol. Plant,1985;(65) :233-236
    87. Chapin III FS, Bloom AJ, Field CB et al. Plant responses to multiple environmental factors. BioScience, 1987;37(1) : 49-57
    88. Cheung YNS,Tyree MT, Dainty J. Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations. Can. J. Bot., 1975:53:1342-1346
    89. Cleland R. Cell wall extension. Annu. Rev. Plant Physical, 1971;22:197-122
    90. Del Longo OT et al. Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought.Plant Cell Physiol. 1993;34:1023
    91. Delauney AJ,Verma DPS. Proline biosynthesis and osmoregulation in plants.Plant J., 1993:4:215-223
    92. Dickman DI et al.Photosynthesis, water relation and growth of two hybrid Populus genotypes during a severe drought. Can J For Res, 1992; 22(8) :1094-1106
    93. Doi K., Morikawa Y. and Hinckley T. M..Seasonal trends of several water relation parameters in Cryptomeria Japonica seedling.Can. J.For. Res. ,1986;(16) :74-77
    94. Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol., 1982; 33: 317-345
    95. Hsiao TC. Plant response to water stress. Ann. Rev. Plant physiol, 1973:24:519-570
    96. Jones M. M. and N. C. Turner. Osmotic adjustment in expanding and full expanded leaves of Sunflower in response to water stress. Aust.J. Plant Physiol., 1980;(7) : 187-192
    97. Jones MM, et al. Mechanism of drought resistance. In:Physiology and Biochemisty Of Drought Resistance in Plants(L.G.Palag and D.Aspinall eds.).Sydney:Academic Press,1981:15-37
    
    
    98. Kemble AK, Macpherson HT. Liberation of amino acid in perennial rye grass during wilting. Biochem J, 1954; 58:46-49
    99. Kozlowski TT.著.水分供应与树木的生长,王世绩译.林业文摘,1983;(2) :1-11,(3) :1-5
    100. Kramer PJ, Turner NC. Adaptation of Plants to Water and High Temperature Stress. John Wiley and Sons, inc. 1980. 87-403
    101. Larcher W. Physiological Plant Ecology:2nd ed. Berlin and New York: Springer-verlag. 1980. 303
    102. Levitt J. Response of plant to environmental stress (2nd ed).Academic Press. 1980
    103. Midgley GF, Moll EJ. Gas exchange in arid-adapted shrubs: when is efficient water use a disadvantage? South African J Bot, 1993;59(5) :491-495
    104. Nambiar EKS, Sonds R. Competition for water and nutrients in forests. Canadian Journal of Forest Research., 1993;23: 1955-1968
    105. Noble PS. Root distribution and seasonal production in the northwestern Sonaran Desert for a C3 shrub, a C4 bunchgrass, and a CAM leaf succulent. American Journal of Batony. American Journal of Batony, 1997;84:949-955
    106. Pastori GM, Trippi Vs. Cross resistance between water and oxidative stresses in wheat leaves. J Agrie Sci, 1993; 120:289
    107. Richter H. A Diagrum for the description of water relations in plant cells and organs. J. Exp. Bot., 1978;29:1197
    108. Ritchie G. A. and G. R. Shula. Seasonal changes of tissue-water relation in shoots and roots systems of Douglas fir seedlings. Forest Science, 1984;30(2) :538-548
    109. Scholander PE, Hammel HT. Sap pressure in vascular plants. Science, 1965;(148) :339-345
    110. Scinchezdiaz MF, Krammer PJ. Turgor differences and water stress in maize and sorghum leaves during drought and recovery. J. Exp. Bot.,1984;88:511-515
    111. Seiler JR et al. Physiological morphological responses of three half-sib families of loblolly pine to water-stress conditioning. For Sci. , 1988;34(2) :487-495
    112. Smit J et al. Root growth and water use efficiency of Douglarfir and Lodgepole seedlings. Tree Physiol, 1992;11(4) :401-410
    113. Stewart CR,Hanson AN. In Turner and Kramer PJ(eds):Adaptation of Plants to Water and High Temperature Stress,John Wiley &Sons. New York Chichester Brisbane Toronto 1980:173-189
    114. Teskey RO, Hinckley TM. Influence of temperature and water potential on root growth white oak.Physiol. Plant,1981:52:363-369
    115. Teskey RO, Hinckley TM. Moisture:Effects of Water Stress on Tree. In:Hennesey TM et al eds. Stress Physiology and Forest Productivity. Martinus Nijhofl Puberlishers. 1986. 9-33
    
    
    116. Tilman D.The resource-ratio hypothesis of plant succession.American Nature, 1985; 125:827-852
    117. Turner NC, Kramer PJ. Adaptation of Plants to Water and High Temperature Stress. 1980, John Wiley and Sons, inc
    118. Tyree MT, Cheung YNS, Macgregor ME, et al. The characteristics of seasonal and ontogenetic changes in the tissue water relations of Acer, Populus Tsuga, and Picea. Can.J.Bot., 1978;56:635-647
    119. Tyree MT,et al.A comparison of systematic errors between the Richords and Hammel methods of measuring tissue water relations parameters. Can. J. Bot, 1978; 56:21-53
    120. Tyree MT,Hammel HT. The measurement of the turgor pressure and the water relation of plants by the pressure-bomb technique. J. Exp. Bot.,1972;(23) :267-282
    121. Wiilson JR,et al. Adaption to water stress of the leaf water relation of four tropical species Aust I. Plant physiol, 1980;(7) :208-220
    122. Wilson J. R.et al. Adaption to water stress of the leaf water relation of four tropical species. Aust. J. Plant Physiol., 1980;(7) :208-220
    123. Wilson JR,et al. Adaptation to water stress of the leaf water relation of four tropical species. Aust.J.Plant Physiol.,1980;(7) :208-220
    124. Young DR, Smith WK. Influence of sun light on photosynthesis water relations and leaf structure in the understory species Arnica cordiforlia.Ecology, 1980;61: 1380-1390

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700